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Abstract

We give the first result for agnostically learning Single-Index Models (SIMs) with
arbitrary monotone and Lipschitz activations. All prior work either held only in the
realizable setting or required the activation to be known. Moreover, we only require
the marginal to have bounded second moments, whereas all prior work required
stronger distributional assumptions (such as anticoncentration or boundedness).
Our algorithm is based on recent work by Gopalan et al. [2023] on omniprediction
using predictors satisfying calibrated multiaccuracy. Our analysis is simple and
relies on the relationship between Bregman divergences (or matching losses) and ℓp
distances. We also provide new guarantees for standard algorithms like GLMtron
and logistic regression in the agnostic setting.

1 Introduction

Generalized Linear Models (GLMs) and Single-Index Models (SIMs) constitute fundamental frame-
works in statistics and supervised learning [McCullagh, 1984, Agresti, 2015], capturing and general-
izing basic models such as linear and logistic regression. In the GLM framework, labeled examples
(x, y) are assumed to satisfy u(E[y|x]) = w · x (or E[y|x] = u−1(w · x)), where u is a known
monotone function (called the link function) and w is an unknown vector. Single-Index Models
(SIMs) are a generalization in which the monotone link function u is also unknown.

In the realizable setting where the labels are indeed generated according to a GLM with a known
Lipschitz link function, the GLMtron algorithm of Kakade et al. [2011] is a simple and efficient
learning algorithm. When the ground truth is only assumed to be a SIM (i.e. the link function is
unknown), it can be learned efficiently by the Isotron algorithm [Kalai and Sastry, 2009, Kakade
et al., 2011].

In this work, we consider the significantly more challenging agnostic setting, where the labels are
arbitrary and not necessarily realizable by any SIM. Importantly, we do not fix a link function in
advance; our goal is to output a predictor that has squared error comparable to that of the optimal SIM
with an arbitrary monotone and Lipschitz link function. We can equivalently view this as a natural
squared-error regression problem in which the final optimality guarantee must hold with respect to
all SIMs with bounded weights and monotone, Lipschitz link functions.1

Formally, consider a distribution D over Rd × [0, 1] and denote the squared error of a function
h : Rd → R by err2(h) = E(x,y)∼D[(y − h(x))2]. Let opt(SIM) denote optimal value of err2(h)
over all SIMs h with bounded weights and arbitrary 1-Lipschitz monotone activations (we call the
inverse u−1 of a link function u the activation function). Given access to samples from D, the goal
of an agnostic learning algorithm is to compute a predictor p : Rd → [0, 1] with error err2(p) that,
with high probability over the samples, is comparable to the error of the optimal SIM:

err2(p) ≤ opt(SIM) + ε.

1In this context, in recent times it has also been common to refer to the class of GLMs (resp. SIMs) as the
class of single neurons with known (resp. unknown) activation functions.
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Our main result is the first efficient learning algorithm with a guarantee of this form.

Theorem 1.1 (Informal, see Theorem 3.1). Let SIMB denote the class of SIMs of the form x 7→
u−1(w · x) for some 1-Lipschitz function u−1 and ∥w∥2 ≤ B. Let D be any distribution over
Rd × [0, 1] whose marginal on Rd has bounded second moments. There is an efficient algorithm
(Algorithm 1) that agnostically learns SIMB over D up to error

err2(p) ≤ O
(
B
√

opt(SIMB)
)
+ ε.

This result provides a guarantee comparable to that of the Isotron algorithm [Kalai and Sastry, 2009,
Kakade et al., 2011] (which also tackles the SIM setting, where the link function is unknown) but
for the challenging agnostic setting rather than the realizable setting (where opt(SIMB , D) = 0).
Moreover, Isotron’s guarantees require the distribution to be supported on the unit ball, whereas we
only require a mild second moment condition.

In our view, this result helps establish Algorithm 1 (and indeed any algorithm to compute omnipredic-
tors, as we introduce and discuss shortly) as an efficient and powerful off-the-shelf supervised learning
algorithm, akin to random forests or gradient-boosted trees.

A natural question is whether our guarantees are near-optimal, e.g., whether we can obtain a guarantee
of the form err2(p) ≤ opt(SIM) + ε. However, there is strong evidence that such results cannot be
obtained using efficient algorithms [Goel et al., 2019, Diakonikolas et al., 2020a, Goel et al., 2020,
Diakonikolas et al., 2021]. We partially justify the form of our guarantee by showing in Section 5
(adapting a result due to Diakonikolas et al. [2022a]) that one cannot avoid a dependence on the norm
bound B. Further closing the gap between upper and lower bounds is an important direction for
future work.

Overview of techniques. We now describe the main ingredients and techniques that go into proving
Theorem 1.1. Our starting point is the connection between GLMs and so-called matching losses
[Auer et al., 1995]. This connection arises from the fact that fitting a GLM with a known link function
is equivalent to minimizing (over the class of all linear functions) a certain convex loss known as
the matching loss corresponding to that link function (see Definition 1.8). (We refer the reader to
[Gopalan et al., 2023, Sec 5.1] for a more detailed discussion.)

Importantly for us, minimizing the matching loss corresponding to a link function u yields a meaning-
ful guarantee even in the agnostic setting, where the Bayes optimal predictor (i.e. x 7→ E[y|x]) is not
necessarily a GLM at all. Specifically, it turns out to be equivalent (via Fenchel-Legendre duality) to
finding the closest predictor to the Bayes optimal predictor in the metric of the Bregman divergence
associated with the link function u (see e.g. [Gopalan et al., 2023, Lemma 5.4]).

This is a powerful observation, but it still assumes that we have a fixed and known link function
u in mind. In the agnostic setting, it is arguably unrealistic to assume that we know the best link
function for the distribution at hand. Remarkably, recent work by Gopalan et al. [2022, 2023] has
shown that there exist efficient learning algorithms that simultaneously minimize all matching losses
corresponding to arbitrary monotone and Lipschitz link functions. Their solution concept is called an
omnipredictor, i.e., a single predictor that is able to compete with the best-fitting classifier in a class
C as measured by a large class of losses (as opposed to just a single pre-specified loss, as is standard
in machine learning). They obtain such predictors through calibrated multiaccuracy [Gopalan et al.,
2023] or multicalibration [Gopalan et al., 2022].

From the point of view of ordinary supervised learning or regression, however, an optimality guarantee
in terms of such matching losses or Bregman divergences is hard to interpret. A much more standard
metric is simply that of squared error. The key final step for our results is to find a way of translating
(a) optimality (ranging over all linear functions) in terms of all matching losses simultaneously into
(b) optimality (ranging over all SIMs) in terms of squared error. We do so by proving simple analytic
distortion inequalities relating matching losses to ℓp losses, which we believe may be of independent
interest.

On a technical level, to prove these distortion inequalities we first prove strong versions of such
inequalities for matching losses arising from bi-Lipschitz link functions (see Lemma 2.2). We
then obtain our results for general Lipschitz link functions by carefully approximating them using
bi-Lipschitz link functions (see Lemma 3.3).
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Further applications. As further applications of our approach, if we let opt(GLMu−1,B) denote
the optimal value of err2(h) over all GLMs of the form x 7→ u−1(w · x), where ∥w∥2 ≤ B, we
obtain the following result about bi-Lipschitz link functions (including, for example, the Leaky
ReLU).

Theorem 1.2 (Informal, see Theorem 2.1). Let u : R→ R be a bi-Lipschitz invertible link function.
Then, any predictor p : Rd → R that is an ε-approximate minimizer of the population matching loss
that corresponds to u, with respect to a distribution D over Rd × [0, 1] satisfies

err2(p) ≤ O
(
opt(GLMu−1,B)

)
+O(ε)

This guarantee holds under milder distributional assumptions than are required by comparable prior
work on agnostically learning GLMs or single neurons [Frei et al., 2020, Diakonikolas et al., 2022b].
Moreover, when we focus on distortion bounds between the logistic loss and the squared loss, we
obtain a near-optimal guarantee of Õ(opt(GLMu−1,B)) for logistic regression, when u is the logit
link function (i.e., when GLMu−1,B is the class of sigmoid neurons).

Theorem 1.3 (Informal, see Theorem 4.1). Let u(t) = ln( t
1−t ). Then, any predictor p : Rd → R

that is an approximate ε-minimizer of the population logistic loss, with respect to a distribution D
over Rd × [0, 1] whose marginal on Rd has subgaussian tails in every direction satisfies

err2(p) ≤ Õ
(
opt(GLMu−1,B)

)
+O(ε)

While our error guarantee for this problem is weaker than that of Diakonikolas et al. [2022b], we do
not make the anti-concentration assumptions their results require.

1.1 Background and Relation to Prior Work

We note that matching losses have been studied in various previous works either implicitly [Kakade
et al., 2011] or explicitly [Auer et al., 1995, Diakonikolas et al., 2020b, Gopalan et al., 2023] and
capture various fundamental algorithms like logistic and linear regression [McCullagh, 1984, Agresti,
2015]. However, to the best of our knowledge, our generic and direct approach for transforming
matching loss guarantees to squared error bounds, has not been explored previously. Furthermore, our
results do not depend on the specific implementation of an algorithm, but only on the matching loss
bounds achieved by its output. In this sense, we provide new agnostic error guarantees for various
existing algorithms of the literature. For example, our results imply new guarantees for the GLMtron
algorithm of Kakade et al. [2011] in the agnostic setting, since GLMtron can be viewed as performing
gradient descent (with unit step size) on the matching loss corresponding to a specified link function.

Matching losses over linear functions are also linked to the Chow parameters [O’Donnell and
Servedio, 2008] through their gradient with respect to w, as observed by Diakonikolas et al. [2020b].
In fact, the norm of the matching loss gradient is also linked to multiaccuracy, a notion that originates
to fairness literature [Hebert-Johnson et al., 2018, Kim et al., 2019]. A stationary point w of a
matching loss that corresponds to a GLM with link u is associated with a multiaccurate predictor
p(x) = u−1(w · x), i.e., a predictor such that for all i ∈ [d], E[xi(y − p(x))] = 0. The work of
[Gopalan et al., 2022, 2023] on omnipredictors presents a single predictor that is better than any linear
model w · x for every matching loss. The results of Gopalan et al. [2022] show that a multicalibrated
predictor (with respect to the features xi) is an omnipredictor for all convex losses, whereas Gopalan
et al. [2023] shows that the simpler condition of calibrated multiaccuracy suffices for matching losses
that arise from GLMs. In view of the relationship between multiaccuracy and the gradient of the
matching loss, our results show that, while multiaccuracy implies bounds on agnostically learning
GLMs, the additional guarantee of calibration is sufficient for agnostically learning all SIMs.

The work of Shalev-Shwartz et al. [2011] showed strong agnostic learning guarantees in terms of the
absolute error (rather than the squared error) of the form opt + ε for a range of GLMs, but their work
incurs an exponential dependence on the weight norm B. In comparison, for the absolute loss, we
get a bound of the form B opt log(1/opt) for logistic regression (see Theorem 4.3). In more recent
years, the problem of agnostically learning GLMs has frequently also been phrased as the problem
of agnostically learning single neurons (with a known activation). For the ReLU activation, work
by Goel et al. [2017] showed an algorithm achieving error opt + ε in time poly(d) exp(1/ε) over
marginals on the unit sphere, and Diakonikolas et al. [2020b] showed an algorithm achieving error
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O(opt) + ε in fully polynomial time over isotropic log-concave marginals. The work of Frei et al.
[2020], Diakonikolas et al. [2022b] both show guarantees for learning general neurons (with known
activations) using the natural approach of running SGD directly on the squared loss (or a regularized
variant thereof). Frei et al. [2020] achieves error O(opt) for any given strictly increasing activation
and O(

√
opt) for the ReLU activation, but they assume that the marginal distribution is bounded. In

contrast, we only assume that the marginal distribution has bounded second moments and we do not
consider that the activation is known. Diakonikolas et al. [2022b] proved an O(opt) guarantee for
a wide range of activations (including the ReLU), in the setting where the activation is known and
over a large class of structured marginals, which need, however, to satisfy strong concentration and
anti-concentration properties.

In terms of lower bounds and hardness results for this problem, the work of [Goel et al., 2019,
Diakonikolas et al., 2020a, Goel et al., 2020, Diakonikolas et al., 2021, 2022a] has established
superpolynomial hardness even for the setting of agnostically learning single ReLUs over Gaussian
marginals.

Limitations and directions for future work. While we justify a certain dependence on the norm
bound B in our main result on agnostically learning SIMs, we do not completely justify the exact
form of Theorem 1.1. An important direction for future work is to tightly characterize the optimal
bounds achievable for this problem, as well as to show matching algorithms.

1.2 Preliminaries

For the following, (x, y) is used to denote a labelled sample from a distribution D over Rd × Y ,
where Y denotes the interval [0, 1] unless it is specified to be the set {0, 1}. We note that, although
we provide results for the setting where the labels lie within [0, 1], we may get similar results for any
bounded label space. We use PD (resp. ED) to denote the probability (resp. expectation) over D
and, similarly, PS (resp. ES) to denote the corresponding empirical quantity over a set S of labelled
examples. Throughout the paper, we will use the term differentiable function to mean a function that
is differentiable except on finitely many points. Our main results will assume the following about the
marginal distribution on Rd.
Definition 1.4 (Bounded moments). For λ ≥ 1 and k ∈ N, we say that a distribution Dx over Rd
has λ-bounded 2k-th moments if for any v ∈ Sd−1 we have Ex∼Dx [(v · x)2k] ≤ λ.

For a concept class C : Rd → R, we define opt(C, D) to be the minimum squared error achievable by
a concept c : Rd → R in C with respect to the distribution D. We now define our main learning task.
Definition 1.5 (Agnostic learning). Let C : Rd → R be a concept class, let Ψ : [0, 1]→ [0, 1] be an
increasing function, let D be a distribution over Rd × [0, 1] and ε > 0. We say that an algorithm A
agnostically learns the class C up to error Ψ(opt(C, D)) + ε if algorithm A, given a number of i.i.d.
samples from D, outputs, with probability at least 2/3 over the samples and the randomness of A, a
hypothesis h : Rd → [0, 1] with ED[(y − h(x))2] ≤ Ψ(opt(C, D)) + ε.

We will also provide results that are specific to the sigmoid activation and work under the assumption
that the marginal distribution is sufficiently concentrated.
Definition 1.6 (Concentrated marginals). For λ > 0 and γ, we say that a distribution Dx over Rd is
(λ, γ)-concentrated if for any v ∈ Sd−1 and r ≥ 0 we have Px∼Dx [|v · x| ≥ r] ≤ λ · exp(−rγ).
Definition 1.7 (Fenchel-Legendre pairs). We call a pair of functions (f, g) a Fenchel-Legendre pair
if the following conditions hold.

1. g′ : R → R is continuous, non-decreasing, differentiable and 1-Lipschitz with range
ran(g′) ⊇ (0, 1) and g(t) =

∫ t
0
g′(τ) dτ , for any t ∈ R.

2. f : ran(g′)→ R is the convex conjugate (Fenchel-Legendre transform) of g, i.e., we have
f(r) = supt∈R r · t− g(t) for any r ∈ ran(g′).

For such pairs of functions (and their derivatives f ′, g′), the following are true for r ∈ ran(g′) and
t ∈ ran(f ′) (note that ran(f ′) is not necessarily R when g′ is not invertible).

g′(f ′(r)) = r and f(r) = rf ′(r)− g(f ′(r)), for r ∈ ran(g′) (1.1)

f ′(g′(t)) = t and g(t) = tg′(t)− f(g′(t)), for t ∈ ran(f ′) (1.2)
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Note that g′ will be used as an activation function for single neurons and f ′ corresponds to the
unknown link function of a SIM (or the known link function of a GLM). We say that g′ is bi-Lipschitz
if for any t1 < t2 ∈ R we have that (g′(t2)− g′(t1))/(t2 − t1) ∈ [α, β]. If g′ is [α, β] bi-Lipschitz,
then f ′ is [ 1β ,

1
α ] bi-Lipschitz. However, the converse implication is not necessarily true when g′ is

not strictly increasing.
Definition 1.8 (Matching Losses). For a non-decreasing and Lipschitz activation g′ : R→ R, the
matching loss ℓg : Y × R→ R is defined pointwise as follows:

ℓg(y, t) =

∫ t

0

g′(τ)− y dτ,

where g(t) =
∫ t
0
g′. The function ℓg is convex and smooth with respect to its second argument. The

corresponding population matching loss is

Lg(c ;D) = E
(x,y)∼D

[
ℓg(y, c(x))

]
(1.3)

In Equation (1.3), c : Rd → R is some concept and D is some distribution over Rd × [0, 1]. In
the specific case where c is a linear function, i.e., c(x) = w · x, for some w ∈ Rd, then we may
alternatively denote Lg(c ;D) with Lg(w ;D).

We also define the Bregman divergence associated with f to be Df (q, r) = f(q)−f(r)−(q−r)f ′(r),
for any q, r ∈ ran(g′). Note that Df (q, r) ≥ 0 with equality iff q = r.
Definition 1.9 (SIMs and GLMs as Concept Classes). For B > 0, we use SIMB to refer to the
class of all SIMs of the form x 7→ g′(w · x) where ∥w∥2 ≤ B and g′ : R → R is an arbitrary
1-Lipschitz monotone activation that is differentiable (except possibly at finitely many points). We
define GLMg′,B similarly except for the case where g′ is fixed and known.

We also define the notion of calibrated multiaccuracy that we need to obtain omnipredictors in our
context.
Definition 1.10 (Calibrated Multiaccuracy). A predictor p : Rd → [0, 1] is called ε-multiaccurate if
for all i ∈ [d], |E[xi(y − p(x))]| ≤ ε. It is called ε-calibrated if |Ep(x) Ey|p(x)[y − p(x)]| ≤ ε.

2 Distortion Bounds for the Matching Loss

In this section, we propose a simple approach for bounding the squared error of a predictor that
minimizes a (convex) matching loss, in the agnostic setting. We convert matching loss bounds to
squared loss bounds in a generic way, through appropriate pointwise distortion bounds between
the two losses. In particular, for a given matching loss Lg, we transform guarantees on Lg that are
competitive with the optimum linear minimizer of Lg to guarantees on the squared error that are
competitive with the optimum GLM whose activation (g′) depends on the matching loss at hand.

We now provide the main result we establish in this section.
Theorem 2.1 (Squared Error Minimization through Matching Loss Minimization). Let D be a
distribution over Rd × [0, 1], let 0 < α ≤ β and let (f, g) be a Fenchel-Legendre pair such that
g′ : R→ R is [α, β] bi-Lipschitz. Suppose that for a predictor p : Rd → ran(g′) we have

Lg(f ′ ◦ p ;D) ≤ min
∥w∥2≤B

Lg(w ;D) + ε (2.1)

Then we also have: err2(p) ≤ β
α · opt(GLMg′,B) + 2βε.

The proof of Theorem 2.1 is based on the following pointwise distortion bound between matching
losses corresponding to bi-Lipschitz link functions and the squared distance.
Lemma 2.2 (Pointwise Distortion Bound for bi-Lipschitz link functions). Let 0 < α ≤ β and let
(f, g) be a Fenchel-Legendre pair such that f ′ : ran(g′) → R is [ 1β ,

1
α ] bi-Lipschitz. Then for any

y, p ∈ ran(g′) we have

ℓg(y, f
′(p))− ℓg(y, f ′(y)) = Df (y, p) ∈

[
1

2β
(y − p)2, 1

2α
(y − p)2

]
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In the case that f ′ is differentiable on (0, 1), the proof of Lemma 2.2 follows from an application
of Taylor’s approximation theorem of degree 2 on the function f , since the Bregman divergence
Df (y, p) is exactly equal to the error of the second degree Taylor’s approximation of f(y) around p
and f ′′(ξ) ∈ [ 1β ,

1
α ] for any ξ ∈ ran(g′). The relationship between ℓg and Df follows from property

(1.2). Note that when g′ is [α, β] bi-Lipschitz, then f ′ is [ 1β ,
1
α ] bi-Lipschitz.

Theorem 2.1 follows by applying Lemma 2.2 appropriately to bound the error of a predictor p by its
matching loss Lg(f ′ ◦ p) and bound the matching loss of the linear function corresponding to w∗ by
the squared error of g′(w∗ · x), where g′(w∗ · x) is the element of GLMg′,B with minimum squared
error.

Although Theorem 2.1 only applies to bi-Lipschitz activations g′, it has the advantage that the
assumption it makes on p corresponds to a convex optimization problem and, when the marginal
distribution has certain concentration properties (for generalization), can be solved efficiently through
gradient descent on the empirical loss function. As a consequence, for bi-Lipschitz activations we
can obtain O(opt) efficiently under mild distributional assumptions in the agnostic setting.

3 Agnostically Learning Single-Index Models

In this section, we provide our main result on agnostically learning SIMs. We combine the distortion
bounds we established in Section 2 with results from Gopalan et al. [2023] on Omniprediction, which
can be used to learn a predictor p that satisfies the guarantee of Theorem 2.1 simultaneously for
all bi-Lipschitz activations. By doing so, we obtain a result for all Lipschitz and non-decreasing
activations simultaneously.
Theorem 3.1 (Agnostically Learning SIMs). Let λ,B ≥ 1, ε > 0 and let D be a distribution over
Rd × [0, 1] with second moments bounded by λ. Then, Algorithm 1 agnostically learns the class
SIMB over D up to squared error O(B

√
λ
√
opt(SIMB , D)) + ε using time and sample complexity

poly(d,B, λ, 1ε ). Moreover, the same is true for any algorithm with an omniprediction guarantee
like the one of Theorem 3.2.

In order to apply Theorem 2.1, we use the following theorem which is a combination of results in
Gopalan et al. [2023], where they show that the matching losses corresponding to a wide class of
functions can all be minimized simultaneously by an efficiently computable predictor.
Theorem 3.2 (Omnipredictors for Matching Losses, combination of results in Gopalan et al. [2023]).
Let λ, L,R,B ≥ 1, ε > 0 and let D be a distribution over Rd × [0, 1] whose marginal on Rd has
λ-bounded second moments. Then, Algorithm 1, given sample access to D, with probability at least
2/3 returns a predictor p : Rd → (0, 1) with the following guarantee. For any Fenchel-Legendre pair
(f, g) such that g′ : R→ R is L-Lipschitz, and f ′ takes values within the interval [−R,R], p satisfies

Lg(f ′ ◦ p ;D) ≤ min
∥w∥2≤B

Lg(w ;D) + ε.

The algorithm requires time and sample complexity poly(λ,B,L,R, 1ε ).

Algorithm 1 is a version of the algorithm of Gopalan et al. [2023] for calibrated multiaccuracy,
specific to our setting. For a more quantitative version of Theorem 3.2, see Theorem C.3 in the
appendix.

We aim to apply Theorem 3.2 to the class of all Lipschitz activations (which is wider than the class of
bi-Lipschitz activations). This is enabled by the following lemma, whose proof is based on Theorem
2.1 and the fact that the error of a predictor is bounded by the sum of the error of another predictor
and the squared expected distance between the two predictors.
Lemma 3.3. Let D be a distribution over Rd × [0, 1]. Let g′ : R→ R be some fixed activation, and
f ′ its dual. Consider the class GLMg′,B , and let w∗ be the weights achieving opt(GLMg′,B , D).
Let ϕ′ : R → R be an [α, β] bi-Lipschitz function (differentiable except possibly at finitely many
points) that we wish to approximate g′ by. Any predictor p : Rd → R that satisfies

Lϕ(f ′ ◦ p ;D) ≤ min
∥w∥2≤B

Lϕ(w ;D) + ε

also satisfies the following ℓ2 error guarantee:

err2(p) ≤
2β

α
opt(GLMg′,B) +

2β

α
E
[(
g′(w∗ · x)− ϕ′(w∗ · x)

)2]
+ 2βε.
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Algorithm 1: Calibrated Multiaccuracy (modification of Algorithm 2 in Gopalan et al. [2023])

Input: Sufficiently large training set S over Rd × [0, 1], parameters ε, λ, B, L, R
Output: A predictor p : Rd → (0, 1)
Form a training set S′ by substituting each element (x, y) in S with (x, y′) where y′ ∈ {0, 1} is

formed as follows. Conditioned on y, let y′ be an independent Bernoulli random variable with
probability of success y.

Let A = B · L, C > 0 a sufficiently large universal constant and let δ = ε2

CA2λR2 , σ = ε−δR
2CA2λR .

Set p← 0 (the zero function).
repeat

repeat
Let S′′ be a subset of S′ with |S′′| = C d2A2λR2

ε2 and set S′ ← S′ \ S′′.
Form a set T by substituting each element (x, y′) of S′′ with (x, z), where
z = y′ − p(x).

Let v = 1
|T |
∑

(x,z)∈T zx.

Reject if ∥v∥2 ≤ 3(ε−A
√
λδ)/(4A).

Otherwise, let w = Bv/∥v∥2 and update p to be the following predictor

x 7→ (p(x) + σ(w · x))[0,1] , where (t)[0,1] = min{max{t, 0}, 1}
until some iteration rejects (which happens when it has found a multiaccurate predictor);
Let pδ : Rd → [0, 1] such that pδ(x) =

∑1/δ
j=0 jδ1{p(x) ∈ Ij}, where

Ij = [(j − 1
2 )δ, (j +

1
2 )δ].

Let S′′ be a subset of S′ with |S′′| = C A8λ4R8

ε8 log(AλRε ), set S′ ← S′ \ S′′ and let
S′′
j = {(x, y′) ∈ S′′ : pδ(x) = jδ}.

Estimate the calibration error |Epδ(x) Ey|pδ(x)[y − pδ(x)]| of pδ using the samples in S′′

according to the following expression

1/δ∑
j=0

|S′′
j |
|S′′|

∣∣jδ − ȳj∣∣ , where ȳj =
1

|S′′
j |

∑
(x,y′)∈S′′

j

y′

If the estimate has value at most ε/2, then output pδ and terminate.
Otherwise, update p to be the following (calibrated) predictor

x 7→
1/δ∑
j=0

ȳj1{p(x) ∈ Ij}

until some iteration terminates the execution;

By combining Theorem 3.2 with Lemma 3.3 (whose proofs can be found in Appendix C), we are
now ready to prove our main theorem.

Proof of Theorem 3.1. We will combine Theorem 3.2, which states that there is an efficient algorithm
that simultaneously minimizes the matching losses corresponding to bounded, non-decreasing and
Lipschitz activations, with Lemma 3.3, which implies that minimizing the matching loss correspond-
ing to the nearest bi-Lipschitz activation is sufficient to obtain small error. Note that we may assume
that ε < 1/2, since otherwise the problem is trivial (output the zero function and pick C = 2).

As a first step, we show that link functions corresponding to bi-Lipschitz activations are bounded
(according to Definition C.1, for γ = 0). In particular, let ϕ′ : R → R be an [α, β] bi-Lipschitz
activation for some β ≥ α > 0 such that ϕ′(s) ∈ [−1, 2] for some s ∈ R and let ψ′ be the inverse
of ϕ′ (ϕ′ is invertible since it is strictly increasing). We will show that ψ′(r) ∈ [−R,R] for any
r ∈ [0, 1] and R = O(|s|+ 1/α).
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We pick r0 = 0, r1 = 1 and get that |ψ′(ϕ′(s)) − ψ′(r0)| ≤ 1
α |ϕ

′(s) − r0| ≤ 2
α . Hence ψ′(r0) ≥

ψ′(ϕ′(s)) − 2
α = s − 1

α . Similarly, we get ψ′(r1) ≤ s + 2
α . Therefore, ψ′(r) ∈ [ψ′(0), ψ′(1)] ⊆

[−|s| − 2
α , |s|+

2
α ], for any r ∈ [0, 1], due to monotonicity of ψ′.

For a given non-decreasing and 1-Lipschitz g′, we will now show that there is a bounded bi-Lipschitz
activation ϕ′ such that if the assumption of Lemma 3.3 is satisfied for ϕ′ by a predictor p, then the
error of p is bounded by

err2(p) ≤ O
(
B
√
λ(opt(GLMg′,B))

1/2
)
+O(λB2ε)

Suppose, first, that opt(GLMg′,B) ≤ ε2. Then, we pick ϕ′(t) = g′(t) + εt. Note that ϕ′ is [ε, 1 + ε]
bi-Lipschitz. Moreover, since opt(GLMg′,B) ≤ ε2, we must have some s ∈ R with |s| ≤ 2λB2

such that g′(s) ∈ [−1, 2]. Otherwise, we would have opt(GLMg′,B) = E[(g′(w∗ · x) − y)2] ≥
E[(g′(w∗ ·x)−y)2 | |w∗ ·x ≤ 2λB2|]·P[|w∗ ·x| ≤ 2λB2] ≥ P[|w∗ ·x| ≤ 2λB2] = 1−P[|w∗ ·x| >
2λB2] ≥ 1

4 > ε2, due to Chebyshev’s inequality, the fact that w∗ ∈ W and the bounded moments
assumption. Therefore, ψ′ is (R = 2λB2 + 2

ε , γ = 0)-bounded and we have

E
[(
g′(w∗ · x)− ϕ′(w∗ · x)

)2]
≤ ε2 E[(w∗ · x)2] ≤ ε2λB2

As a consequence, under the assumption of Lemma 3.3 for ϕ′, the error of the corresponding predictor
p is err2(p) ≤ 2(1 + ε)ε+ 2(1 + ε)ελB2 + 2(1 + ε)ε = O(λB2ε).

In the case that opt(GLMg′,B) > ε2, we pick ϕ′(t) = g′(t)+t

√
opt(GLMg′,B)

B
√
λ

. We may also assume
that opt(GLMg′,B) ≤ 1/2, since otherwise any predictor with range [0, 1] will have error at most
2opt(GLMg′,B). Then, ψ is (O(λB2 + B

√
λ

ε ), 0)-bounded, ϕ′ is [ 1B
√

opt(GLMg′,B)/
√
λ, 1 + 1

B ]
bi-Lipschitz which gives

E
[(
g′(w∗ · x)− ϕ′(w∗ · x)

)2]
≤ opt(GLMg′,B)

B2λ
E[(w∗ · x)2] ≤ opt(GLMg′,B)

As a consequence, under the assumption of Lemma 3.3 for ϕ′, the error of the corresponding predictor
p is err2(p) ≤ 4(1 + 1

B )B
√
λ
√
opt(GLMg′,B) + 2(1 + 1

B )ε. Using a similar approach as for the
case opt(GLMg′,B) ≤ ε, we can show that ψ′ is polynomially bounded (as per Definition C.1), since
opt(GLMg′,B) ≤ 1

2 .

To conclude the proof of Theorem 3.1, we apply Theorem 3.2 with appropriate (polynomial) choice
of parameters (R = O(λB2 + B

√
λ

ε ), L = 2), to show that there is an efficient algorithm that outputs
a predictor p : Rd → (0, 1) for which the assumption of Lemma 3.3 holds simultaneously for all
bi-Lipschitz activations (ϕ′) with sufficiently bounded inverses (ψ′).

4 Stronger Guarantees for Logistic Regression

In this section, we follow the same recipe we used in Section 2 to get distortion bounds similar to
Theorem 2.1 for the sigmoid activation (or, equivalently, the logistic model) under the assumption
that the marginal distribution is sufficiently concentrated (see Definition C.1). In particular, Theorem
2.1 does not hold, since the sigmoid is not bi-Lipschitz and our main Theorem 3.1 only provides
a guarantee of O(

√
opt) for squared error. We use appropriate pointwise distortion bounds for the

matching loss corresponding to the sigmoid activation and provide guarantees of Õ(opt) for logistic
regression with respect to both squared and absolute error, under appropriate assumptions about the
concentration of the marginal distribution. The proofs of this section are provided in Appendix D.

For the logistic model, the link function f ′ is defined as f ′(r) = ln( r
1−r ), for r ∈ (0, 1) and the

corresponding activation g′ is the sigmoid g′(t) = 1
1+e−t for t ∈ R. The corresponding matching

loss is the logistic loss.

Squared error. We first provide a result for squared loss minimization. In comparison to Theorem
2.1, the qualitative interpretation of the following theorem is that, while the sigmoid activation is not
bi-Lipschitz, it is effectively bi-Lipschitz under sufficiently concentrated marginals.
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Theorem 4.1 (Squared Loss Minimization through Logistic Loss Minimization). Let D be a distri-
bution over Rd × [0, 1] whose marginal on Rd is (1, 2)-concentrated. Let g′ : R→ R be the sigmoid
activation, i.e., g′(t) = (1 + e−t)−1 for t ∈ R. Assume that for some B > 0, ε > 0 and a predictor
p : Rd → (0, 1) we have

Lg(f ′ ◦ p ;D) ≤ min
w:∥w∥2≤B

Lg(w ;D) + ε (4.1)

If we let optg = min∥w∥2≤B err2(g
′
w), then for the predictor p and some universal constant C > 0

we also have

err2(p) ≤ C optg exp

(
B2 +

√
B2 log

1

optg

)
+ 2ε.

In particular, the squared error of p is upper bounded by Õ(optg), since the function t 7→ exp(log1/2 t)
is asymptotically smaller than any polynomial function t 7→ tγ with γ > 0.

Once more, the proof of our result is based on an appropriate pointwise distortion bound which we
provide below. It follows by the fact that the Bregman divergence corresponding to the sigmoid is the
Kullback-Leibler divergence and by combining Pinsker’s inequality (lower bound) with Lemma 4.1
of Götze et al. [2019] (upper bound).
Lemma 4.2 (Pointwise Distortion Bound for Sigmoid). Let g′ be the sigmoid activation. Then, for
any y, p ∈ (0, 1) we have that Df (y, p) = DKL(y∥p) = y ln(y/p) + (1− y) ln( 1−y1−p ). Moreover

ℓg(y, f
′(p))− ℓg(y, f ′(y)) = DKL(y∥p) ∈

[
1

2
(y − p)2, 2

min{p, 1− p}
· (y − p)2

]
We translate Lemma 4.2 to a bound on the squared error of a matching loss minimizer (in this case,
the logistic loss) using an approach similar to the one for Theorem 2.1. In order to use the upper
bound on the surrogate loss provided by Lemma 4.2, we apply it to p← g′(w · x), where g′ is the
sigmoid function, and observe that the quantity 1

p(1−p) is exponential in |w · x|. Hence, when the
marginal is (λ, 2)-concentrated (subgaussian concentration), then 1

p(1−p) is effectively bounded.

Absolute error. All of the results we have provided so far have focused on squared error min-
imization. We now show that our approach yields results even for the absolute error, which can
also be viewed as learning in the p-concept model [Kearns and Schapire, 1994]. In particular, for a
distribution D over Rd × [0, 1], we define the absolute error of a predictor p : Rd → [0, 1] as follows.

err1(p) = E
(x,y)∼D

[|y − p(x)|]

In the specific case when the labels are binary, i.e., y ∈ {0, 1}, we have

err1(p) = E
(x,y)∼D

[|y − p(x)|] = P
(x,y,yp)∼Dp

[y ̸= yp] (see Proposition A.2)

where the distribution Dp is over Rd×{0, 1}×{0, 1} and is formed by drawing samples (x, y) from
D and, given x, forming yp by drawing a conditionally independent Bernoulli random variable with
parameter p(x). We provide the following result.
Theorem 4.3 (Absolute Loss Minimization through Logistic Loss Minimization). Let D be a
distribution over Rd × {0, 1} whose marginal on Rd is (1, 1)-concentrated. Let g′ : R→ R be the
sigmoid activation, i.e., g′(t) = (1 + e−t)−1 for t ∈ R. Assume that for some B > 0, ε > 0 and a
predictor p : Rd → (0, 1) we have

Lg(f ′ ◦ p ;D) ≤ min
w:∥w∥2≤B

Lg(w ;D) + ε (4.2)

If we let optg = min∥w∥2≤B err1(g
′
w), then for the predictor p and some universal constant C > 0

we also have
err1(p) ≤ C B optg log

1

optg
+ ε

The corresponding distortion bound in this case is between the absolute and logistic losses and works
when the labels are binary.
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Lemma 4.4 (Pointwise Distortion between Absolute and Logistic Loss). Let g′ be the sigmoid
activation. Then, there is a constant c ∈ R such that for any y ∈ {0, 1} and p ∈ (0, 1), we have

ℓg(y, f
′(p))− c ∈

[
|y − p| , 2 · ln

(
1

p(1− p)

)
· |y − p|

]
The bound of Theorem 4.3 implies an algorithm for learning an unknown sigmoid neuron in the
p-concept model, by minimizing a convex loss. While there are algorithms achieving stronger
guarantees [Diakonikolas et al., 2022b] for agnostically learning sigmoid neurons, such algorithms
typically make strong distributional assumptions including concentration, anti-concentration and
anti-anti-concentration or boundedness.

Moreover, it is useful to compare the bound we provide in Theorem 4.3 to a lower bound by
Diakonikolas et al. [2020c, Theorem 4.1], which concerns the problem of agnostically learning
halfspaces by minimizing convex surrogates. In particular, they show that even under log-concave
marginals, no convex surrogate loss can achieve a guarantee better than O(opt log(1/opt)), where
opt is measured with respect to the ℓ1 error (which is equal to the probability of error). The result is
not directly comparable to our upper bound, since we examine the sigmoid activation. Their setting
can be viewed as a limit case of ours by letting the norm of the weight vector grow indefinitely
(the sigmoid tends to the step function), but the main complication is that our upper bound is of the
form O(Bopt log(1/opt)), which scales with B. However, their lower bound concerns marginal
distributions that are not only concentrated, but are also anti-concentrated and anti-anticoncentrated,
while our results only make concentration assumptions.

5 Necessity of Norm Dependence

In this final section, we use a lower bound due to Diakonikolas et al. [2022a] on agnostic learning
of GLMs using SQ algorithms and compare it with our main result (Theorem 3.1). For simplicity,
we specialize to the case of the standard sigmoid or logistic function. A modification of their proof
ensures that the bound holds under isotropic marginals.2

Theorem 5.1 (SQ Lower Bound for Agnostically Learning GLMs, variant of [Diakonikolas et al.,
2022a, Thm C.3]). Let g′ : Rd → R be the standard logistic function. Any SQ algorithm ei-
ther requires dω(1) queries or d−ω(1) tolerance to distinguish between the following two labeled
distributions:

• (Labels have signal.) Dsignal on Rd × R is such that opt(GLMg′,B , Dsignal) ≤
exp(−Ω(log1/4 d)) = o(1) for some B = poly(d).

• (Labels are random.) Drandom on Rd×R is such that the labels y are drawn i.i.d. from {a, b}
for certain universal constants a, b ∈ [0, 1]. In particular, opt(GLMg′,B , Drandom) = Ω(1)
for any B.

Both Dsignal and Drandom have the same marginal on Rd, with 1-bounded second moments.

Let us consider applying our main theorem (Theorem 3.1) to this setting, with D being either Dsignal

or Drandom, and with the same B = poly(d) as is required to achieve small error in the “labels have
signal” case. We would obtain a predictor with ℓ2 error at most B

√
opt(GLMg′,B) (or indeed with

SIMB in place of GLMg′,B). Since this is ω(1), this guarantee is insufficient to distinguish the two
cases above, which is as it should be since our main algorithm indeed fits into the SQ framework.

Theorem 5.1 does, however, justify a dependence on the norm B in our main result. In particular, it is
clear that a guarantee of the form opt(GLMg′,B)

c for any universal constant c > 0 (independent of
B) would be too strong, as it would let us distinguish the two cases above. In fact, this lower bound
rules out a large space of potential error guarantees stated as functions of B and opt(GLMg′,B). For
instance, for sufficiently large d, it rules out any error guarantee of the form exp(O(log1/5B)) ·
opt(GLMg′,B)

c′ for any universal constant c′ > 0.

2Specifically, our features correspond to all multilinear monomials (or parities) of degree at most k over
{±1}n, whereas they use all monomials (not necessarily multilinear) of degree at most k. These yield equivalent
representations since the hard distributions are obtained from the uniform distribution on {±1}n.
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A Technical Lemmas

In this section, we provide some technical Lemmas that we use in our proofs.
Proposition A.1 (Weak Learner for Linear Functions). Let D be a distribution over Rd × [−1, 1]
whose marginal on Rd has λ-bounded second moments and B > 0. For any ε > 0 and δ ∈ (0, 1),
there is a universal constant C > 0 and an algorithm that given a set S of i.i.d. samples from D

of size at least C · d
2λB2

ε2 log 1
δ , runs in time O(d |S|) and satisfies the following specifications with

probability at least 1− δ

1. If E(x,z)∼D[z(w · x)] ≥ ε for some w ∈ Rd with ∥w∥2 ≤ B, then the algorithm accepts.
Otherwise, it may or may not reject and return a special symbol.

2. If the algorithm accepts then it returns w ∈ Rd with ∥w∥2 ≤ B such that we have
E(x,z)∼D[z(w · x)] ≥ ε/4.

Proof. We will prove the proposition for δ = 1/6. We may boost the probability of success with
repetition.

The algorithm computes the vector v = ES [z x]. If ∥v∥2 ≤ 3ε
4B , then the algorithm rejects and

outputs a special symbol. Otherwise, it outputs the vector B
∥v∥2

v.

Suppose, first, that E(x,z)∼D[z(w · x)] ≥ ε for some w with ∥w∥2 ≤ B. Then, due to Chebyshev’s
inequality we have for any i ∈ [d]

P
[∣∣∣E
S
[z xi]− E

D
[z xi]

∣∣∣ > ε

8B
√
d

]
≤ 64 dB2

|S| ε2
E[x2

i ] ≤
64 dB2 λ

|S| ε2
≤ 1

6 d
(for large enough |S|)

Hence, with probability at least 5/6, we have ∥ES [zx] − ED[zx]∥2 ≤ ε
8B , due to a union bound.

Therefore, ∥v∥2 ≥ ∥ED[zx]∥2 − ε
8B ≥

ED[z(w·x)]
B − ε

8B ≥
7B
8 and the algorithm accepts.

Suppose, now, that the algorithm accepts. Then, we have ∥v∥2 > 3ε
4B and (with probability at least

5/6) we have

E
D

[
B

∥v∥2
z(v · x)

]
=

B

∥v∥2
v · E[zx] ≥ ε/4

since ∥ES [zx]− ED[zx]∥2 ≤ ε
8B . This concludes the proof.

Proposition A.2. Let D be a distribution over Rd × {0, 1} and p : Rd → [0, 1]. Consider the
distribution Dp over Rd × {0, 1} × {0, 1}, which is formed by drawing samples (x, y) from D
and, given x, forming yp by drawing a conditionally independent Bernoulli random variable with
parameter p(x). Then we have

err1(p) = E
(x,y)∼D

[|y − p(x)|] = P
(x,y,yp)∼Dp

[y ̸= yp]

Proof. Since over Dp, y and yp are conditionally independendent, we have

err1(p) = E[|y − p(x)|] = E[(1− p(x))1{y = 1}+ p(x)1{y = 0}]

= E
x

[
P[yp = 0|x]P[y = 1|x] + P[yp = 1|x]P[y = 0|x]

]
= E

x
[P[y ̸= yp|x]] = P[y ̸= yp]

B Proofs from Section 2

B.1 Proof of Theorem 2.1

To prove Theorem 2.1, we first prove the following more general theorem. Theorem 2.1 may then be
easily recovered from this by settingH = GLMg′,B and observing that f ′(g′(w · x)) = w · x, since
g′ is invertible.
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Theorem B.1 (Squared Error Minimization through Distorted Matching Loss Minimization). Let
D be a distribution over Rd × [0, 1], let 0 < α ≤ β and let (f, g) be a pair of Fenchel-Legendre
dual functions such that g′ : R→ R is continuous, non-decreasing and f ′ : ran(g′)→ R is [ 1β ,

1
α ]

bi-Lipschitz. Let ε > 0 andH ⊆ {Rd → ran(g′)}. Assume that for a predictor p : Rd → ran(g′) we
have

Lg(f ′ ◦ p ;D) ≤ min
h∈H
Lg(f ′ ◦ h ;D) + ε (B.1)

Then, for the predictor p, we also have: err2(p) ≤ β
α ·minh∈H err2(h) + 2βε.

Proof. We apply Lemma 2.2 with y ← y and p← p(x) and take expectations over D on both sides.
We have that

err2(p) ≤ 2β · E ℓg(y, f ′(p(x)))− 2β · E ℓg(y, f ′(y))
Therefore, we can bound the squared error of p as follows.

err2(p) ≤ 2β · Lg(f ′ ◦ p ;D)− 2β ·Q∗

≤ 2β · Lg(f ′ ◦ h ;D)− 2β ·Q∗ (by assumption, for any h ∈ H)

where Q∗ = E ℓg(y, f ′(y)).
We now apply Lemma 2.2 again with y ← y and p← h(x) and we similarly have

E ℓg(y, f ′ ◦ h(x))−Q∗ ≤ 1

2α
err2(h)

Therefore, for any h ∈ H, we have, in total: err2(p) ≤ β
αerr2(h) + 2βε.

We first prove Lemma 2.2, which we restate here for convenience.
Lemma B.2. Assume f ′ is [1/β, 1/α] bi-Lipschitz and differentiable on all except from a finite
number of points on any bounded interval. Then for any y, p ∈ ran(g′) we have

ℓg(y, f
′(p))− ℓg(y, f ′(y)) = Df (y, p) ∈

[
1

2β
(y − p)2, 1

2α
(y − p)2

]
Proof. We first show that ℓg(y, f ′(p))− ℓg(y, f ′(y)) = Df (y, p). In particular, we have

g(f ′(p)) = f ′(p)g′(f ′(p))− f(g′(f ′(p))) = pf ′(p)− f(p) ,
since f ′(p) ∈ ran(f ′) and we know that g(t) = tg′(t) − f(g′(t)) for any t ∈ ran(f ′) as well as
g′(f ′(p)) = p for any p ∈ ran(g′). Therefore, we have

ℓg(y, f
′(p))− ℓg(y, f ′(y)) = g(f ′(p))− yf ′(p)− g(f ′(y)) + yf ′(y)

= pf ′(p)− f(p)− yf ′(p)− yf ′(y) + f(y) + yf ′(y) =

= f(y)− f(p)− (y − p)f ′(p) = Df (y, p) .

Let ψ : ran(g′) → R be such that ψ′(p) = f ′(p) and ψ′ is differentiable on the open interval
between y and p, with ψ′′(ξ) ∈ [1/β, 1/α] for any ξ between y and p. Let γy := f(y)−ψ(y), γp :=
f(p)− ψ(p) and γψ := 2max{|γy|, |γp|}. Then we have that

Df (y, p) = ψ(y)− ψ(p)− (y − p)ψ′(p) + (γy − γp) =
1

2
ψ′′(ξ)(y − p)2 + (γy − γp)

Df (y, p) ∈
[
1

2β
(y − p)2 − 2γψ,

1

2α
(y − p)2 + 2γψ

]
,

for any ψ as defined above (say ψ ∈ Ψ). In particular, we have

Df (y, p) ≤
1

2α
(y − p)2 + 2 inf

ψ∈Ψ
γψ and

Df (y, p) ≥
1

2β
(y − p)2 − 2 inf

ψ∈Ψ
γψ

Since, we have only a finite number of points where the derivative is not well defined, a simple
smoothening technique may give us Ψ such that infψ∈Ψ γψ = 0.
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C Proofs from Section 3

C.1 Proof of Theorem 3.2

We first define a boundedness property which we use in order to apply the results from Gopalan et al.
[2023]. The property states that the activation function (the partial inverse of the link function) must
either have a range that covers all possible labels, or has a range whose closure covers all possible
labels and the rate with which the labels are covered as we tend to the limits of the domain is at
least polynomial. For example, the sigmoid activation tends to 1 (resp. 0) exponentially fast as its
argument increases (resp. decreases).
Definition C.1 (Bounded Functions). Let u : (0, 1)→ R be a non-decreasing function defined on
the interval (0, 1). For R, γ ≥ 0, we say that u is (R, γ)-bounded on [0, 1] if for any ε > 0, there are
r0 ≤ r1 ∈ [0, 1] such that if we let u(ri) = limr→ri u(r), i = 0, 1 then

max{−u(r0), u(r1)} ≤ R
(
1

ε

)γ
(1− r1)(u(r)− u(r1)) ≤ ε for r ≥ r1 and

r0(u(r0)− u(r)) ≤ ε for r ≤ r0
Proposition C.2. Let u : (0, 1) → (−R,R) be non-decreasing and continuous, then u is (R, 0)-
bounded.

We restate a more quantitative version of Theorem 3.2 here for convenience.
Theorem C.3 (Omnipredictors for Matching Losses, combination of results in Gopalan et al. [2023]).
Let D be a distribution over Rd × [0, 1] whose marginal on Rd has λ-bounded second moments.
There is an algorithm that, given sample access to D, with high probability returns a predictor
p : R→ (0, 1) with the following guarantee. For any pair of Fenchel-Legendre dual functions (f, g)
such that g′ : R→ R is continuous, non-decreasing and L-Lipschitz, and f ′ is (R, γ)-bounded (see
Definition C.1), p satisfies

Lg(f ′ ◦ p ;D) ≤ min
∥w∥2≤B

Lg(w ;D) + ε.

The algorithm requires time

O

(
d3B4L4λ2R3

(3
ε

)3+3γ

+ dB2L2λR4
(3
ε

)4+4γ

+B10L10λ5R12
(3
ε

)12+12γ

log
(BLλR
ε1+γ

))
and sample complexity

O

(
d2B4L4λ2R3

(3
ε

)3+3γ

+B8L8λ4R10
(3
ε

)10+10γ

log
(BLλR
ε1+γ

))
Proof of Theorem 3.2. The idea of the proof (given by Gopalan et al. [2023]) is that in each repetition
of both the inner and the outer loop of Algorithm 1, there is a potential function which reduces
by some amount that is bounded away above zero. The potential function is in fact the function
ED[(p

∗(x)− p(x))2], where p∗(x) = ED[y
′|x] (for us, y′ is formed by drawing a Bernoulli random

variable with probability of success y, given an example (x, y) ∈ Rd × [0, 1] drawn from D). Since
ED[(p

∗(x) − p(x))2] ∈ [0, 1], the number of iterations of each of the loops has to be bounded.
Moreover, after the completion of each of the inner loops, the current value of p corresponds to
an approximately multiaccurate predictor and note that the algorithm terminates if and only if a
discretized version pδ of (the multiaccurate) p is approximately calibrated. The output is then pδ
which is close to p (and hence also approximately multiaccurate), but also approximately calibrated.
We will now present a small number of technical modifications we need to make in the proof of
Gopalan et al. [2023] in order to specialize it to our setting. The main difference here is that we do
not consider the distribution of x to have bounded norm with probability 1, but we only assume it to
have bounded second moments. For the following, we assume that g is 1-Lipschitz, since we can set
B ← B · L and push the Lipschitz constant in the domain of w.

Suppose first that the marginal ofD on Rd is supported on the unit ball Bd and that the labels are binary.
Then, the result would follow from Theorems 7.7 and A.4 of Gopalan et al. [2023]. In particular,
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Theorem 7.7 states that given access to a weak learner with the specifications of Proposition A.1, there
is an efficient algorithm that computes an ε1-calibrated and (C, ε1)-multiaccurate predictor p, where
the notions of calibration and multiaccuracy originate to the literature of fairness and are defined, e.g.,
in Definitions 3.1 and 3.2 of Gopalan et al. [2023] and C = {x→ w · x | ∥w∥2 ≤ B} ∪ {x→ 1}
(the class C is bounded as long as ∥x∥2 ≤ 1 almost surely). Theorem A.4 states that for ε2 > 0,
any ε1-calibrated and (C, ε1)-multiaccurate predictor p minimizes simultaneously the matching loss
corresponding to any pair (f, g) ∈ F (where f is (R, γ)-bounded) up to error

R(1/ε2)
γε1 + ε1 + ε2

The expression above is formed by proving that any pair (f, g) ∈ F has the property that f ′ is
(ε2, R(1/ε2)

γ)-approximately optimal (as per the Definition A.1 of Gopalan et al. [2023]), for any
ε2 > 0. In particular, we would like to show that for any ε2 > 0 there exists f̂ ′ such that the following
is true for any r ∈ [0, 1]

ℓg(r, f̂
′(r)) ≤ ℓg(r, f ′(r)) + ε2

|f̂ ′(r)| ≤ R · (1/ε2)γ

We may pick f̂ ′ as follows (for r0 ≤ r1 as given by Definition C.1 for ε ← ε2, since f ′ is (R, γ)-
bounded).

f̂ ′(r) =


f ′(r), if r ∈ [r0, r1]

f ′(r0), if r < r0
f ′(r1), if r > r1

The desired result follows from using the expression for ℓg , the convexity of g (since g′ is non decreas-
ing) and the guarantees of Definition C.1. In particular, we have that |f̂ ′| ≤ max{|f ′(r0)|, |f ′(r1)|}
since f ′ is increasing. Moreover, for r ∈ [r0, r1] we have ℓg(r, f̂ ′(r)) = ℓg(r, f

′(r)) and for r < r0
we have

ℓg(r, f̂
′(r)) = ℓg(r, f

′(r0)) = g(f ′(r0))− rf ′(r0)
≤ r0(f ′(r0)− f ′(r)) + g(f ′(r))− rf ′(r0) (since g is convex)

≤ r0(f ′(r0)− f ′(r)) + g(f ′(r))− rf ′(r) (since f ′ is increasing and r < r0)

≤ ε2 + g(f ′(r))− rf ′(r) (since f ′ is bounded according to Definition C.1)

= ℓg(r, f
′(r)) + ε2

Similarly, for r > r1, we have

ℓg(r, f̂
′(r)) = ℓg(r, f

′(r1)) = g(f ′(r1))− rf ′(r1)
≤ r1(f ′(r1)− f ′(r)) + g(f ′(r))− rf ′(r1) (since g is convex)

≤ (1− r1)(f ′(r1)− f ′(r)) + g(f ′(r)) + (1− r)f ′(r1)− f ′(r)
≤ (1− r1)(f ′(r1)− f ′(r)) + g(f ′(r))− rf ′(r) (since f ′ is increasing, 1 > r > r1)

≤ ε2 + g(f ′(r))− rf ′(r) (since f ′ is bounded according to Definition C.1)

= ℓg(r, f
′(r)) + ε2

In order to acquire R(1/ε2)γε1 + ε1 + ε2 ≤ ε, we set ε2 = ε/3 and ε1 = (ε/3)1+γ/R.

However, we only assume that the marginal distribution has λ-bounded second moments and we,
therefore, need to make certain modifications to the proof of their Theorem 7.7. In particular, the
boundedness assumption is used in the proofs of Lemma 7.2, Lemma 7.6 and Theorem 7.7 in Gopalan
et al. [2023].

During the execution of Algorithm 1, two types of updates are made. The first type of update is
done within the inner loop and corresponds to beginning from a predictor pold and acquiring pnew
which is the function x 7→ (pold(x) + σ(w · x))[0,1], where w is the output of the weak learner of
our Proposition A.1, run with ε← ε3 (ε3 will be specified later). To lower bound the decrease in the
potential function during this type of update, we use a version of Lemma 7.6 in Gopalan et al. [2023].
In this case, one needs to pick a step size σ that is polynomially smaller than the guarantee that the
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weak learner provides. In particular, if the weak learner of our Proposition A.1 is run with ε← ε3,
then one acquires (following the proof of Lemma 7.6 in Gopalan et al. [2023])

E[(p∗(x)− pold(x))2]−E[(p∗(x)− pnew(x))2] ≥
σ · ε3
2
−B2λσ2 .

If σ is picked to be σ = ε3
4B2λ , then the quantity of interest E[(p∗(x) − pold(x))2] − E[(p∗(x) −

pnew(x))
2] is lower bounded by ε23

16B2λ . Hence the number of iterations of the inner loop is upper
bounded by O(B

2λ
ε23

). Note that in their original algorithm, σ was picked equal to ε3 and this is why
ε3 (or another corresponding parameter) does not appear in their proofs. The updated choice of σ
generates a polynomial overhead in time and sample complexity. We pick ε3 = 1

2 (ε1 −B
√
λδ) so

that each time we exit the inner loop, we have that, with high probability, the current value of p
corresponds to an (ε1 −B

√
λδ)-multiaccurate predictor.

The second type of update (the outer loop update) is a calibration step where pnew is set to be the
following function with the notation of Algorithm 1

x 7→
1/δ∑
j=0

ȳj1{pold(x) ∈ Ij}

In this case, Corollary 7.5 of Gopalan et al. [2023] can be used as is to acquire that E[(p∗(x) −
pold(x))

2] − E[(p∗(x) − pnew(x))2] ≥ ε21/8 if we set δ ≤ ε21/C for some large enough universal
constant C > 0. Hence, the number of iterations of the outer loop is upper bounded by O(1/ε21).

It remains to show that once the algorithm terminates, the output is approximately calibrated and
multiaccurate. Regarding multiaccuracy, whenever we exit the inner loop, the current value of p
corresponds (with high probability) to an (ε1 −B

√
λδ)-multiaccurate predictor. The predictor pδ is

close to p in absolute distance and therefore can be shown to be approximately multiaccurate using
some version of Lemma 7.2 in Gopalan et al. [2023]. In particular, following the proof of Lemma
7.2, the multiaccuracy guarantee for pδ changes to (C, α + B

√
λδ)-multiaccuracy, where α is the

multiaccuracy guarantee for p, by using a Cauchy-Schwarz inequality and bounding E[(w · x)2] by
B2 · λ. Since α = ε1 −B

√
λδ, the multiaccuracy guarantee is ε1. The calibration guarantee follows

by the fact that the termination criterion corresponds to empirically checking whether pδ is calibrated
and by using Lemma 7.4 in Gopalan et al. [2023], the empirical estimate should be close to the true
calibration error. Overall, once we terminate, the output is ε1 calibrated and multiaccurate.

Since the time and sample complexity of each of the calls of the weak learner depends on ε3, we pick
δ ← ε21

C(1+B2λ) so that ε3 = Θ(ε1) and δ ≤ ε21
C as required.

Sample Complexity. For each of the inner loop iterations, we require a fresh sample of size
O(d

2B2λ
ε21

), as specified by Proposition A.1 (by setting the probability of success to a sufficiently

small constant). For the outer loop, we require O( 1+B
8λ4

ε81
log( 1+Bλε1

)) samples per iteration, so that
the calibration error estimate is accurate enough, according to Lemma 7.4 in Gopalan et al. [2023].

Time Complexity. Each of the inner loop iterations requires O(d
3B2λ
ε21

) time and each of the outer

loop iterations requires an additional O(d 1+B2λ
ε21

+ 1+B10λ5

ε101
log( 1+Bλε1

)) time.

The final technical complication we need to address is that their algorithm works only given binary
labels. We can, however, form binary labels as follows. Let (x, y) be drawn from D. We have that
y ∈ [0, 1]. Given y, we draw an independent Bernoulli random variable y′ with probability of success
y, forming the distribution D′ over Rd × {0, 1}. We run the algorithm of Gopalan et al. [2023] on
D′ and receive a predictor p such that

Lg(f ′ ◦ p ;D′) ≤ min
w∈W

Lg(w ;D′) + ε , for any (f, g) ∈ F
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We have that

Lg(c ;D′) = E
x,y′

[g(c(x))− y′c(x)]

= E
x

[
g(c(x))− E

y

[
E
y′

[
y′
∣∣ y] ∣∣∣∣x] c(x)]

= E
x

[
g(c(x))− E

y

[
y
∣∣x] c(x)]

= E
x,y

[g(c(x))− yc(x)] = Lg(c ;D)

This concludes the proof of Theorem 3.2.

C.2 Proof of Lemma 3.3

We first apply Theorem 2.1 with g′ ← ϕ′ to get that for ϕ′w(x) = ϕ′(w · x), we have

err2(p) ≤
β

α
err2(ϕ

′
w∗) + 2βε (since inequality holds for w ∈ W)

Moreover, we have

err2(ϕ
′
w∗) = E

[(
y − ϕ′(w∗ · x)

)2]
= E

[(
y − g′(w∗ · x) + g′(w∗ · x)− ϕ′(w∗ · x)

)2]
≤ 2E

[(
y − g′(w∗ · x)

)2]
+ 2E

[(
g′(w∗ · x)− ϕ′(w∗ · x)

)2]
= 2optg + 2E

[(
g′(w∗ · x)− ϕ′(w∗ · x)

)2]
This concludes the proof of lemma 3.3.

D Proofs from Section 4

D.1 Proof of Theorem 4.1

In the case we consider here, g′ is the sigmoid activation, i.e., g′(t) = (1 + e−t)−1 for any t ∈ R. In
particular, the pointwise surrogate loss we consider satisfies

ℓg(y, f
′(p)) = y ln

1

p
+ (1− y) ln 1

1− p
− ln 2 ,

for any y ∈ [0, 1] and p ∈ (0, 1). We may extend Lemma 4.2 to also capture y ∈ {0, 1}, by defining
ℓg(0, f

′(0)) = ℓg(1, f
′(1)) = − ln 2 (the inequality would hold under this definition). Hence,

following a similar procedure as the one used for proving Theorem B.1, we obtain the following by
applying Lemma 4.2

err2(p) ≤ 2 (Lg(f ′ ◦ p)− E[ℓg(y, f ′(y))]) (D.1)

Lg(w∗)− E[ℓg(y, f ′(y))] ≤ E
[

2

g′(w∗ · x) ∨ (1− g′(w∗ · x))
· (y − g′(w∗ · x))2

]
(D.2)

Lg(f ′ ◦ p) ≤ Lg(w∗) + ε (D.3)

Therefore, in order to prove Theorem 4.1, it is sufficient to provide a strong enough upper bound for
the quantity of the right hand side of Equation (D.2) in terms of optg . We observe that

2

g′(w∗ · x) ∨ (1− g′(w∗ · x))
≤ 4 exp(|w∗ · x|) , for any x ∈ Rd
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It remains to bound the quantity E[e|w∗·x|(y − g′w(x))2]. Set Q = e|w
∗·x|(y − g′w(x))2 (Q is a

random variable). Then for any r ≥ 0 we have

E[Q] = E[Q · 1{|w∗ · x| ≤ r}] + E[Q · 1{|w∗ · x| > r}]
≤ er E[(y − g′w∗(x))21{|w∗ · x| ≤ r}] + E[e|w

∗·x|
1{|w∗ · x| > r}]

≤ er · opt + E[e|w
∗·x|

1{|w∗ · x| > r}]

To bound the quantity E[e|w∗·x|
1{|w∗ ·x| > r}], consider F (s) := Pr[e|w

∗·x|
1{|w∗ ·x| > r} ≥ s].

We have that

F (s) = 1{s = 0}Pr[|w∗ · x| ≤ r] + Pr[|w∗ · x| ≥ max{ln s, r}] .

Since E[e|w∗·x|
1{|w∗ ·x| > r}] =

∫∞
s=0

F (s) ds =
∫∞
s=0

Pr[|w∗ ·x| ≥ max{ln s, r}] ds, we obtain

E[Q] =

∫ ∞

s=0

Pr [|w∗ · x| ≥ max{ln s, r}] ds

≤
∫ er

s=0

Pr
[
|ŵ∗ · x| ≥ r

B

]
ds+

∫ ∞

s=er
Pr

[
|ŵ∗ · x| ≥ ln s

B

]
ds (since ∥w∗∥2 ≤ B)

≤ er · e−(r/B)2 +

∫ ∞

s=er
e−(ln s/B)2 ds (see Def. 1.6)

= er · e−(r/B)2 + er ·
∫ ∞

u=0

eu−(u+r
B )2 du (define u = ln s− r)

≤ er · e−(r/B)2 + er · e−(r/B)2 ·B · eB2

2 ·
∫ ∞

u=0

e−(u−B
2 )2 du

≤ CeB
2

ere−(r/B)2

Therefore, in total, we have that err2(p) ≤ 8eroptg + 8CeB
2

ere−(r/B)2 + 2ε and we may obtain
Theorem 4.1 by picking r = B(ln 1

opt )
1/2.

D.2 Proof of Theorem 4.3

We first prove Lemma 4.4. We have that for any y ∈ {0, 1} and p ∈ (0, 1)

ℓg(y, f
′(p)) = y ln

1

p
+ (1− y) ln 1

1− p
− ln 2 = CE(y, p)− ln 2 ,

where CE(y, p) is the cross entropy function. It is sufficient to show that for y ∈ {0, 1} and p ∈ [0, 1],

|y − p| ≤ CE(y, p) ≤ 2|y − p| log
(

1

p(1− p)

)
(D.4)

Observe that

CE(0, p) = log

(
1

1− p

)
=

∞∑
i=1

pi

i
(D.5)

where the series on the right converges for all p < 1. We can also write

CE(1, p) = log

(
1

p

)
=

∞∑
i=1

(1− p)i

i
(D.6)

with the series converging for p > 0.

For the lower bound, we observe the following inequalities hold for all p ∈ [0, 1]

CE(0, p) ≥ p = |0− p|
CE(1, p) ≥ 1− p = |1− p|.
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For the upper bound, we first prove the claim for y = 0, where it states that

CE(0, p) = log

(
1

1− p

)
≤ 2p log

(
1

p(1− p)

)
. (D.7)

When p ≤ 1/2 we can use Eq. (D.5) to bound

CE(0, p) ≤
∞∑
i=1

pi

i
≤

∞∑
i=1

pi =
p

1− p
≤ 2p. (D.8)

The bounds holds by observing that since p(1− p) ≥ 1/4,

log

(
1

p(1− p)

)
≥ log(4) ≥ 1

When p ≥ 1/2, we note that

log

(
1

p(1− p)

)
≥ log

(
1

1− p

)
= CE(0, p)

and 2p ≥ 1. Hence the bound holds in this case too.

In the case where y = 1, the bound states that

CE(1, p) = log

(
1

p

)
≤ 2(1− p) log

(
1

p(1− p)

)
.

This is implied by our bound for y = 0 by taking q = 1− p. This concludes the proof of Lemma 4.4
and we are ready to prove Theorem 4.3. The following are true

err1(p) ≤ Lg(f ′ ◦ p)− ln 2 (D.9)

Lg(w∗)− ln 2 ≤ 2 · E
[
ln

(
1

g′(w∗ · x) · (1− g′(w∗ · x))

)
· |y − g′(w∗ · x)|

]
(D.10)

Lg(f ′ ◦ p) ≤ Lg(w∗) + ε (D.11)

Similarly to the proof of Theorem 4.1, we observe that

ln

(
1

g′(w∗ · x) · (1− g′(w∗ · x))

)
≤ ln 4 + |w∗ · x|

It remains to bound the quantity E[|w∗ · x| · |y − g′w(x)|]. Set Q = |w∗ · x| · |y − g′w(x)| (Q is a
random variable). Then for any r ≥ 0 we have

E[Q] = E[Q · 1{|w∗ · x| ≤ r}] + E[Q · 1{|w∗ · x| > r}]
≤ rE[|y − g′w∗(x)| · 1{|w∗ · x| ≤ r}] + E[|w∗ · x| · 1{|w∗ · x| > r}]
≤ r · opt + E[|w∗ · x| · 1{|w∗ · x| > r}]

To bound the quantity E[|w∗ · x| · 1{|w∗ · x| > r}], consider F (s) := Pr[|w∗ · x| · 1{|w∗ · x| >
r} ≥ s]. We have that

F (s) = 1{s = 0}Pr[|w∗ · x| ≤ r] + Pr[|w∗ · x| ≥ max{s, r}] .
Since E[|w∗ · x| ·1{|w∗ ·x| > r}] =

∫∞
s=0

F (s) ds =
∫∞
s=0

Pr[|w∗ ·x| ≥ max{s, r}] ds, we obtain

E[Q] =

∫ ∞

s=0

Pr [|w∗ · x| ≥ max{s, r}] ds

≤
∫ r

s=0

Pr
[
|ŵ∗ · x| ≥ r

B

]
ds+

∫ ∞

s=r

Pr
[
|ŵ∗ · x| ≥ s

B

]
ds (since ∥w∗∥2 ≤ B)

≤ r · e−r/B +

∫ ∞

s=r

e−s/B ds (see Def. 1.6)

= r · e−r/B +B · e−r/B

Therefore, in total, we have that err1(p) ≤ 2 ln 4 · optg + 2(r + B)e−r/B + 2r · optg + ε and we
may obtain Theorem 4.3 by picking r = B · ln 1

opt .
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