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Abstract

We introduce a general theoretical framework, designed for the study of gradient
optimisation of deep neural networks, that encompasses ubiquitous architecture
choices including batch normalisation, weight normalisation and skip connections.
Our framework determines the curvature and regularity properties of multilayer
loss landscapes in terms of their constituent layers, thereby elucidating the roles
played by normalisation layers and skip connections in globalising these properties.
We then demonstrate the utility of this framework in two respects. First, we give
the only proof of which we are aware that a class of deep neural networks can be
trained using gradient descent to global optima even when such optima only exist
at infinity, as is the case for the cross-entropy cost. Second, we identify a novel
causal mechanism by which skip connections accelerate training, which we verify
predictively with ResNets on MNIST, CIFAR10, CIFAR100 and ImageNet.

1 Introduction

Deep, overparameterised neural networks are efficiently trainable to global optima using simple first
order methods. That this is true is immensely surprising from a theoretical perspective: modern
datasets and deep neural network architectures are so complex and irregular that they are essentially
opaque from the perspective of classical (convex) optimisation theory. A recent surge in inspired
theoretical works [22, 14, 13, 1, 52, 51, 36, 28, 29, 33, 32] has elucidated this phenomenon, showing
linear convergence of gradient descent on certain classes of neural networks, with certain cost
functions, to global optima. The formal principles underlying these works are identical. By taking
width sufficiently large, one guarantees uniform bounds on curvature (via a Lipschitz gradients-
type property) and regularity (via a Polyak-Łojasiewicz-type inequality) in a neighbourhood of
initialisation. Convergence to a global optimum in that neighbourhood then follows from a well-
known chain of estimates [23].

Despite significant progress, the theory of deep learning optimisation extant in the literature presents
at least three significant shortcomings:
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1. It lacks a formal framework in which to compare common practical architecture choices. Indeed,
none of the aforementioned works consider the impact of ubiquitous (weight/batch) normalisation
layers. Moreover, where common architectural modifications such as skip connections are studied, it
is unclear exactly what impact they have on optimisation. For instance, while in [13] it is shown that
skip connections enable convergence with width polynomial in the number of layers, as compared
with exponential width for chain networks, in [1] polynomial width is shown to be sufficient for
convergence of both chain and residual networks.
2. It lacks theoretical flexibility. The consistent use of uniform curvature and regularity bounds are
insufficiently flexible to enable optimisation guarantees too far away from initialisation, where the
local, uniform bounds used in previous theory no longer hold. In particular, proving globally optimal
convergence for deep neural nets with the cross-entropy cost was (until now) an open problem [5].
3. It lacks practical utility. Although it is presently unreasonable to demand quantitatively predictive
bounds on practical performance, existing optimisation theory has been largely unable to inform
architecture design even qualitatively. This is in part due to the first item, since practical architectures
typically differ substantially from those considered for theoretical purposes.

Our purpose in this article is to take a step in addressing these shortcomings. Specifically:

1. We provide a formal framework, inspired by [45], for the study of multilayer optimisation. Our
framework is sufficiently general to include all commonly used neural network layers, and contains
formal results relating the curvature and regularity properties of multilayer loss landscapes to those
of their constituent layers. As instances, we prove novel results on the global curvature and regularity
properties enabled by normalisation layers and skip connections respectively, in contrast to the local
bounds provided in previous work.
2. Using these novel, global bounds, we identify a class of weight-normalised residual networks
for which, given a linear independence assumption on the data, gradient descent can be provably
trained to a global optimum arbitrarily far away from initialisation. From a regularity perspective,
our analysis is strictly more flexible than the uniform analysis considered in previous works, and in
particular solves the open problem of proving global optimality for the training of deep nets with the
cross-entropy cost.
3. Using our theoretical insight that skip connections aid loss regularity, we conduct a systematic
empirical analysis of singular value distributions of layer Jacobians for practical layers. We are
thereby able to predict that simple modifications to the classic ResNet architecture [20] will improve
training speed. We verify our predictions on MNIST, CIFAR10, CIFAR100 and ImageNet.

2 Background

In this section we give a summary of the principles underlying recent theoretical advances in neural
network optimisation. We discuss related works after this summary for greater clarity.

2.1 Smoothness and the PŁ-inequality

Gradient descent on a possibly non-convex function ℓ : Rp → R≥0 can be guaranteed to converge
to a global optimum by insisting that ℓ have Lipschitz gradients and satisfy the Polyak-Łojasiewicz
inequality. We recall these well-known properties here for convenience.
Definition 2.1. Let β > 0. A continuously differentiable function ℓ : Rp → R is said to have
β-Lipschitz gradients, or is said to be β-smooth over a set S ⊂ Rp if the vector field ∇ℓ : Rp → Rp

is β-Lipschitz. If S is convex, ℓ having β-Lipschitz gradients implies that the inequality

ℓ(θ2)− ℓ(θ1) ≤ ∇ℓ(θ1)
T (θ2 − θ1) +

β

2
∥θ2 − θ1∥2 (1)

holds for all θ1, θ2 ∈ S.

The β-smoothness of ℓ over S can be thought of as a uniform bound on the curvature of ℓ over S: if
ℓ is twice continuously differentiable, then it has Lipschitz gradients over any compact set K with
(possibly loose) Lipschitz constant given by

β := sup
θ∈K

∥D2ℓ(θ)∥, (2)

where D2ℓ is the Hessian and ∥ · ∥ denotes any matrix norm.
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Definition 2.2. Let µ > 0. A differentiable function ℓ : Rp → R≥0 is said to satisfy the µ-Polyak-
Łojasiewicz inequality, or is said to be µ-PŁ over a set S ⊂ Rp if

∥∇ℓ(θ)∥2 ≥ µ

(
ℓ(θ)− inf

θ′∈S
ℓ(θ′)

)
(3)

for all θ ∈ S.

The PŁ condition on ℓ over S is a uniform guarantee of regularity, which implies that all critical
points of ℓ over S are S-global minima; however, such a function need not be convex. Synthesising
these definitions leads easily to the following result (cf. Theorem 1 of [23]).

Theorem 2.3. Let ℓ : Rp → R≥0 be a continuously differentiable function that is β-smooth and
µ-PŁ over a convex set S. Suppose that θ0 ∈ S and let {θt}∞t=0 be the trajectory taken by gradient
descent, with step size η < 2β−1, starting at θ0. If {θt}∞t=0 ⊂ S, then ℓ(θt) converges to an S-global
minimum ℓ∗ at a linear rate:

ℓ(θt)− ℓ∗ ≤
(
1− µη

(
1− βη

2

))t(
ℓ(θ0)− ℓ∗

)
(4)

for all t ∈ N.

Essentially, while the Lipschitz constant of the gradients controls whether or not gradient descent
with a given step size can be guaranteed to decrease the loss at each step, the PŁ constant determines
by how much the loss will decrease. These ideas can be applied to the optimisation of deep neural
nets as follows.

2.2 Application to model optimisation

The above theory can be applied to parameterised models in the following fashion. Let f : Rp ×
Rd0 → RdL be a differentiable, Rp-parameterised family of functions Rd0 → RdL (in later sections,
L will denote the number of layers of a deep neural network). Given N training data {(xi, yi)}Ni=1 ⊂
Rd0 × RdL , let F : Rp → RdL×N be the corresponding parameter-function map defined by

F (θ)i := f(θ, xi). (5)

Any differentiable cost function c : RdL × RdL → R≥0, convex in the first variable, extends to a
differentiable, convex function γ : RdL×N → R≥0 defined by

γ
(
(zi)

N
i=1

)
:=

1

N

N∑
i=1

c(zi, yi), (6)

and one is then concerned with the optimisation of the composite ℓ := γ ◦ F : Rp → R≥0 via
gradient descent.

To apply Theorem 2.3, one needs to determine the smoothness and regularity properties of ℓ. By the
chain rule, the former can be determined given sufficient conditions on the derivatives Dγ ◦ F and
DF (cf. Lemma 2 of [45]). The latter can be bounded by Lemma 3 of [45], which we recall below
and prove in the appendix for the reader’s convenience.

Theorem 2.4. Let S ⊂ Rp be a set. Suppose that γ : RdL×N → R≥0 is µ-PŁ over F (S) with
minimum γ∗

S . Let λ(DF (θ)) denote the smallest eigenvalue of DF (θ)DF (θ)T . Then

∥∇ℓ(θ)∥2 ≥ µλ(DF (θ))
(
ℓ(θ)− γ∗

S

)
(7)

for all θ ∈ S.

Note that Theorem 2.4 is vacuous (λ(DF (θ)) = 0 for all θ) unless in the overparameterised regime
(p ≥ dLN ). Even in this regime, however, Theorem 2.4 does not imply that ℓ is PŁ unless λ(θ)
can be uniformly lower bounded by a positive constant over S. Although universally utilised in
previous literature, such a uniform lower bound will not be possible in our global analysis, and our
convergence theorem does not follow from Theorem 2.3, in contrast to previous work. Our theorem
requires additional argumentation, which we believe may be of independent utility.
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3 Related works

Convergence theorems for deep linear networks with the square cost are considered in [4, 2]. In
[22], it is proved that the tangent kernel of a multi-layer perceptron (MLP) becomes approximately
constant over all of parameter space as width goes to infinity, and is positive-definite for certain
data distributions, which by Theorem 2.4 implies that all critical points are global minima. Strictly
speaking, however, [22] does not prove convergence of gradient descent: the authors consider only
gradient flow, and leave Lipschitz concerns untouched. The papers [14, 13, 1, 52, 51, 36] prove that
overparameterized neural nets of varying architectures can be optimised to global minima close to
initialisation by assuming sufficient width of several layers. While [1] does consider the cross-entropy
cost, convergence to a global optimum is not proved: it is instead shown that perfect classification
accuracy can be achieved close to initialisation during training. Improvements on these works have
been made in [33, 32, 7], wherein large width is required of only a single layer.

It is identified in [28] that linearity of the final layer is key in establishing the approximate constancy of
the tangent kernel for wide networks that was used in [14, 13]. By making explicit the implicit use of
the PŁ condition present in previous works [14, 13, 1, 52, 51, 36], [29] proves a convergence theorem
even with nonlinear output layers. The theory explicated in [29] is formalised and generalised in
[45]. A key weakness of all of the works mentioned thus far (bar the purely formal [45]) is that their
hypotheses imply that optimisation trajectories are always close to initialisation. Without this, there
is no obvious way to guarantee the PŁ-inequality along the optimisation trajectory, and hence no
way to guarantee one does not converge to a suboptimal critical point. However such training is
not possible with the cross-entropy cost, whose global minima only exist at infinity. There is also
evidence to suggest that such training must be avoided for state-of-the-art test performance [8, 15, 26].
In contrast, our theory gives convergence guarantees even for trajectories that travel arbitrarily far
from initialisation, and is the only work of which we are aware that can make this claim.

Among the tools that make our theory work are skip connections [20] and weight normalisation
[41]. The smoothness properties of normalisation schemes have previously been studied [42, 40],
however they only give pointwise estimates comparing normalised to non-normalised layers, and
do not provide a global analysis of Lipschitz properties as we do. The regularising effect of skip
connections on the loss landscape has previously been studied in [35], however this study is not tightly
linked to optimisation theory. Skip connections have also been shown to enable the interpretation
of a neural network as coordinate transformations of data manifolds [19]. Mean field analyses of
skip connections have been conducted in [49, 30] which necessitate large width; our own analysis
does not. A similarly general framework to that which we supply is given in [47, 48]; while both
encapsulate all presently used architectures, that of [47, 48] is designed for the study of infinite-width
tangent kernels, while ours is designed specifically for optimisation theory. Our empirical singular
value analysis of skip connections complements existing theoretical work using random matrix theory
[18, 37, 39, 34, 16]. These works have not yet considered the shifting effect of skip connections on
layer Jacobians that we observe empirically.

Our theory also links nicely to the intuitive notions of gradient propagation [20] and dynamical
isometry already present in the literature. In tying Jacobian singular values rigorously to loss
regularity in the sense of the Polyak-Lojasiewicz inequality, our theory provides a new link between
dynamical isometry and optimisation theory [43, 38, 46]: specifically dynamical isometry ensures
better PŁ conditioning and therefore faster and more reliable convergence to global minima. In
linking this productive section of the literature to optimisation theory, our work may open up new
possibilities for convergence proofs in the optimisation theory of deep networks. We leave further
exploration of this topic to future work.

Due to this relationship with the notion of dynamical isometry, our work also provides optimisation-
theoretic support for the empirical analyses of [24, 6] that study the importance of layerwise dynamical
isometry for trainability and neural architecture search [27, 44, 25]. Recent work on deep kernel
shaping shows via careful tuning of initialisation and activation functions that while skip connections
and normalisation layers may be sufficient for good trainability, they are not necessary [31, 50]. Other
recent work has also shown benefits to inference performance by removing skip connections from the
trained model using a parameter transformation [11] or by removing them from the model altogether
and incorporating them only into the optimiser [12].
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Finally, a line of work has recently emerged on training in the more realistic, large learning rate
regime known as “edge of stability" [9, 3, 10]. This intriguing line of work diverges from ours, and
its integration into the framework we present is a promising future research direction.

4 Formal framework

In this section we will define our theoretical framework. We will use Rn×m to denote the space of
n×m matrices, and vectorise rows first. We use Idm to denote the m×m identity matrix, and 1n
to denote the vector of ones in Rn. We use ⊗ to denote the Kronecker (tensor) product of matrices,
and given a vector v ∈ Rn we use diag(v) to denote the n× n matrix whose leading diagonal is v.
Given a matrix A ∈ Rn×m, and a seminorm ∥ · ∥ on Rm, ∥A∥row will be used to denote the vector of
∥ · ∥-seminorms of each row of A. The smallest singular value of A is denoted σ(A), and the smallest
eigenvalue of AAT denoted λ(A). Full proofs of all of our results can be found in the appendix.

Our theory is derived from the following formal generalisation of a deep neural network.
Definition 4.1. By a multilayer parameterised system (MPS) we mean a family {fl : Rpl ×
Rdl−1×N → Rdl×N}Ll=1 of functions. Given a data matrix X ∈ Rd0×N , we denote by
F : R

∑L
i=1 pi → RdL×N the parameter-function map2 defined by

F (θ⃗) := fL(θL) ◦ · · · ◦ f1(θ1)(X), (8)

for θ⃗ = (θ1, . . . , θL)
T ∈ R

∑L
i=1 pi .

Definition 4.1 is sufficiently general to encompass all presently used neural network layers, but we
will assume without further comment from here on in that all layers are continuously differentiable.
Before we give examples, we record the following result giving the form of the derivative of the
parameter-function map, which follows easily from the chain rule. It will play a key role in the
analysis of the following subsections.
Proposition 4.2. Let {fl : Rpl ×Rdl−1×N → Rdl×N}Ll=1 be a MPS, and X ∈ Rd0×N a data matrix.
For 1 ≤ l ≤ L, denote the derivatives of fl with respect to the Rpl and Rdl−1 variables by Dfl and
Jfl respectively, and let f<l(θ⃗, X) denote the composite

f<l(θ⃗, X) := fl−1(θl−1) ◦ · · · ◦ f1(θ1)(X). (9)

The derivative DF of the associated parameter-function map is given by

DF (θ⃗) =
(
Dθ1F (θ⃗), . . . , DθLF (θ⃗)

)
, (10)

where for 1 ≤ l < L, DθlF (θ⃗) is given by the formula(
L∏

j=l+1

Jfj
(
θj , f<j(θ⃗, X)

))
Dfl

(
θl, f<l(θ⃗, X)

)
, (11)

with the product taken so that indices are arranged in descending order from left to right.

All common differentiable neural network layers fit into this framework; we record some examples
in detail in the appendix. We will see in the next section that insofar as one wishes to guarantee
global smoothness, the usual parameterisation of affine layers is poor, although this defect can be
ameliorated to differing extents by normalisation strategies.

4.1 Smoothness

In this subsection, we give sufficient conditions for the derivative of the parameter-function map of a
MPS to be bounded and Lipschitz. We are thereby able to give sufficient conditions for any associated
loss function to have Lipschitz gradients on its sublevel sets. We begin with a formal proposition that
describes the Lipschitz properties of the derivative of the parameter-function map of a MPS in terms
of those of its constituent layers.

2RdL×N is canonically isomorphic to the space of RdL -valued functions on an N -point set.
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Proposition 4.3. Let {fl : Rpl × Rdl−1×N → Rdl×N}Ll=1, and let {Sl ⊂ Rpl}Ll=1 be subsets of the
parameter spaces. Suppose that for each bounded set Bl ⊂ Rdl−1×N , the maps fl, Dfl and Jfl
are all bounded and Lipschitz on Sl × Bl. Then for any data matrix X ∈ Rd0×N , the derivative
DF of the associated parameter-function map F : Rp → RdL×N is bounded and Lipschitz on
S :=

∏L
j=1 Sj ⊂ Rp.

Proposition 4.3 has the following immediate corollary, whose proof follows easily from Lemma B.1.
Corollary 4.4. Let c : RdL → R be any cost function whose gradient is bounded and Lipschitz
on its sublevel sets Zα := {z ∈ RdL : c(z) ≤ α}. If {fl : Rpl × Rdl−1×N → Rdl×N}Ll=1 is any
MPS satisfying the hypotheses of Proposition 4.3 and X ∈ Rd0×N , then the associated loss function
ℓ := γ ◦ F has Lipschitz gradients over S :=

∏L
l=1 Sl.

The most ubiquitous cost functions presently in use (the mean square error and cross entropy
functions) satisfy the hypotheses of Corollary 4.4. We now turn to an analysis of common layer types
in deep neural networks and indicate to what extent they satisfy the hypotheses of Proposition 4.3.
Theorem 4.5. Fix ϵ > 0. The following layers satisfy the hypotheses of Proposition 4.3 over all of
parameter space.

1. Continuously differentiable nonlinearities.
2. Bias-free ϵ-weight-normalised or ϵ-entry-normalised affine layers3.
3. Any residual block whose branch is a composite of any of the above layer types.

Consequently, the loss function of any neural network composed of layers as above, trained with a
cost function satisfying the hypotheses of Corollary 4.4, has globally Lipschitz gradients along any
sublevel set.

The proof we give of Theorem 4.5 also considers composites bn ◦ aff of batch norm layers with affine
layers. Such composites satisfy the hypotheses of Proposition 4.3 only over sets in data-space Rd×N

which consist of matrices with nondegenerate covariance. Since such sets are generic (probability
1 with respect to any probability measure that is absolutely continuous with respect to Lebesgue
measure), batch norm layers satisfy the hypotheses of Proposition 4.3 with high probability over
random initialisation.

Theorem 4.5 says that normalisation of parameters enables global analysis of the loss, while standard
affine layers, due to their unboundedness, are well-suited to analysis only over bounded sets in
parameter space.

4.2 Regularity

Having examined the Lipschitz properties of MPS and given examples of layers with global Lipschitz
properties, let us now do the same for the regularity properties of MPS. Formally one has the following
simple result.
Proposition 4.6. Let {fl : Rpl ×Rdl−1×N → Rdl×N}Li=1 be a MPS and X ∈ Rd0×N a data matrix.
Then

L∑
l=1

λ
(
Dfl

(
θl, f<l(θ⃗, X)

)) L∏
j=l+1

λ
(
Jfj(θj , f<j(θ⃗, X))

)
(12)

is a lower bound for λ
(
DF (θ⃗)

)
.

Proposition 4.6 tells us that to guarantee good regularity, it suffices to guarantee good regularity of
the constituent layers. In fact, since Equation (12) is a sum of non-negative terms, it suffices merely
to guarantee good regularity of the parameter-derivative of the first layer4, and of the input-output
Jacobians of every subsequent layer. Our next theorem says that residual networks with appropriately
normalised branches suffice for this.
Theorem 4.7. Let {gl : Rpl × Rdl−1×N → Rdl×N}Li=1 be a MPS and X ∈ Rd0×N a data matrix
for which the following hold:

3The theorem also holds with normalised biases. We make the bias-free assumption assumption purely out of
notational convenience.

4The parameter derivatives of higher layers are more difficult to analyse, due to nonlinearities.
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1. dl−1 ≥ dl, and ∥Jgl(θl, Z)∥2 < 1 for all θl ∈ Rpl , Z ∈ Rdl−1×N and l ≥ 2.

2. N ≤ d0, X is full rank, p1 ≥ d1d0 and f1 : Rp1 ×Rd0×N → Rd1×N is a P -parameterised
affine layer, for which DP (θ1) is full rank for all θ1 ∈ Rp1 .

For any sequence {Il : Rdl−1×N → Rdl×N}Ll=2 of linear maps whose singular values are all equal to
1, define a new MPS {fl}Ll=1 by f1 := g1, and fl(θl, X) := IlX + gl(θl, X). Let F : Rp → RdL×N

be the parameter-function map associated to {fl}Ll=1 and X . Then λ(DF (θ⃗)) > 0 (but not uniformly
so) for all θ⃗ ∈ Rp.

In the next and final subsection we will synthesise Theorem 4.5 and Theorem 4.7 into our main result:
a global convergence theorem for gradient descent on appropriately normalised residual networks.

5 Main theorem

We will consider normalised residual networks, which are MPS of the following form. The first
layer is an ϵ-entry-normalised, bias-free affine layer f1 = affen : Rd1×d0 × Rd0×N → Rd1×N (cf.
Example A.1). Every subsequent layer is a residual block

fl(θl, X) = IlX + g(θl, X). (13)
Here, for all l ≥ 2, we demand that dl−1 ≥ dl, Ii : Rdi−1×N → Rdi×N is some linear map with
all singular values equal to 1, and the residual branch g(θi, X) is a composite of weight- or entry-
normalised, bias-free5 affine layers affP (cf. Example A.1), rescaled so that ∥P (w)∥2 < 1 uniformly
for all parameters w, and elementwise nonlinearities Φ for which ∥Dϕ∥ ≤ 1 everywhere (Example
A.2). These hypotheses ensure that Theorem 4.7 holds for {fi}Li=1 and X: see the Appendix for a
full proof.

We emphasise again that our main theorem below does not follow from the usual argumentation using
smoothness and the PŁ inequality, due to the lack of a uniform PŁ bound. Due to the novelty of our
technique, which we believe may be of wider utility where uniform regularity bounds are unavailable,
we include an idea of the proof below.
Theorem 5.1. Let {fi}Li=1 be a normalised residual network; X a data matrix of linearly independent
data, with labels Y ; and c any continuously differentiable, convex cost function. Then there exists a
learning rate η > 0 such that gradient descent on the associated loss function converges from any
initialisation to a global minimum.

Idea of proof. One begins by showing that Theorems 4.5 and 4.7 apply to give globally β-Lipschitz
gradients and a positive smallest eigenvalue of the tangent kernel at all points in parameter space.
Thus for learning rate η < 2β−1, there exists a positive sequence (µt = µλ(DF (θt)))t∈N (see
Theorem 2.4) such that ∥∇ℓt∥2 ≥ µtℓt, for which the loss iterates ℓt therefore obey

ℓt − ℓ∗ ≤
t∏

i=0

(1− µiα)(ℓ0 − ℓ∗),

where α = η(1−2β−1η) > 0. To show global convergence one must show that
∏∞

t=0(1−µtα) = 0.

If µt can be uniformly lower bounded (e.g. for the square cost) then Theorem 2.3 applies to give
convergence as in all previous works. However, µt cannot be uniformly lower bounded in general
(e.g. for the cross-entropy cost). We attain the general result by showing that, despite admitting no
non-trivial lower bound in general, µt can always be guaranteed to vanish sufficiently slowly that
global convergence is assured.

We conclude this section by noting that practical deep learning problems typically do not satisfy the
hypotheses of Theorem 5.1: frequently there are more training data than input dimensions (such as for
MNIST and CIFAR), and many layers are not normalised or skip-connected. Moreover our Lipschitz
bounds are worst-case, and will generally lead to learning rates much smaller than are used in practice.
Our strong hypotheses are what enable a convergence guarantee from any initialisation, whereas in
practical settings initialisation is of key importance. Despite the impracticality of Theorem 5.1, in the
next section we show that the ideas that enable its proof nonetheless have practical implications.

5The theorem also holds with normalised biases.
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6 Practical implications

Our main theorem is difficult to test directly, as it concerns only worst-case behaviour which is
typically avoided in practical networks which do not satisfy its hypotheses. However, our framework
more broadly nonetheless yields practical insights. Informally, Theorem 4.7 gives conditions under
which:

skip connections aid optimisation by improving loss regularity.

In this section, we conduct an empirical analysis to demonstrate that this insight holds
true even in practical settings, and thereby obtain a novel, causal understanding of the
benefits of skip connections in practice. With this causal mechanism in hand, we rec-
ommend simple architecture changes to practical ResNets that consistently (albeit mod-
estly) improve convergence speed as predicted by theory. All code is available at
https://github.com/lemacdonald/skip-connections-normalisation/.

6.1 Singular value distributions

Let us again recall the setting ℓ = γ ◦ F of Theorem 2.4. In the overparameterised setting, the
smallest singular value of DF gives a pessimistic lower bound on the ratio ∥∇ℓ∥2/(ℓ − ℓ∗), and
hence a pessimistic lower bound on training speed (cf. Theorems 2.4, 2.3). Indeed, this lower bound
is only attained when the vector ∇γ perfectly aligns with the smallest singular subspace of DF : a
probabilistically unlikely occurence. In general, since ∇ℓ = DFT ∇γ, the entire singular value
distribution of DF at a given parameter will play a role in determining the ratio ∥∇ℓ∥2/(ℓ− ℓ∗), and
hence training speed.

Now DF is partly determined by products of layer Jacobians (cf. Proposition 4.2).
As such, the distribution of singular values of DF is determined in part by the dis-
tribution of singular values of such layer Jacobian products, which are themselves de-
termined by the singular value distributions of each of the individual layer Jacobians.
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Figure 1: Singular value histogram of 500× 500
matrix A (left) with entries sampled iid from
U(−1/

√
500, 1/

√
500). Adding an identity ma-

trix (right) shifts the distribution upwards.

In particular, if through some architectural in-
tervention each layer Jacobian could have its
singular value distribution shifted upwards, we
would expect the singular value distribution of
DF to be shifted upwards, too. Our argument in
the previous paragraph then suggests that such
an intervention will result in faster training, pro-
vided of course that the upwards-shifting is not
so large as to cause exploding gradients.

Figure 1 shows in the linear setting that a skip
connection constitutes precisely such an inter-
vention. We hypothesise that this continues to
hold even in the nonlinear setting.
Hypothesis 6.1. The addition of a deterministic

skip connection, all of whose singular values are 1, across a composite of possibly nonlinear random
layers, shifts upwards the singular value distribution of the corresponding composite Jacobian6,
thereby improving convergence speed at least initially.

We test Hypothesis 6.1 in the next subsections.

6.2 MNIST

Recall that the ResNet architecture [20] consists in part of a composite of residual blocks

f(θ,A,X) = AX + g(θ,X), (14)

where A is either the identity transformation, in the case when the dimension of the output of
g(θ,X) is the same as the dimension of its input; or a randomly initialised 1x1 convolution otherwise.

6At least for some common initialisation schemes.
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Figure 2: (a)-(c) Singular value histograms of composite layer Jacobians averaged over first 10
training iterations. Distributions are shifted upwards as deterministic skip connections are added,
resulting in faster convergence (d). Means over 10 trials shown.
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Figure 3: Mean training loss curves for ResNets on CIFAR (10 trials) and ImageNet (3 trials), with 1
standard deviation shaded. The modifications improve training speed as predicted.

Hypothesis 6.1 predicts that the additions of the identity skip connections will shift upwards the
singular value distributions of composite layer Jacobians relative to the equivalent chain network,
thus improving convergence speed. It also predicts that replacing 1x1 convolutional skip connections
A with I +A, where I is deterministic with all singular values equal to 1, will do the same.

We first test this hypothesis by doing gradient descent, with a learning rate of 0.1, on 32 randomly
chosen data points from the MNIST training set7. We compare three models, all with identical
initialisations for each trial run using the default PyTorch initialisation:

1. (Chain) A batch-normed convolutional chain network, with six convolutional layers.
2. (Res) The same as (1), but with convolutional layers 2-3 and 5-6 grouped into two residual blocks,
and with an additional 1x1 convolution as the skip connection in the second residual block, as in
Equation (14).
3. (ResAvg) The same as (2), but with the 1x1 convolutional skip connection of Equation (14)
replaced by

f̃(θ,A,X) = (I +A)X + g(θ,X), (15)

where I is an average pool, rescaled to have all singular values equal to 1.

Hypothesis 6.1 predicts that the singular value distributions of the composite layer Jacobians will be
more positively shifted going down the list, resulting in faster convergence. This is indeed what we
observe (Figure 2).

6.3 CIFAR and ImageNet

We now test Hypothesis 6.1 on CIFAR and ImageNet. We replace all of the convolution-skip
connections in the ResNet architecture [20] with sum(average pool, convolution)-skip connections as
in Equation (15) above, leaving all else unchanged. Hypothesis 6.1 predicts that these modifications
will improve training speed, which we verify using default PyTorch initialisation schemes.

We trained PreAct-ResNet18 on CIFAR10/100 and PreAct-ResNet50 [20] on ImageNet using standard
training regimes (details can be found in the appendix), performing respectively 10 and 3 trial runs

7The input-output Jacobians of MPS layers scale with the square of the number of training points, making
their computation with a large number of data points prohibitively expensive computationally.
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on CIFAR and ImageNet. We performed the experiments at a range of different learning rates. We
have included figures for the best performing learning rates on the original model (measured by loss
value averaged over the final epoch) in Figure 3, with additional plots and validation accuracies in the
appendix. Validation accuracies were not statistically significantly different between the two models
on CIFAR10/100. Although the modified version had statistically significantly better validation
accuracy in the ImageNet experiment, we believe this is only due to the faster convergence, as the
training scheme was not sufficient for the model to fully converge.

7 Discussion

Our work suggests some open research problems. First, the recently-developed edge of stability
theory [9] could be used in place of our Lipschitz bounds to more realistically characterise training of
practical nets with large learning rates. Second, like in pervious works [7], the heavy-lifting for our
PŁ-type bounds is all done by the parameter-derivative of a single layer, and the bounds would be
significantly improved by an analysis that considers all layers. Third, extension of the theory to SGD
is desirable. Fourth, the dependence of Hypothesis 6.1 on weight variance should be investigated.
Fifth, our empirical results on the impact of skip connections on singular value distributions suggests
future work using random matrix theory [18].

Beyond these specifics, our formal framework provides a setting in which all neural network layers
can be analysed in terms of their effect on the key loss landscape properties of smoothness and
regularity, and is the first to demonstrate that a uniform bound on regularity is not necessary to prove
convergence. We hope the tools we provide in this paper will be of use in extending deep learning
optimisation theory to more practical settings than has so far been the case.

8 Conclusion

We gave a formal theoretical framework for studying the optimisation of multilayer systems. We used
the framework to give the first proof that a class of deep neural networks can be trained by gradient
descent even to global optima at infinity. Our theory generates the novel insight that skip connections
aid optimisation speed by improving loss regularity, which we verified empirically using practical
datasets and architectures.
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Computational resources: Both the exploratory and final experiments for this paper were conducted
using a desktop machine with two Nvidia RTX A6000 GPUs, for a total running time of approximately
150 hours.

A Examples of MPS

All commonly used neural network layers fit into the framework of multilayer parameterised systems
(MPS). Here we list the examples of most relevance to our work.
Example A.1. An affine layer aff : Rd1×d0+d1 × Rd0×N → Rd1×N is given by the formula

aff(A, b,X) := AX + b1TN . (16)
A routine calculation shows that

Jaff(A, b,X) = A⊗ IdN , (17)
while

Daff(A, b,X) =
(
Idd1 ⊗XT , Idd1 ⊗ 1N

)
. (18)

More generally, if P : Rp → Rd1×d0 denotes any continuously differentiable map, then one obtains
a P -parameterised affine layer

affP (w, b,X) := aff(P (w), b,X) = P (w)X + b1T . (19)
One has

JaffP (w, b,X) = P (w)⊗ IdN (20)
and, by the chain rule,

DaffP (w, b,X) =
(
(Idd1

⊗XT )DP (w), Idd1
⊗ 1
)
, (21)

where DP (w) ∈ Rd0N×p is the derivative of P at w. Common examples include ϵ-weight normal-
isation wn(w) := (ϵ + ∥w∥2row)−

1
2w [41] and convolutions, which send convolutional kernels to

associated Toeplitz matrices. We will also consider ϵ-entry normalisation en(w) := (ϵ+ w2)−
1
2w,

with operations applied entrywise.
Example A.2. A (parameter-free) elementwise nonlinearity Φ : Rd0×N → Rd0×N defined by a
continuously differentiable function ϕ : R → R is given by applying ϕ to every component of a
matrix X ∈ Rd0×N . Extension to the parameterised case is straightforward.
Example A.3. A (parameter-free) batch normalisation (BN) layer bn : Rd0×N → Rd0×N is given
by the formula

bn(X) :=
X − E[X]√
ϵ+ σ[X]2

, (22)

where ϵ > 0 is some fixed hyperparameter and E and σ denote the row-wise mean and standard devia-
tion. The parameterised BN layer from [21], with scaling and bias parameters γ and β respectively, is
given simply by postcomposition affdiag(γ, β, ·) ◦ bn with a diag-parameterised affine layer (Example
A.1).
Example A.4. A residual block f : Rp ×Rd0×N → Rd1×N can be defined given any other layer (or
composite thereof) g : Rp × Rd0×N → Rd1×N by the formula

f(θ,X) := IX + g(θ,X), (23)

where I : Rd0×N → Rd1×N is some linear transformation. In practice, I is frequently the identity
map [20]; our main theorem will concern the case where I has all singular values equal to 1.

B Proofs

Proof of Theorem 2.4. Using the fact that Dℓ = (Dγ ◦ F ) ·DF , we compute:

∥∇ℓ(θ)∥2 = ⟨DF (θ)T∇γ(F (θ)), DF (θ)T∇γ(F (θ))⟩
= ⟨∇γ(F (θ)), DF (θ)DF (θ)T∇γ(F (θ))⟩
≥ λ(DF (θ))∥∇γ(F (θ))∥2

≥ µλ(DF (θ))

(
γ(F (θ))− inf

θ′
γ(F (θ′))

)
,
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where the first inequality follows from the standard estimate ⟨v,AAT v⟩ ≥ λmin(AAT )∥v∥2, and
the final inequality follows from the fact that γ is µ-PŁ over the set {F (θ) : θ ∈ Rp}.

Our proof of Proposition 4.3 requires the following standard lemma.

Lemma B.1. Let {gi : Rp → Rmi×mi−1}ni=1 be a family of matrix-valued functions. If, with respect
to some submultiplicative matrix norm, each gi is bounded by bi and Lipschitz with constant ci on a
set S ⊂ Rp, then their pointwise matrix product θ 7→

∏n
i=1 gi(θ) is also bounded and Lipschitz on S,

with bound
∏n

i=1 bi and Lipschitz constant
∑n

i=1 ci
(∏

j ̸=i bj
)
.

Proof of Lemma B.1. We prove the lemma by induction. When n = 2, adding and subtracting a copy
of g1(θ)g2(θ′) and using the triangle inequality implies that ∥g1g2(θ)− g1g2(θ

′)∥ is bounded by

∥g1(θ)(g2(θ)− g2(θ
′))∥+ ∥(g1(θ)− g1(θ

′))g2(θ
′)∥.

Applying submultiplicativity of the matrix norm and the bounds provided by the bi and ci gives

∥g1g2(θ)− g1g2(θ
′)∥ ≤ (b1c2 + b2c1)∥θ − θ′∥.

Now suppose we have the result for n = k. Writing
∏k+1

i=1 gi as g1
∏k+1

i=2 gi and applying the above
argument, the induction hypothesis tells us that

∏k+1
i=1 gi is indeed bounded by

∏k+1
i=1 bi and Lipschitz

with Lipschitz constant
∑k+1

i=1 ci
(∏

j ̸=i bj
)
. The result follows.

Proof of Proposition 4.3. By Proposition 4.2, it suffices to show that for each 1 ≤ l ≤ L, the function

θ⃗ 7→
L∏

j=l+1

Jfj
(
θj , f<j(θ⃗, X)

)
Dfl

(
θl, f<l(θ⃗, X)

)
(24)

is bounded and Lipschitz on S. To show this, we must first prove that each map θ⃗ 7→ f<j(θ⃗, X) is
bounded and Lipschitz on S. This we prove by induction.

By hypothesis, θ⃗ 7→ f1(θ⃗, X) = f1(θ1, X) is bounded and Lipschitz on S. Suppose now that for
j > 1, one has θ⃗ 7→ f<j(θ⃗, X) bounded and Lipschitz on S. Then the range of S ∋ θ 7→ f<j(θ⃗, X)

is a bounded subset of Rdj×N . By hypothesis on fj , it then follows that θ 7→ f<j+1(θ⃗, X) =

fj
(
θj , f<j(θ⃗, X)

)
is bounded and Lipschitz on S.

The hypothesis on the Jfj and Dfj now implies that the maps θ⃗ 7→ Jfj
(
θj , f<j(θ⃗, X)

)
, l + 1 ≤

j ≤ L, and θ⃗ 7→ Dfl
(
θl, f<l(θ⃗, X)

)
are all bounded and Lipschitz on S. In particular, as a product

of bounded and Lipschitz functions, the map given in Equation (24) is also bounded and Lipschitz on
S. Therefore DF is bounded and Lipschitz on S.

Proof of Corollary 4.4. By hypothesis, F (S) is a bounded subset of RdL×N . Continuity of γ then
implies that γ(F (S)) is a bounded subset of R, so that F (S) is contained in a sublevel set of γ. The
result now follows from the hypotheses.

To prove Theorem 4.5 it will be convenient to recall some tensor calculus. If f : Rn1×n2 → Rm1×m2

is a matrix-valued, differentiable function of a matrix-valued variable, its derivative Df can be
regarded as a map Rn1×n2 → Rm1×m2×n1×n2 whose components are given by

Df i1,i2
j1,j2

(X) =
∂f i1

i2

∂xj1
j2

(X), X ∈ Rn1×n2

where 1 ≤ iα ≤ mα and 1 ≤ jα ≤ nα are the indices, α = 1, 2. It is easily deduced from the
chain rule of ordinary calculus that if f : Rn1×n2 → Rm1×m2 and g : Rm1×m2 → Rl1×l2 are
differentiable, then g ◦ f is differentiable with derivative (Dg ◦ f) ·Df : Rn1×n2 → Rl1×l2×n1×n2 ,
where here · denotes contraction over the m1 ×m2 indices. The following lemmata then follow from
routine calculation.
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Lemma B.2. Let bn : Rd×N → Rd×N be an ϵ-batchnorm layer. Then one can write bn = v ◦m,
where v,m : Rd×N → Rd×N are given respectively by

v(Y ) = (Nϵ+ ∥Y ∥2row)−
1
2

√
NY, (25)

m(X) = X − 1

N
X1N×N . (26)

One has
∂vij
∂ykl

= δik
√
N(Nϵ+ ∥yi∥2)− 1

2

(
δjl − (Nϵ+ ∥yi∥2)−1yily

i
j

)
(27)

and

∂2vij
∂ymn ∂ykl

=δikδ
i
m

√
N(Nϵ+ ∥yi∥2)− 3

2×

×
(
3(Nϵ+ ∥yi∥2)−1yiny

i
ly

i
j

− (δjl y
i
n + δlny

i
j + δjny

i
l)
)
, (28)

with
∂mi

j

∂xk
l

= δik(δ
j
l −N−1). (29)

and all second derivatives of m being zero.

Lemma B.3. Let wn : Rd1×d0 → Rd1×d0 be an ϵ-weight normalised parameterisation (Example
A.1). Then one has

∂wnij
∂wk

l

= δik(ϵ+ ∥wi∥2)− 1
2

(
δjl − (ϵ+ ∥wi∥2)−1wi

lw
i
j

)
(30)

and

∂wni
j

∂wm
n ∂wk

k

=δikδ
i
m(ϵ+ ∥wi∥2)− 3

2×

×
(
3(ϵ+ ∥wi∥2)−1wi

nw
i
lw

i
j

− (δjlw
i
n + δlnw

i
j + δjnw

i
l)
)
. (31)

Similarly, if en : Rd1×d0 → Rd1×d0 is an ϵ-entry-normalised parameterisation, then

∂enij
∂wk

l

= δikδ
j
l ϵ(ϵ+ (wi

j)
2)−

3
2 (32)

and
∂eni

j

∂wn
m∂wk

l

= −δinδ
j
mδikδ

j
l 3ϵ(ϵ+ (wi

j)
2)−

3
2wi

j (33)

Proof of Theorem 4.5. (1) follows from continuity of the nonlinearity and its derivative, implying
boundedness of both over bounded sets in Rd×N .

(2) and (3) follow from a similar argument to the following argument for batch norm, which we give
following Lemma B.2. Specifically, for the composite f := bn ◦ aff : Rd1×d0 × Rd0×N → Rd1×N

defined by an ϵ-BN layer and an affine layer, we will prove that over any set B ⊂ Rd0×N consisting
of matrices X whose covariance matrix is nondegenerate, one has f , Df and Jf all globally bounded
and Lipschitz. Indeed, v (Equation (25)) is clearly globally bounded, while Dv (Equation (27)) is
globally bounded, decaying like ∥Y ∥−1

row out to infinity, and D2v (Equation (28)) is globally bounded,
decaying like ∥Y ∥−2

row out to infinity. Consequently,

bn ◦ aff = v ◦ (m ◦ aff),

D(bn ◦ aff) = (Jv ◦m ◦ aff) · (Jm ◦ aff) ·Daff,

J(bn ◦ aff) = (Jv ◦m ◦ aff) · (Jm ◦ aff) · Jaff,
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and similarly the derivatives of D(bn◦ aff) and J(bn◦ aff) are all globally bounded over Rd1×d0 ×B.
The hypothesis that B consist of matrices with nondegenerate covariance matrix is needed here
because while Jv ◦m ◦ aff decays like ∥A(X − E[X])∥−1

row out to infinity, the row-norm ∥(A(X −
E[X]))i)∥2 = (Ai(X−E[X])(X−E[X])T (Ai)T ) = ∥Ai∥2Cov(X) can only be guaranteed to increase
with A if Cov(X) is nondegenerate. Thus, for instance, without the nondegeneracy hypothesis on
Cov(X), A 7→ J(bn ◦ aff)(A,X) grows unbounded like Jaff(A,X) = A⊗ IdN in any direction of
degeneracy of Cov(X). Nonetheless, with the nondegenerate covariance assumption on elements of
B, bn ◦ aff satisfies the hypotheses of Proposition 4.3 over Rd1×d0 ×B.

(2) and (3) now follow from essentially the same boundedness arguments as for batch norm, using
Lemma B.3 in the place of Lemma B.2. However, since the row norms in this case are always defined
by the usual Euclidean inner product on row-vectors, as opposed to the possibly degenerate inner
product coming from the covariance matrix of the input vectors, one does not require any hypotheses
aside from boundedness on the set B. Thus entry- and weight-normalised affine layers satisfy the
hypotheses of Proposition 4.3.

Finally, (5) follows from the above arguments. More specifically, if g : Rp × Rd×N → Rd×N is any
composite of layers of the above form, then g satisfies the hypotheses of Proposition 4.3. Consequently,
so too does the residual block f(θ,X) := X+g(θ,X), for which Jf(θ,X) = Idd⊗ IdN +Jg(θ,X)
and Df(θ,X) = Dg(θ,X).

Proof of Proposition 4.6. In the notation of Proposition 4.2, the product DF (θ⃗)DF (θ⃗)T is the sum
of the positive-semidefinite matrices DθlF (θ⃗)DθlF (θ⃗)T . Therefore λ(DF (θ⃗)) ≥

∑
l λ(DθlF (θ⃗)).

The result now follows from the inequality λ(AB) ≥ λ(A)λ(B) applied inductively using Equation
(11). Note that λ(AB) ≥ λ(A)λ(B) is either trivial if one or both of A and B have more rows than
columns (in which case the right hand side is zero), and follows from the well-known inequality
σ(AB) ≥ σ(A)σ(B) for the smallest singular values if both A and B have at least as many columns
as rows.

Theorem 4.7 follows from the following two lemmata.
Lemma B.4. Let g : Rp × Rd0×N → Rd1×N be a layer for which there exists δ > 0 such that
∥Jg(θ,X)∥2 < (1− δ) for all θ and X . Let I : Rd0×N → Rd1×N be a linear map whose singular
values are all equal to 1. Then the residual block f(θ,X) := IX + g(θ,X) has σ(Jf(θ,X)) > δ
for all θ and X .

Proof. Observe that
Jf(θ,X) = I ⊗ IdN + Jg(θ,X). (34)

The result then follows from Weyl’s inequality: all singular values of I ⊗ IdN are equal to 1, so that

σ
(
Jf(θ,X)

)
≥ 1− ∥Jg(θ,X)∥2 > δ

for all θ and X .

Lemma B.5. Let P : Rp → Rd1×d0 be a parameterisation. Then

σ
(
DaffP (w,X)

)
≥ σ(X)σ

(
DP (w)

)
(35)

for all w ∈ Rp and X ∈ Rd0×N .

Proof. Follows from Equation (21) and the inequality σ(AB) ≥ σ(A)σ(B).

Proof of Theorem 4.7. Hypothesis 1 in Theorem 4.7 says that the residual branches of the fl, l ≥ 2,
satisfy the hypotheses of Lemma B.4, so that σ(Jfl(θl, f<l(θ⃗, X))) > 0 for all l ≥ 2. By the
assumption that dl−1 ≥ dl, this means that λ(Jfl(θl, f<l(θ⃗, X))) = σ(Jfl(θl, f<l(θ⃗, X)))2 >
0. On the other hand, hypothesis 2 together with Lemma B.5 implies that λ(Df1(θ1, X)) ≥
σ(Df1(θ1, X))2 > 0. The result now follows from Proposition 4.6.

.

16



Proof of Theorem 5.1. By Theorem 4.5, all layers satisfy the Hypotheses of Proposition 4.3 and so
by Corollary 4.4, the associated loss function is globally Lipschitz, with Lipschitz constant some
β > 0. Take η > 0 to be any number smaller than 2β−1; thus the loss can be guaranteed to be
decreasing with every gradient descent step.

We now show that the network satisfies the hypotheses of Theorem 4.7. The dimension constraints
in item (1) are encoded directly into the definition of the network, while the operator-norm of
each of the residual branches, as products of P (w) and DΦ matrices, are globally bounded by
1 by our hypotheses on these factors. For item (2), our data matrix is full-rank since it consists
of linearly independent data, while by definition we have p1 = d1d0 with Df1 = Daffen being
everywhere full-rank since ϵ-entry-normalisation is a diffeomorphism onto its image for any ϵ > 0.
Its hypotheses being satisfied by our weight-normalised residual network, Theorem 4.7 implies the
parameter-function map F associated to {fl}Ll=1 and X satisfies λ(DF (θ⃗)) = σ(DF (θ⃗))2 > 0 for
all parameters θ⃗. There are now two cases to consider.

In the first case, the gradient descent trajectory never leaves some ball of finite radius in Rd1×d0 , the
parameter space for the first layer. In any such ball, recalling that the first layer’s parameterisation is
entry-normalisation (Example A.1), the smallest singular value

σ(D en(w)) = min
1≤i≤d11≤j≤d0

ϵ

(ϵ+ (wi
j)

2)
3
2

(36)

of D en(w) is uniformly lower bounded by some positive constant. Thus by Lemmas B.5 and B.48,
the smallest singular value of DF is also uniformly lower bounded by a positive constant in any such
ball. It follows from Theorem 2.4 that the loss satisfies the PŁ-inequality over such a ball, so that
gradient descent converges in this case at a linear rate to a global minimum.

The second and only other case that must be considered is when for each R > 0, there is some time
T for which the weight norm ∥wt∥ of the parameters in the first layer is greater than R for all t ≥ T .
That is, the parameter trajectory in the first layer is unbounded in time. In this case, inspection of
Equation (36) reveals that the smallest singular value of DF cannot be uniformly bounded below by
a positive constant over all of parameter space. Theorem 2.4 then says that there is merely a sequence
(µt)t∈N, with µt proportional to σ(D en(wt)), for which

ℓt − ℓ∗ ≤
t∏

i=0

(1− µiα)(ℓ0 − ℓ∗), (37)

where α = η(1− 2β−1η) > 0. To guarantee convergence in this case, therefore, it suffices to show
that

∏∞
t=0(1− µtα) = 0; equivalently, it suffices to show that the infinite series

∞∑
t=0

log(1− µtα) (38)

diverges.

The terms of the series (38) form a sequence of negative numbers which converges to zero. Hence, for
the series (38) to diverge, it is necessary that µt decrease sufficiently slowly with time. By the integral
test, therefore, it suffices to find an integrable function m : [t0,∞) → R≥0 such that µt ≥ m(t) for
each integer t ≥ t0, for which the integral

∫∞
t0

log(1−m(t)α) dt diverges.

We construct m by considering the worst possible case: where each gradient descent step is in exactly
the same direction going out to ∞, thereby decreasing σ(D en(w)) at the fastest possible rate. By
applying an orthogonal-affine transformation to Rd1d0 , we can assume without loss of generality that
the algorithm is initialised at, and consistently steps in the direction of, the first canonical basis vector
e1 in Rd1d0 . Specifically, letting θ⃗ be the vector of parameters for all layers following the first and
w ∈ Rd1d0 the first layer parameters, for r ∈ R≥1 we may assume that

∇wℓ(θ⃗, re1) = ∂w1
1
ℓ(θ⃗, re1)e1, (39)

8See the supplementary material.
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with ∂w1
1
ℓ(θ⃗, re1) ≥ 0 for all (θ⃗, r). Let γ denote the convex function defined by the cost c (cf.

Equation (6)), and let A(θ⃗, re1) denote the d1d0-dimensional row vector

Dγ
(
F (θ⃗, re1)

) L∏
l=2

Jfl
(
θl, f<l

(
(θ⃗, re1), X

))
(Idd1 ⊗XT ). (40)

Then, in this worst possible case, the single nonzero partial derivative defining the loss gradient with
respect to w at the point (θ⃗, re1) is given by

∂w1
1
ℓ(θ⃗, re1)) = A(θ⃗, re1)1

ϵ

(ϵ+ r2)
3
2

, (41)

where A(θ⃗, re1)1 denotes the first component of the row vector A(θ⃗, re1) (cf. Equation (21)). By
Theorem 4.5, however, the magnitude of A(θ⃗, re1) can be globally upper bounded by some constant
C. Thus

∂w1
1
ℓ(θ⃗, re1) ≤

Cϵ

(ϵ+ r2)
3
2

≤ Cϵ

r3
(42)

for all θ⃗ and r ≥ 1.

Let us therefore consider the Euler method, with step size η, applied over R≥1, starting from r0 = 1,
with respect to the vector field V (r) = Cϵr−3. Labelling the iterates (rt)t∈N, we claim that there
exist constants γ1, γ2 and γ3 such that 0 < rt ≤ γ1 + γ2(t+ γ3)

1
4 for all t ∈ N. Indeed, observe that

the solution to the flow equation ṙ(t) = Cϵr(t)−3 is r(t) = (4Cϵt+ 1)
1
4 , so the claim follows if we

can show that there exists a constant B such that |rt − r(t)| < B for all integer t ≥ 0. However this
follows from Theorem 10.6 of [17].

Now, since for each t, rt is an upper bound for the magnitude of the parameter vector wt ∈ Rd1d0 ,
we see from Equation (36) that the smallest singular value σ(Den(wt)) admits the lower bound

σ(D en(wt)) ≥
ϵ

(ϵ+ (γ1 + γ2(t+ γ3)
1
4 )2)

3
2

(43)

for all t ∈ N. Clearly, (ϵ + (γ1 + γ2(t + γ3)
1
4 )2)

3
2 = O(t

3
4 ). Hence there exist t0 > 0 and Γ > 0

such that

µt ≥
Γ

t
3
4

(44)

for all integer t ≥ t0. Then, setting m(t) := Γt−
3
4 , the integral∫ ∞

t0

log(1−m(t)α) dt =

∫ ∞

t0

log

(
t
3
4 − Γα

t
3
4

)
dt (45)

diverges. It follows that gradient descent converges as t → ∞ to a global minimum.

C Experimental details

For all our experiments, the data was standardised channel-wise using the channel-wise mean and
standard deviation over the training set.

On CIFAR10/100, our models9 were trained using SGD with a batch size of 128 and random
crop/horizontal flip data augmentation. We ran 10 trials over each of the learning rates 0.2, 0.1, 0.05
and 0.02. The only exception to this is for CIFAR10 with a learning rate of 0.2, where training
diverged 6 our of 10 times on the original network, so we plotted only those 4 trials where training
did not diverge. Mean and standard deviation test accuracies, as well as averaged-over-final epoch
loss values, are given in Tables 1 and 2.

The plots at the optimal learning rate, 0.1 for CIFAR10 and 0.05 for CIFAR100, are in Figure 3,
while we provide the plots for the other learning rates in Figures 4 and 5.

9minimally modifying https://github.com/kuangliu/pytorch-cifar
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Table 1: ResNet18 on CIFAR10
Original Modified

Learning rate Test accuracy Final loss Test accuracy Final loss

0.20 48.14± 19.95 1.3883± 0.5503 62.71± 6.14 0.9495± 0.2150
0.10 91.64± 0.24 0.0032± 0.0002 91.42± 0.61 0.0022± 0.0002
0.05 91.22± 0.25 0.0043± 0.0003 91.14± 0.25 0.0041± 0.0001
0.02 89.50± 0.32 0.0112± 0.0004 88.94± 0.35 0.0125± 0.0004

Table 2: ResNet18 on CIFAR100
Original Modified

Learning rate Test accuracy Final loss Test accuracy Final loss

0.20 69.67± 0.58 0.0150± 0.0005 70.07± 0.53 0.0115± 0.0005
0.10 70.05± 0.43 0.0147± 0.0004 70.87± 0.42 0.0116± 0.0003
0.05 70.04± 0.48 0.0145± 0.0003 70.34± 0.56 0.0116± 0.0003
0.02 69.75± 0.56 0.0145± 0.0003 70.13± 0.55 0.0116± 0.0004
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Figure 4: Loss plots for ResNet18 on CIFAR10
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Figure 5: Loss plots for ResNet18 on CIFAR100
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Table 3: ResNet50 on ImageNet
Original Modified

Learning rate Test accuracy Final loss Test accuracy Final loss

0.20 49.24± 34.75 1.0285± 0.0066 – –
0.10 74.69± 0.12 0.9201± 0.0014 74.99± 0.09 0.8949± 0.0019
0.05 74.62± 0.12 0.8563± 0.0041 74.84± 0.03 0.8420± 0.0030
0.02 73.87± 0.09 0.8690± 0.0025 74.00± 0.11 0.8441± 0.0026
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Figure 6: Loss for original and modified ResNet50 at different learning rates on ImageNet. The
modified architecture did not converge at the maximum learning rate of 0.2.

On ImageNet, the models were trained using the default PyTorch ImageNet example10, using SGD
with weight decay of 1e− 4 and momentum of 0.9, batch size of 256, and random crop/horizontal
flip data augmentation. See Table 3 for the validation accuracies, and Figure 6 for the plots of the
training losses at different learning rates.

10https://github.com/pytorch/examples/tree/main/imagenet
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