
A Proofs444

Example A.1. An affine layer aff : Rd1×d0+d1 × Rd0×N → Rd1×N is given by the formula445

aff(A, b,X) := AX + b1TN . (16)

A routine calculation shows that446

Jaff(A, b,X) = A⊗ IdN , (17)

while447

Daff(A, b,X) =
(
Idd1 ⊗XT , Idd1 ⊗ 1N

)
. (18)

More generally, if P : Rp → Rd1×d0 denotes any continuously differentiable map, then one obtains448

a P -parameterised affine layer449

affP (w, b,X) := aff(P (w), b,X) = P (w)X + b1T . (19)

One has450

JaffP (w, b,X) = P (w)⊗ IdN (20)
and, by the chain rule,451

DaffP (w, b,X) =
(
(Idd1

⊗XT )DP (w), Idd1
⊗ 1
)
, (21)

where DP (w) ∈ Rd0N×p is the derivative of P at w. Common examples include ϵ-weight normal-452

isation wn(w) := (ϵ + ∥w∥2row)−
1
2w [32] and convolutions, which send convolutional kernels to453

associated Toeplitz matrices. We will also consider ϵ-entry normalisation en(w) := (ϵ+ w2)−
1
2w,454

with operations applied entrywise.455

Example A.2. A (parameter-free) elementwise nonlinearity Φ : Rd0×N → Rd0×N defined by a456

continuously differentiable function ϕ : R → R is given by applying ϕ to every component of a457

matrix X ∈ Rd0×N . Extension to the parameterised case is straightforward.458

Example A.3. A (parameter-free) batch normalisation (BN) layer bn : Rd0×N → Rd0×N is given459

by the formula460

bn(X) :=
X − E[X]√
ϵ+ σ[X]2

, (22)

where ϵ > 0 is some fixed hyperparameter and E and σ denote the row-wise mean and standard devia-461

tion. The parameterised BN layer from [17], with scaling and bias parameters γ and β respectively, is462

given simply by postcomposition affdiag(γ, β, ·) ◦ bn with a diag-parameterised affine layer (Example463

A.1).464

Example A.4. A residual block f : Rp ×Rd0×N → Rd1×N can be defined given any other layer (or465

composite thereof) g : Rp × Rd0×N → Rd1×N by the formula466

f(θ,X) := IX + g(θ,X), (23)

where I : Rd0×N → Rd1×N is some linear transformation. In practice, I is frequently the identity467

map [16]; our main theorem will concern the case where I has all singular values equal to 1.468

Proof of Theorem 2.4. Using the fact that Dℓ = (Dγ ◦ F ) ·DF , we compute:469

∥∇ℓ(θ)∥2 = ⟨DF (θ)T∇γ(F (θ)), DF (θ)T∇γ(F (θ))⟩
= ⟨∇γ(F (θ)), DF (θ)DF (θ)T∇γ(F (θ))⟩
≥ λ(DF (θ))∥∇γ(F (θ))∥2

≥ µλ(DF (θ))

(
γ(F (θ))− inf

θ′
γ(F (θ′))

)
,

where the first inequality follows from the standard estimate ⟨v,AAT v⟩ ≥ λmin(AAT )∥v∥2, and470

the final inequality follows from the fact that γ is µ-PŁ over the set {F (θ) : θ ∈ Rp}.471

Our proof of Proposition 4.3 requires the following standard lemma.472
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Lemma A.5. Let {gi : Rp → Rmi×mi−1}ni=1 be a family of matrix-valued functions. If, with respect473

to some submultiplicative matrix norm, each gi is bounded by bi and Lipschitz with constant ci on a474

set S ⊂ Rp, then their pointwise matrix product θ 7→
∏n

i=1 gi(θ) is also bounded and Lipschitz on S,475

with bound
∏n

i=1 bi and Lipschitz constant
∑n

i=1 ci
(∏

j ̸=i bj
)
.476

Proof of Lemma A.5. We prove the lemma by induction. When n = 2, adding and subtracting a copy477

of g1(θ)g2(θ′) and using the triangle inequality implies that ∥g1g2(θ)− g1g2(θ
′)∥ is bounded by478

∥g1(θ)(g2(θ)− g2(θ
′))∥+ ∥(g1(θ)− g1(θ

′))g2(θ
′)∥.

Applying submultiplicativity of the matrix norm and the bounds provided by the bi and ci gives479

∥g1g2(θ)− g1g2(θ
′)∥ ≤ (b1c2 + b2c1)∥θ − θ′∥.

Now suppose we have the result for n = k. Writing
∏k+1

i=1 gi as g1
∏k+1

i=2 gi and applying the above480

argument, the induction hypothesis tells us that
∏k+1

i=1 gi is indeed bounded by
∏k+1

i=1 bi and Lipschitz481

with Lipschitz constant
∑k+1

i=1 ci
(∏

j ̸=i bj
)
. The result follows.482

Proof of Proposition 4.3. By Proposition 4.2, it suffices to show that for each 1 ≤ l ≤ L, the function483

θ⃗ 7→
L∏

j=l+1

Jfj
(
θj , f<j(θ⃗, X)

)
Dfl

(
θl, f<l(θ⃗, X)

)
(24)

is bounded and Lipschitz on S. To show this, we must first prove that each map θ⃗ 7→ f<j(θ⃗, X) is484

bounded and Lipschitz on S. This we prove by induction.485

By hypothesis, θ⃗ 7→ f1(θ⃗, X) = f1(θ1, X) is bounded and Lipschitz on S. Suppose now that for486

j > 1, one has θ⃗ 7→ f<j(θ⃗, X) bounded and Lipschitz on S. Then the range of S ∋ θ 7→ f<j(θ⃗, X)487

is a bounded subset of Rdj×N . By hypothesis on fj , it then follows that θ 7→ f<j+1(θ⃗, X) =488

fj
(
θj , f<j(θ⃗, X)

)
is bounded and Lipschitz on S.489

The hypothesis on the Jfj and Dfj now implies that the maps θ⃗ 7→ Jfj
(
θj , f<j(θ⃗, X)

)
, l + 1 ≤490

j ≤ L, and θ⃗ 7→ Dfl
(
θl, f<l(θ⃗, X)

)
are all bounded and Lipschitz on S. In particular, as a product491

of bounded and Lipschitz functions, the map given in Equation (24) is also bounded and Lipschitz on492

S. Therefore DF is bounded and Lipschitz on S.493

Proof of Corollary 4.4. By hypothesis, F (S) is a bounded subset of RdL×N . Continuity of γ then494

implies that γ(F (S)) is a bounded subset of R, so that F (S) is contained in a sublevel set of γ. The495

result now follows from the hypotheses.496

To prove Theorem 4.5 it will be convenient to recall some tensor calculus. If f : Rn1×n2 → Rm1×m2497

is a matrix-valued, differentiable function of a matrix-valued variable, its derivative Df can be498

regarded as a map Rn1×n2 → Rm1×m2×n1×n2 whose components are given by499

Df i1,i2
j1,j2

(X) =
∂f i1

i2

∂xj1
j2

(X), X ∈ Rn1×n2

where 1 ≤ iα ≤ mα and 1 ≤ jα ≤ nα are the indices, α = 1, 2. It is easily deduced from the500

chain rule of ordinary calculus that if f : Rn1×n2 → Rm1×m2 and g : Rm1×m2 → Rl1×l2 are501

differentiable, then g ◦ f is differentiable with derivative (Dg ◦ f) ·Df : Rn1×n2 → Rl1×l2×n1×n2 ,502

where here · denotes contraction over the m1 ×m2 indices. The following lemmata then follow from503

routine calculation.504

Lemma A.6. Let bn : Rd×N → Rd×N be an ϵ-batchnorm layer. Then one can write bn = v ◦m,505

where v,m : Rd×N → Rd×N are given respectively by506

v(Y ) = (Nϵ+ ∥Y ∥2row)−
1
2

√
NY, (25)

507

m(X) = X − 1

N
X1N×N . (26)
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One has508

∂vij
∂ykl

= δik
√
N(Nϵ+ ∥yi∥2)− 1

2

(
δjl − (Nϵ+ ∥yi∥2)−1yily

i
j

)
(27)

and509

∂2vij
∂ymn ∂ykl

=δikδ
i
m

√
N(Nϵ+ ∥yi∥2)− 3

2×

×
(
3(Nϵ+ ∥yi∥2)−1yiny

i
ly

i
j

− (δjl y
i
n + δlny

i
j + δjny

i
l)
)
, (28)

with510

∂mi
j

∂xk
l

= δik(δ
j
l −N−1). (29)

and all second derivatives of m being zero.511

Lemma A.7. Let wn : Rd1×d0 → Rd1×d0 be an ϵ-weight normalised parameterisation (Example512

A.1). Then one has513

∂wnij
∂wk

l

= δik(ϵ+ ∥wi∥2)− 1
2

(
δjl − (ϵ+ ∥wi∥2)−1wi

lw
i
j

)
(30)

and514

∂wni
j

∂wm
n ∂wk

k

=δikδ
i
m(ϵ+ ∥wi∥2)− 3

2×

×
(
3(ϵ+ ∥wi∥2)−1wi

nw
i
lw

i
j

− (δjlw
i
n + δlnw

i
j + δjnw

i
l)
)
. (31)

Similarly, if en : Rd1×d0 → Rd1×d0 is an ϵ-entry-normalised parameterisation, then515

∂enij
∂wk

l

= δikδ
j
l ϵ(ϵ+ (wi

j)
2)−

3
2 (32)

and516

∂eni
j

∂wn
m∂wk

l

= −δinδ
j
mδikδ

j
l 3ϵ(ϵ+ (wi

j)
2)−

3
2wi

j (33)

Proof of Theorem 4.5. (1) follows from continuity of the nonlinearity and its derivative, implying517

boundedness of both over bounded sets in Rd×N .518

(2) and (3) follow from a similar argument to the following argument for batch norm, which we give519

following Lemma A.6. Specifically, for the composite f := bn ◦ aff : Rd1×d0 × Rd0×N → Rd1×N520

defined by an ϵ-BN layer and an affine layer, we will prove that over any set B ⊂ Rd0×N consisting521

of matrices X whose covariance matrix is nondegenerate, one has f , Df and Jf all globally bounded522

and Lipschitz. Indeed, v (Equation (25)) is clearly globally bounded, while Dv (Equation (27)) is523

globally bounded, decaying like ∥Y ∥−1
row out to infinity, and D2v (Equation (28)) is globally bounded,524

decaying like ∥Y ∥−2
row out to infinity. Consequently,525

bn ◦ aff = v ◦ (m ◦ aff),
526

D(bn ◦ aff) = (Jv ◦m ◦ aff) · (Jm ◦ aff) ·Daff,
527

J(bn ◦ aff) = (Jv ◦m ◦ aff) · (Jm ◦ aff) · Jaff,

and similarly the derivatives of D(bn◦ aff) and J(bn◦ aff) are all globally bounded over Rd1×d0 ×B.528

The hypothesis that B consist of matrices with nondegenerate covariance matrix is needed here529

because while Jv ◦m ◦ aff decays like ∥A(X − E[X])∥−1
row out to infinity, the row-norm ∥(A(X −530

E[X]))i)∥2 = (Ai(X−E[X])(X−E[X])T (Ai)T ) = ∥Ai∥2Cov(X) can only be guaranteed to increase531

with A if Cov(X) is nondegenerate. Thus, for instance, without the nondegeneracy hypothesis on532

Cov(X), A 7→ J(bn ◦ aff)(A,X) grows unbounded like Jaff(A,X) = A⊗ IdN in any direction of533
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degeneracy of Cov(X). Nonetheless, with the nondegenerate covariance assumption on elements of534

B, bn ◦ aff satisfies the hypotheses of Proposition 4.3 over Rd1×d0 ×B.535

(2) and (3) now follow from essentially the same boundedness arguments as for batch norm, using536

Lemma A.7 in the place of Lemma A.6. However, since the row norms in this case are always defined537

by the usual Euclidean inner product on row-vectors, as opposed to the possibly degenerate inner538

product coming from the covariance matrix of the input vectors, one does not require any hypotheses539

aside from boundedness on the set B. Thus entry- and weight-normalised affine layers satisfy the540

hypotheses of Proposition 4.3.541

Finally, (5) follows from the above arguments. More specifically, if g : Rp × Rd×N → Rd×N is any542

composite of layers of the above form, then g satisfies the hypotheses of Proposition 4.3. Consequently,543

so too does the residual block f(θ,X) := X+g(θ,X), for which Jf(θ,X) = Idd⊗ IdN +Jg(θ,X)544

and Df(θ,X) = Dg(θ,X).545

546

Proof of Proposition 4.6. In the notation of Proposition 4.2, the product DF (θ⃗)DF (θ⃗)T is the sum547

of the positive-semidefinite matrices DθlF (θ⃗)DθlF (θ⃗)T . Therefore λ(DF (θ⃗)) ≥
∑

l λ(DθlF (θ⃗)).548

The result now follows from the inequality λ(AB) ≥ λ(A)λ(B) applied inductively using Equation549

(11). Note that λ(AB) ≥ λ(A)λ(B) is either trivial if one or both of A and B have more rows than550

columns (in which case the right hand side is zero), and follows from the well-known inequality551

σ(AB) ≥ σ(A)σ(B) for the smallest singular values if both A and B have at least as many columns552

as rows.553

Theorem 4.7 follows from the following two lemmata.554

Lemma A.8. Let g : Rp × Rd0×N → Rd1×N be a layer for which there exists δ > 0 such that555

∥Jg(θ,X)∥2 < (1− δ) for all θ and X . Let I : Rd0×N → Rd1×N be a linear map whose singular556

values are all equal to 1. Then the residual block f(θ,X) := IX + g(θ,X) has σ(Jf(θ,X)) > δ557

for all θ and X .558

Proof. Observe that559

Jf(θ,X) = I ⊗ IdN + Jg(θ,X). (34)

The result then follows from Weyl’s inequality: all singular values of I ⊗ IdN are equal to 1, so that560

σ
(
Jf(θ,X)

)
≥ 1− ∥Jg(θ,X)∥2 > δ

for all θ and X .561

Lemma A.9. Let P : Rp → Rd1×d0 be a parameterisation. Then562

σ
(
DaffP (w,X)

)
≥ σ(X)σ

(
DP (w)

)
(35)

for all w ∈ Rp and X ∈ Rd0×N .563

Proof. Follows from Equation (21) and the inequality σ(AB) ≥ σ(A)σ(B).564

Proof of Theorem 4.7. Hypothesis 1 in Theorem 4.7 says that the residual branches of the fl, l ≥ 2,565

satisfy the hypotheses of Lemma A.8, so that σ(Jfl(θl, f<l(θ⃗, X))) > 0 for all l ≥ 2. By the566

assumption that dl−1 ≥ dl, this means that λ(Jfl(θl, f<l(θ⃗, X))) = σ(Jfl(θl, f<l(θ⃗, X)))2 >567

0. On the other hand, hypothesis 2 together with Lemma A.9 implies that λ(Df1(θ1, X)) ≥568

σ(Df1(θ1, X))2 > 0. The result now follows from Proposition 4.6.569

.570

Proof of Theorem 5.1. By Theorem 4.5, all layers satisfy the Hypotheses of Proposition 4.3 and so571

by Corollary 4.4, the associated loss function is globally Lipschitz, with Lipschitz constant some572

β > 0. Take η > 0 to be any number smaller than 2β−1; thus the loss can be guaranteed to be573

decreasing with every gradient descent step.574
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We now show that the network satisfies the hypotheses of Theorem 4.7. The dimension constraints575

in item (1) are encoded directly into the definition of the network, while the operator-norm of576

each of the residual branches, as products of P (w) and DΦ matrices, are globally bounded by577

1 by our hypotheses on these factors. For item (2), our data matrix is full-rank since it consists578

of linearly independent data, while by definition we have p1 = d1d0 with Df1 = Daffen being579

everywhere full-rank since ϵ-entry-normalisation is a diffeomorphism onto its image for any ϵ > 0.580

Its hypotheses being satisfied by our weight-normalised residual network, Theorem 4.7 implies the581

parameter-function map F associated to {fl}Ll=1 and X satisfies λ(DF (θ⃗)) = σ(DF (θ⃗))2 > 0 for582

all parameters θ⃗. There are now two cases to consider.583

In the first case, the gradient descent trajectory never leaves some ball of finite radius in Rd1×d0 , the584

parameter space for the first layer. In any such ball, recalling that the first layer’s parameterisation is585

entry-normalisation (Example A.1), the smallest singular value586

σ(D en(w)) = min
1≤i≤d11≤j≤d0

ϵ

(ϵ+ (wi
j)

2)
3
2

(36)

of D en(w) is uniformly lower bounded by some positive constant. Thus by Lemmas A.9 and A.87,587

the smallest singular value of DF is also uniformly lower bounded by a positive constant in any such588

ball. It follows from Theorem 2.4 that the loss satisfies the PŁ-inequality over such a ball, so that589

gradient descent converges in this case at a linear rate to a global minimum.590

The second and only other case that must be considered is when for each R > 0, there is some time591

T for which the weight norm ∥wt∥ of the parameters in the first layer is greater than R for all t ≥ T .592

That is, the parameter trajectory in the first layer is unbounded in time. In this case, inspection of593

Equation (36) reveals that the smallest singular value of DF cannot be uniformly bounded below by594

a positive constant over all of parameter space. Theorem 2.4 then says that there is merely a sequence595

(µt)t∈N, with µt proportional to σ(D en(wt)), for which596

ℓt − ℓ∗ ≤
t∏

i=0

(1− µiα)(ℓ0 − ℓ∗), (37)

where α = η(1− 2β−1η) > 0. To guarantee convergence in this case, therefore, it suffices to show597

that
∏∞

t=0(1− µtα) = 0; equivalently, it suffices to show that the infinite series598

∞∑
t=0

log(1− µtα) (38)

diverges.599

The terms of the series (38) form a sequence of negative numbers which converges to zero. Hence, for600

the series (38) to diverge, it is necessary that µt decrease sufficiently slowly with time. By the integral601

test, therefore, it suffices to find an integrable function m : [t0,∞) → R≥0 such that µt ≥ m(t) for602

each integer t ≥ t0, for which the integral
∫∞
t0

log(1−m(t)α) dt diverges.603

We construct m by considering the worst possible case: where each gradient descent step is in exactly604

the same direction going out to ∞, thereby decreasing σ(D en(w)) at the fastest possible rate. By605

applying an orthogonal-affine transformation to Rd1d0 , we can assume without loss of generality that606

the algorithm is initialised at, and consistently steps in the direction of, the first canonical basis vector607

e1 in Rd1d0 . Specifically, letting θ⃗ be the vector of parameters for all layers following the first and608

w ∈ Rd1d0 the first layer parameters, for r ∈ R≥1 we may assume that609

∇wℓ(θ⃗, re1) = ∂w1
1
ℓ(θ⃗, re1)e1, (39)

with ∂w1
1
ℓ(θ⃗, re1) ≥ 0 for all (θ⃗, r). Let γ denote the convex function defined by the cost c (cf.610

Equation (6)), and let A(θ⃗, re1) denote the d1d0-dimensional row vector611

Dγ
(
F (θ⃗, re1)

) L∏
l=2

Jfl
(
θl, f<l

(
(θ⃗, re1), X

))
(Idd1

⊗XT ). (40)

7See the supplementary material.
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Then, in this worst possible case, the single nonzero partial derivative defining the loss gradient with612

respect to w at the point (θ⃗, re1) is given by613

∂w1
1
ℓ(θ⃗, re1)) = A(θ⃗, re1)1

ϵ

(ϵ+ r2)
3
2

, (41)

where A(θ⃗, re1)1 denotes the first component of the row vector A(θ⃗, re1) (cf. Equation (21)). By614

Theorem 4.5, however, the magnitude of A(θ⃗, re1) can be globally upper bounded by some constant615

C. Thus616

∂w1
1
ℓ(θ⃗, re1) ≤

Cϵ

(ϵ+ r2)
3
2

≤ Cϵ

r3
(42)

for all θ⃗ and r ≥ 1.617

Let us therefore consider the Euler method, with step size η, applied over R≥1, starting from r0 = 1,618

with respect to the vector field V (r) = Cϵr−3. Labelling the iterates (rt)t∈N, we claim that there619

exist constants γ1, γ2 and γ3 such that 0 < rt ≤ γ1 + γ2(t+ γ3)
1
4 for all t ∈ N. Indeed, observe that620

the solution to the flow equation ṙ(t) = Cϵr(t)−3 is r(t) = (4Cϵt+ 1)
1
4 , so the claim follows if we621

can show that there exists a constant B such that |rt − r(t)| < B for all integer t ≥ 0. However this622

follows from Theorem 10.6 of [14].623

Now, since for each t, rt is an upper bound for the magnitude of the parameter vector wt ∈ Rd1d0 ,624

we see from Equation (36) that the smallest singular value σ(Den(wt)) admits the lower bound625

σ(D en(wt)) ≥
ϵ

(ϵ+ (γ1 + γ2(t+ γ3)
1
4 )2)

3
2

(43)

for all t ∈ N. Clearly, (ϵ + (γ1 + γ2(t + γ3)
1
4 )2)

3
2 = O(t

3
4 ). Hence there exist t0 > 0 and Γ > 0626

such that627

µt ≥
Γ

t
3
4

(44)

for all integer t ≥ t0. Then, setting m(t) := Γt−
3
4 , the integral628 ∫ ∞

t0

log(1−m(t)α) dt =

∫ ∞

t0

log

(
t
3
4 − Γα

t
3
4

)
dt (45)

diverges. It follows that gradient descent converges as t → ∞ to a global minimum.629

A.1 Experimental details630

For all our experiments, the data was standardised channel-wise using the channel-wise mean and631

standard deviation over the training set.632

On ImageNet, the models were trained using the default PyTorch ImageNet example8, using SGD633

with weight decay of 1e− 4 and momentum of 0.9, batch size of 256, and random crop/horizontal634

flip data augmentation. The test accuracies obtained were 74.22± 0.14 for the standard network, and635

74.82± 0.04 for the modified network.636

On CIFAR10/100, our models9 were trained using SGD with a batch size of 128 and random637

crop/horizontal flip data augmentation. We ran 10 trials over each of the learning rates 0.2, 0.1, 0.05638

and 0.02. The only exception to this is for CIFAR10 with a learning rate of 0.2, where training639

diverged 6 our of 10 times on the original network, so we plotted only those 4 trials where training640

did not diverge. Mean and standard deviation test accuracies, as well as averaged-over-final epoch641

loss values, are given in Tables 1 and 2.642

The plots at the optimal learning rate, 0.1 for CIFAR10 and 0.05 for CIFAR100, are in Figure 3,643

while we provide the plots for the other learning rates in Figures 4 and 5.644

While Hypothesis 6.1 is clearly validated at all learning rates on CIFAR100, it holds to lessening645

extents on CIFAR10 as learning rate is decreased. Ultimately, the modified version ends up achieving646

a slightly higher loss at the end of training with the smallest learning rate, suggesting that Hypothesis647

6.1 should not be invoked too far from initialisation.648

8https://github.com/pytorch/examples/tree/main/imagenet
9minimally modifying https://github.com/kuangliu/pytorch-cifar

17



Table 1: ResNet18 on CIFAR10
Original Modified

Learning rate Test accuracy Final loss Test accuracy Final loss

0.2 48.14± 19.95 1.3883± 0.5503 62.71± 6.14 0.9495± 0.2150
0.1 91.64± 0.24 0.0032± 0.0002 91.42± 0.61 0.0022± 0.0002
0.05 91.22± 0.25 0.0043± 0.0003 91.14± 0.25 0.0041± 0.0001
0.02 89.50± 0.32 0.0112± 0.0004 88.94± 0.35 0.0125± 0.0004

Table 2: ResNet18 on CIFAR100
Original Modified

Learning rate Test accuracy Final loss Test accuracy Final loss

0.2 69.67± 0.58 0.0150± 0.0005 70.07± 0.53 0.0115± 0.0005
0.1 70.05± 0.43 0.0147± 0.0004 70.87± 0.42 0.0116± 0.0003
0.05 70.04± 0.48 0.0145± 0.0003 70.34± 0.56 0.0116± 0.0003
0.02 69.75± 0.56 0.0145± 0.0003 70.13± 0.55 0.0116± 0.0004
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Figure 4: Loss plots for ResNet18 on CIFAR10
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Figure 5: Loss plots for ResNet18 on CIFAR100
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