
A Implementation details

Hyperparameters and Network structures. We set the diffusion steps of both diffusion models to
M = 40. The value of β ranges from 1e-4 to 2e-1, linearly increasing with the number of diffusion
steps. The dimension of the encoded vobs is 256. We use Adam [6] as the optimizer, where the
learning rate and the batch size are set to 1e-3 and 256, respectively. All the experiments are performed
on a NVIDIA RTX 3090 GPU, PyTorch 1.11.0 platform [5]. For the network ϕ of BCDUnit, we set
the hidden size of Bi-LSTM to 256, and set the output dimensions of two layers MLP in Gate to
128 and 1. Additionally, for the network θ, the fusion module combines the predicted trajectories
with the guidance features through

Hm
fut = (W 1

futX
m
fut + b1fut)⊗ (W 2

futc
m
fut + b2fut) + (W 3

futc
m
ϕ,fut + b3fut)

Hm
unobs = (W 1

unobsX
m
unobs + b1unobs)⊗ (W 2

unobsc
m
unobs + b2unobs) + (W 3

unobsc
m
ϕ,unobs + b3unobs),

where ⊗ represents the element-wise product. {W i
fut}3i=1 and {bifut}3i=1 are trainable weights for

the θfut. {W i
unobs}3i=1 and {biunobs}3i=1 are trainable weights for the θunobs. Both of the dimensions

of Hm
fut and Hm

unobs are set to 256. We use a share-parameter Transformer for both θfut and θunobs,
which consists of 2 layers with dimensions of 512 and 4 attention heads. For both of Wfut and
Wunobs, we utilize 3 layers MLP whose output sizes are 256, 128 and 2.

The social context e is the information of other moving pedestrians around the target pedestrian whose
future trajectories are to be predicted. The scene context represents the map information around the
target agent. Generally speaking, these two kinds of information will be integrated into the encoder
of the trajectory prediction model to boost the representation ability of historical trajectories. Since
our proposed BCDiff is actually a decoder, in other words, it is an encoder-agnostic framework, our
attention is not paid to the contextual information.

Baseline Implementation. We introduce how to compare baselines with our proposed method in
Table 1 and 2. Since all MOE [7], DTO [8] and BCDiff are plug-to-play methods, we apply them
to three kind of prediction backbones (Trajectron++, PCCSNet and SGCN). In the case of MOE,
following the approach described in their paper [7], we replace the encoder of the backbone with
their proposed MOE encoder. Regarding DTO, we initially pre-train a backbone model using 8
historical observations. Subsequently, we distill a student model using only 2 historical observations
for instantaneous trajectory prediction. For BCDiff, we replace the decoder of the backbone with our
BCDiff framework.

B Limitations

Although BCDiff demonstrates promising performance in instantaneous trajectory prediction, it
requires approximately 4 seconds for predicting trajectories once, which is somehow time-consuming.
This is primarily due to the refinement process of both unobserved historical trajectories and future
trajectories through BCDUnit, which is iterated 40 times (with M = 40). However, it is worth noting
that there might be some potentially feasible acceleration ways:

From the perspective of diffusion algorithms: Our current framework is built based on a typical
diffusion model, DDPM. DDPM models the trajectory generation process as a Markov process that
requires continuous M-steps to generate trajectories. There are many cutting-edged methods for
accelerating inference [1, 2, 3, 4], by relaxing the constraints of the Markov process and generating
trajectories using skipping steps. In this way, the model can use less steps to generate a trajectory,
and thereby shorten the reference time.

From the perspective of model structure: We can combine our method with Half-Precision/Model
Quantization techniques [11, 12] to lower the computational cost, or Model Pruning [9, 10] to simplify
the model, or Knowledge Distillation [13, 14] to utilize a small but effective model for inference.

C Training and Inference Procedure of BCDiff

We present the training and inference procedures for BCDiff in Algorithm 1 and Algorithm 2,
respectively.
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Algorithm 1: Training Procedure of BCDiff
while Model not converges do

Sample trajectory (X0
fut, Xobs, X

0
unobs) from dataset

Sample m ∼ Uniform(1,M )
Sample ϵ ∼ N (0, I)
Encode Xobs as vobs
Employ the Equation 2 to obtain the Xm

fut and Xm
unobs

Calculate guidance cmϕ,fut and cmϕ,unobs through Equation 5, 6, and 7:
Ld = EX0

fut,ϵ,m
||ϵfut − ϵΘ(X

m
fut,m, cmϕ,fut)||2

+ EX0
unobs,ϵ,m

||ϵunobs − ϵΘ(X
m
unobs,m, cmϕ,unobs)||2

Calculate the gradient ∇Ld and take gradient descent to update the whole model
end

Algorithm 2: Inference Procedure of BCDiff
Input: observed trajectories Xobs

Output: Predicted unobserved trajectories X̂unobs, predicted future trajectories X̂fut

Sample X̂M
unobs, X̂

M
fut ∼ N (0, I)

Encode Xobs as vobs
for m = M, ..., 1 do

sample ϵ ∼ N (0, I) if m > 1, else ϵ = 0
Calculate guidance cmϕ,fut and cmϕ,unobs through Equation 5, 6, and 7
Generate trajectories of next step through:
X̂m−1

unobs =
1√
αm (X̂m

unobs −
βm

√
1−αm ϵΘ(X̂

m
unobs,m, cmϕ,unobs)) + σ̃mϵunobs

X̂m−1
fut = 1√

αm (X̂m
fut −

βm

√
1−αm ϵΘ(X̂

m
fut,m, cmϕ,fut)) + σ̃mϵfut

end
X̂unobs = X̂0

unobs, X̂fut = X̂0
fut

D Derivation of Xm from X0

We derive the process from X0 to Xm in Equation 2. Recall that we have

q(Xm|Xm−1) = N (Xm;
√
αmXm−1, (1− αm)I).

By using reparameterization, we obtain,

Xm =
√
αmXm−1 +

√
1− αmϵm−1 ;where ϵmand ϵm−1 ∼ N (0, I)

=
√
αm(

√
αm−1Xm−2 +

√
1− αm−1ϵm−2) +

√
1− αmϵm−1

=
√
αmαm−1Xm−2 +

√
αm(1− αm−1)ϵm−2 +

√
1− αmϵm−1 (15)

=
√
αmαm−1Xm−2 +

√
1− αmαm−1ϵm−2 ;where ϵm−2 merges two Gaussian (16)

= ...

=

√√√√ m∏
i=1

αmX0 +

√√√√1−
m∏
i=1

αmϵ0 (17)

=
√
αmX0 +

√
1− αmϵ ;where ϵ = ϵ0, αm =

m∏
i=1

αm (18)

∼ N (Xm;
√
αmX0, (1− αm)I) (19)

The mergence from 15 to 16 is achieved by the additive property of a Gaussian distribution, i.e.,

N (0, (σ2
1 + σ2

2)I) = N (0, σ2
1I) +N (0, σ2

2I),

where σ1 =
√

αm(1− αm−1) and σ2 =
√
1− αm.
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E Derivation of the Objective Ld

Firstly, we derive how to obtain the LV LB in Section 3.4.

L ≤ −LV LB = Eq

[
log

q(X1:M |X0)

pΘ(X0:M )

]
= Eq

[
log

∏M
m=1 q(X

m|Xm−1)

pΘ(XM |cMϕ )
∏M

m=1 pΘ(X
m−1|Xm, cmϕ )

]
= Eq

[
− log pΘ(X

M |cMϕ ) +

M∑
m=1

log
q(Xm|Xm−1)

pΘ(Xm−1|Xm, cmϕ )

]
= Eq

[
− log pΘ(X

M |cMϕ ) +

M∑
m=2

log
q(Xm|Xm−1)

pΘ(Xm−1|Xm, cmϕ )
+ log

q(X1|X0)

pΘ(X0|X1, c1ϕ)

]
= Eq

[
− log pΘ(X

M |cMϕ ) +

M∑
m=2

log
q(Xm|Xm−1, X0)

pΘ(Xm−1|Xm, cmϕ )
+ log

q(X1|X0)

pΘ(X0|X1, c1ϕ)

]
= Eq

[
−log pΘ(X

M |cMϕ )+

M∑
m=2

log
( q(Xm−1|Xm, X0)

pΘ(Xm−1|Xm, cmϕ )
· q(Xm|X0)

q(Xm−1|X0)

)
+log

q(X1|X0)

pΘ(X0|X1, c1ϕ)

]
= Eq

[
−logpΘ(X

M |cMϕ )+

M∑
m=2

log
q(Xm−1|Xm,X0)

pΘ(Xm−1|Xm,cmϕ )
+

M∑
m=2

log
q(Xm|X0)

q(Xm−1|X0)
+log

q(X1|X0)

pΘ(X0|X1,c1ϕ)

]
= Eq

[
−log pΘ(X

M |cMϕ )+

M∑
m=2

log
q(Xm−1|Xm, X0)

pΘ(Xm−1|Xm, cmϕ )
+log

q(Xm|X0)

q(X1|X0)
+log

q(X1|X0)

pΘ(X0|X1, c1ϕ)

]
= Eq

[
log

q(XM |X0)

pΘ(XM |cMϕ )
+

M∑
m=2

log
q(Xm−1|Xm, X0)

pΘ(Xm−1|Xm, cmϕ )
− log pΘ(X

0|X1, c1ϕ)
]

= Eq

[
log

q(XM |X0)

pΘ(XM |cMϕ )

]
+

M∑
m=2

q(Xm−1|Xm, X0) log
q(Xm−1|Xm, X0)

pΘ(Xm−1|Xm, cmϕ )
−log pΘ(X

0|X1, c1ϕ)
]

= Eq

[
KL(q(XM |X0) ∥ pΘ(X

M |cMϕ ))− log pΘ(X
0|X1, c1ϕ)

+

M∑
m=2

KL(q(Xm−1|Xm, X0) ∥ pΘ(X
m−1|Xm, cmϕ ))

]
.

We ignore the first term because both q(XM |X0) and pΘ(X
M |cMϕ ) are the same Gaussian distribu-

tion, so the KL divergence between them is equal to 0. Meanwhile, the second term can be formulated
as the third term when m = 1 because

− log pΘ(X
0|X1, c1ϕ) = log

1

pΘ(X0|X1, c1ϕ)

= q(X0|X1, X0) log
q(X0|X1, X0)

pΘ(X0|X1, c1ϕ)

= KL(q(X0|X1, X0) ∥ pΘ(X
0|X1, c1ϕ)).

Therefore, our aim is to calculate the third term. Let the mean and variance of q(Xm−1|Xm, X0)
be µ̃m(Xm, X0) and σ̃m, respectively. Let the mean and variance of pΘ(X

m−1|Xm, cmϕ ) be
µΘ(X

m,m, cmϕ ) and σ̃m, respectively. We show the analytical solution for the KL divergence of
two multivariate Gaussian distributions. Here, we omit its specific derivation and directly use the
conclusion:

KL(N (p;µp,Σp) ∥ N (q;µq,Σq)) =
1

2

[
log

|Σq|
|Σp|

− d+ tr(Σ−1
q Σp) + (µq − µp)

TΣ−1
q (µp − µq)

]
,

(20)
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where p and q represent two Gaussian distributions. µ amd Σ are the mean vector and covariance
matrix, respectively. tr(·) calculates the trace of a matrix. Thus, by substituting q and pΘ to Equation
20, we get,

KL(q(Xm−1|Xm, X0) ∥ pΘ(X
m−1|Xm, cmϕ ))

=KL(N (Xm−1; µ̃m(Xm, X0), σ̃mI) ∥ N (Xm−1;µΘ(X
m,m, cmϕ ),Σq(m)I))

=
1

2

[
log

|σ̃mI|
|σ̃mI|

− d+ tr((σ̃mI)−1σ̃mI) + (µΘ − µ̃m)T (σ̃mI)−1(µΘ − µ̃m)
]
.

=
1

2
[log 1− d+ d+ (µΘ − µ̃m)T (σ̃mI)−1(µΘ − µ̃m)]

=
1

2
[(µΘ − µ̃m)T (σ̃mI)−1(µΘ − µ̃m)]

=
1

2σ̃mI
∥ µ̃m − µΘ ∥22

∝ ∥ µ̃m(Xm, X0)− µΘ(X
m,m, cmϕ ) ∥22) (21)

We can see that the objective is transformed to minimize the l2 distance between mean of true posterior
distribution and estimated distribution. This equation can be further simplified by substituting specific
expressions of µ̃m(Xm, X0) and µΘ(X

m,m, cmϕ ) to it. To calculate µ̃m(Xm, X0), we use the
Bayes formula:

q(Xm−1|Xm, X0) = q(Xm|Xm−1, X0)
q(Xm−1|X0)

q(Xm|X0)
= q(Xm|Xm−1)

q(Xm−1|X0)

q(Xm|X0)
. (22)

After applying the Bayes formula, we calculate each term using Equation 19 and substitute them to
the above Equation. Then, we have

q(Xm−1|Xm, X0) = q(Xm|Xm−1)
q(Xm−1|X0)

q(Xm|X0)

∝ exp
(
− 1

2

( (Xm −
√
αmXm−1)2

βm
+

(Xm−1 −
√
ᾱm−1X0)2

1− ᾱm−1
− (Xm −

√
ᾱmX0)2

1− ᾱm

))
=exp

(
− 1

2

( (Xm)2 − 2
√
αmXmXm−1+αm(Xm−1)2

βm

+
(Xm−1)2−2

√
ᾱm−1X0Xm−1+ᾱm−1(X0)2

1− ᾱm−1
− (Xm −

√
ᾱmX0)2

1− ᾱm

))
=exp

(
−1

2

(
(
αm

βm
+

1

1−ᾱm−1
)︸ ︷︷ ︸

Variance term of Xm−1

(Xm−1)2−(
2
√
αm

βm
Xm+

2
√
ᾱm−1

1−ᾱm−1
X0)︸ ︷︷ ︸

Mean term of Xm−1

Xm−1 + C(Xm, X0)︸ ︷︷ ︸
Term unrelated toXm−1

))
(23)

The exponential part of the probability density function of a Gaussian distribution can be expressed
as:

exp
(
− (X − µ)2

2σ2

)
= exp

(
− 1

2
(
1

σ2
X2 − 2µ

σ2
X +

µ2

σ2
)
)

(24)

By comparing Equation 24 and 23, we obtain the mean µ̃m(Xm, X0) and variance β̃m of the
Gaussian distribution q(Xm−1|Xm, X0),
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β̃m = σ2 = 1/(
αm

βm
+

1

1− ᾱm−1
) = 1/(

αm − ᾱm + βm

βm(1− ᾱm−1)
) =

1− ᾱm−1

1− ᾱm
· βm (25)

µ̃m(Xm, X0) = (

√
αm

βm
Xm +

√
ᾱm−1

1− ᾱm−1
X0)/(

αm

βm
+

1

1− ᾱm−1
)

= (

√
αm

βm
Xm +

√
ᾱm−1

1− ᾱm−1
X0)

1− ᾱm−1

1− ᾱm
· βm

=

√
αm(1− ᾱm−1)

1− ᾱm
Xm +

√
ᾱm−1βm

1− ᾱm
X0 (26)

Further, we calculate X0 using Equation 18 and substitute it to Equation 26 to get the expression
related to ϵ,

X0 =
1√
αm

(Xm −
√
1− αmϵ) (27)

µ̃m(Xm, X0) =

√
αm(1− ᾱm−1)

1− ᾱm
Xm +

√
ᾱm−1βm

1− ᾱm
· 1√

αm
(Xm −

√
1− αmϵ)

=
1√
αm

(Xm − βm

√
1− αm

ϵ) (28)

By replacing ϵ with ϵΘ(X
m,m, cmϕ ), we obtain the expression of µΘ(X

m,m, cmϕ ),

µΘ(X
m,m, cmϕ ) =

1√
αm

(Xm − βm

√
1− αm

ϵΘ(X
m,m, cmϕ )) (29)

We substitute Equation 26 and 29 to Equation 21, and the simplified objective can be represented as,

Lunobs = EX0
unobs,ϵ,m

||ϵ− ϵΘ(X
m
unobs,m, cmϕ,unobs)||2

Lfut = EX0
fut,ϵ,m

||ϵ− ϵΘ(X
m
fut,m, cmϕ,fut)||2

Ld = Lfut + Lunobs (30)

F Visualization of Hard Cases

We provide more hard cases in Figure 4, we observe our method can better handle the hard cases and
predict more accurate trajectories than other methods.

G Visualization of Failure Cases

As shown in Figure 5, our model sometimes fails when pedestrians start to walk or abruptly change
the intention. We will further optimize our method according to these failure cases in our future work.
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