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Abstract

The objective of pedestrian trajectory prediction is to estimate the future paths
of pedestrians by leveraging historical observations, which plays a vital role in
ensuring the safety of self-driving vehicles and navigation robots. Previous works
usually rely on a sufficient amount of observation time to accurately predict future
trajectories. However, there are many real-world situations where the model lacks
sufficient time to observe, such as when pedestrians abruptly emerge from blind
spots, resulting in inaccurate predictions and even safety risks. Therefore, it is
necessary to perform trajectory prediction based on instantaneous observations,
which has rarely been studied before. In this paper, we propose a Bi-directional
Consistent Diffusion framework tailored for instantaneous trajectory prediction,
named BCDiff. At its heart, we develop two coupled diffusion models by designing
a mutual guidance mechanism which can bidirectionally and consistently generate
unobserved historical trajectories and future trajectories step-by-step, to utilize the
complementary information between them. Specifically, at each step, the predicted
unobserved historical trajectories and limited observed trajectories guide one diffu-
sion model to generate future trajectories, while the predicted future trajectories
and observed trajectories guide the other diffusion model to predict unobserved
historical trajectories. Given the presence of relatively high noise in the generated
trajectories during the initial steps, we introduce a gating mechanism to learn the
weights between the predicted trajectories and the limited observed trajectories for
automatically balancing their contributions. By means of this iterative and mutually
guided generation process, both the future and unobserved historical trajectories
undergo continuous refinement, ultimately leading to accurate predictions. Essen-
tially, BCDiff is an encoder-free framework that can be compatible with existing
trajectory prediction models in principle. Experiments show that our proposed
BCDiff significantly improves the accuracy of instantaneous trajectory prediction
on the ETH/UCY and Stanford Drone datasets, compared to related approaches.
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1 Introduction

Pedestrian trajectory prediction aims to predict future trajectories conditioned on their past movements,
which is an important task for autonomous driving [25, 57] and navigation robot [4]. Previous
pedestrian trajectory prediction approaches usually rely on long enough observation time (typically, 2
to 3 seconds) for a pedestrian to precisely predict the future trajectories [53, 48, 54, 13]. However,
in many real-world situations, e.g., when pedestrians suddenly emerge from blind spots and are in
close proximity to autonomous vehicles, traditional trajectory prediction methods do not have ample
time to collect a sufficient number of locations. This leads to sub-optimal prediction performance and
potentially unsafe behaviors in the decision-making of autonomous vehicles and robots. Therefore, it
is quite necessary to forecast future trajectories based on limited or instantaneous observations.

The prediction of instantaneous trajectories for pedestrians is a highly challenging task due to the
limited observation time. In some cases, as extreme as it can be, merely two frames of locations can
be observed. In the face of such a challenging task, there have been only a few academic works to
date. MOE [46] is the first to propose the problem of instantaneous trajectory prediction, and thus is
the most relevant to ours. MOE incorporates scene context information into limited observations and
introduces the masked trajectory complement and context restoration as self-supervised tasks to pre-
train the model. However, since MOE only utilizes instantaneous temporal information acquired from
limited trajectories, it might be hard to accurately predict the future trajectories of a pedestrian with
complex behavior such as turning and yielding. DTO [34] focuses on lowering the influence of noise
introduced by incorrect detection and tracking, and attempts to employ limited observed trajectory to
alleviate this problem. It utilizes the knowledge distillation technique to distill knowledge from a
teacher model trained with an ample amount of long observations, and transfer the knowledge to a
student model receiving fewer observations as input. Although these approaches have shown some
effectiveness in instantaneous trajectory prediction, the representation of a pedestrian is restricted to
two frames of locations, which contains extremely limited temporal information.

In this paper, we propose BCDiff, a bidirectional consistent diffusion framework specifically designed
for the instantaneous trajectory prediction task. As we know, the diffusion model is a generative model,
which has been successfully applied to various generation tasks, including image synthesis [39, 33],
image denoising [23], etc. Different from them, we leverage the diffusion model for instantaneous
trajectory prediction. We devise two coupled diffusion models to bidirectionally generate previous
unobserved trajectories and future trajectories from random noises, which can address the issue of
temporal information scarcity in limited observations. The underlying intuition behind this idea is:
Both previous unobserved historical trajectories and future trajectories contain information of the
same pedestrian at different timesteps, and thereby they provide complementary information to each
other. It will be beneficial for the prediction of future trajectories if we can design an elegant method
to simultaneously generate previous unobserved historical trajectories and future trajectories by fully
leveraging the complementary information between them.

To accomplish this, we devise a step-by-step mutual guidance mechanism in two coupled diffusion
models to simultaneously generate previous unobserved historical trajectories and future trajectories.
Specifically, at each step, the predicted unobserved historical trajectories, together with the limited
observed trajectories serve as a guidance for one diffusion model to predict a denoising intensity,
which is then used to generate future trajectories of the subsequent step. Likewise, the predicted
future trajectories, together with the observed trajectories, guide the other diffusion model to predict
unobserved historical trajectories of the next step. Meanwhile, considering there exists relatively
high noise in the generated trajectories during the initial steps, we devise a gating mechanism to learn
the weights between the predicted trajectories and the limited observed trajectories for automatically
controlling the proportion of the guidance information from two kinds of trajectories during each
generation step. Through this iterative and mutually guided generation process, the future and
unobserved historical trajectories are continuously refined, ultimately leading to precise predictions.
Notably, our proposed BCDiff is encoder-free and is compatible with existing trajectory prediction
encoders in principle, allowing them to gracefully handle cases with instantaneous observations.

Our contributions can be summarized as follows: 1) We propose BCDiff, a diffusion model based
framework tailored for instantaneous trajectory prediction. BCDiff can simultaneously generate both
future and unobserved historical trajectories in a consistent manner, which can effectively leverage
complementary information between them. 2) We devise a step-by-step mutual guidance mechanism
to couple two diffusion models for trajectory generation, and present a gating strategy to adaptively
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adjust the contributions of the guidance information between two kinds of trajectories. 3) Experiments
demonstrate our proposed BCDiff significantly improves the accuracy of instantaneous prediction
and outperforms the state-of-the-art methods on ETH/UCY and Stanford Drone datasets.

2 Related Works

2.1 Traditional Trajectory Prediction

Traditional trajectory prediction methods aim to predict future trajectories given sufficient observation
time. To capture complex interactions between pedestrians, many methods have been proposed
[1, 15, 40]. These models utilize a social mechanism to aggregate neighboring actors and broadcast
information to each actor. In addition, graph neural networks [49, 11, 19, 22, 27, 28] and transformer
architectures [52, 36, 35, 51] are introduced to encapsulate implicit interactions among pedestrians.
To resolve the problem of high uncertainty in pedestrians, researchers propose stochastic generative
models, such as GAN [15, 22, 40, 45, 55], VAE [25, 24, 31, 53], and Diffusion Models [14, 32],
to better capture the variability in future trajectories. Various sampling strategies are designed to
avoid purely random sampling [6, 3, 18, 5, 30]. However, the aforementioned methods can accurately
predict trajectories only when a sufficient amount of long observation trajectories are available. The
accuracy cannot be guaranteed given the limited observation time. In contrast to these methods, our
goal is to address the trajectory prediction problem under instantaneous observation scenarios.

2.2 Instantaneous Trajectory Prediction

Instantaneous trajectory prediction aims to predict future trajectories given a limited number of
observed trajectory points. In the most extreme scenarios, merely two frames of locations can be
observed. This task poses significant challenges due to the exceedingly short observation period.
MOE [46] and DTO [34] are two trajectory prediction methods based on limited observed trajectory
points. MOE proposes a feature extractor to incorporate image semantic information and develops a
self-supervised task to enhance the representational ability of instantaneous observations. Meanwhile,
DTO investigates the influence of noise introduced by detection or tracking to trajectory prediction,
and intends to use fewer trajectory points in a knowledge distillation framework to address the issue.
Despite these advances, they fail to address the inherent lack of temporal information in instantaneous
trajectory prediction. In our study, we attempt to predict and leverage previous unobserved trajectories
to capture more temporal information, thereby improving the prediction accuracy of future trajectories.

2.3 Diffusion Models

The diffusion model is a class of stochastic generation models, which exhibits amazing performance
in a diverse range of fields such as image synthesis [9, 39, 33], audio synthesis [7, 21] and text
generation [2, 12, 8]. Among these works, a typical diffusion model is the Denoising diffusion
probabilistic model (DDPM) [44, 16]. DDPM is inspired by the non-equilibrium thermodynamics,
in which a forward Markov process perturbs real data into noise, and a reverse Markov process
converts noise back to real data. DDPM has been widely used in various tasks, including image
super-resolution [41, 17], 3D point cloud generation [29, 56] etc. For instance, CDM [17] cascades
multiple DDPM models to generate images of increasing resolution. The work in [29] employs a
heat bath mechanism on DDPM to facilitate the generation of 3d point clouds. Different from these
works, we leverage DDPM to solve the problem of instantaneous trajectory prediction.

3 Methods

3.1 Problem Formulation

In this work, we aim to tackle the task of instantaneous trajectory prediction, where we assume only
two frames are observed, i.e., the most extreme case. We denote Xobs = {x1, x2} as the observation
locations. The ground-truth future trajectory is symbolized as Xfut = {x3, x4, ..., xTfut+2}, where
Tfut is the prediction length, and xi ∈ R2 is the 2D coordinate of a trajectory location. Moreover,
we characterize the previous unobserved trajectories as Xunobs = {x1−Tunobs

, ..., x−1, x0}, where
Tunobs represents the length of the unobserved trajectories. Our objective is to develop a diffusion
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Figure 1: An illustration of our BCDiff framework. (a) The overall architecture comprises an encoder
and a decoder. The encoder is utilized to generate features of trajectories by incorporating social
and scene context. The decoder is depicted in Figure 1 (b). The decoder, i.e., our proposed BCDiff,
generates previous unobserved historical trajectories and future trajectories step-by-step through two
coupled diffusion models. (c) The BCDUnit describes the details of two diffusion models marked in
red and yellow. We design a mutual guidance mechanism and predict denoise intensities that are used
for generating unobserved historical trajectories and future trajectories at the next step.

models based method to generate both previous unobserved historical and future trajectories, so
that more temporal information can be captured to better predict future trajectories, given only two
observed frames. Since we utilize the diffusion model, we denote the maximum diffusion steps as M ,
and use Xm

fut and Xm
unobs to represent the future and unobserved trajectories following a diffusion of

m steps or a denoising of M −m steps, respectively. Note that Xunobs = X0
unobs and Xfut = X0

fut.

3.2 Overall Architecture

The overall architecture consists of an encoder and a decoder, as shown in Figure 1 (a). The encoder
encodes Xobs as vobs, and captures social and scene context e. The decoder is our proposed BCDiff
framework, as shown in Figure 1 (b), which simultaneously generates previous observed historical
trajectories and future trajectories step-by-step through the Bidirectional Consistent Denoising Unit
(BCDUnit). The BCDUnit comprises two coupled diffusion models, As shown in Figure 1 (c), the
diffusion model {ϕfut, θfut} marked in red color, is responsible for generating future trajectories,
while the diffusion model {ϕunobs, θunobs}, depicted in yellow, is used for generating unobserved
historical trajectories. The two diffusion models are coupled through a mutual guidance mechanism.
To be specific, as the mth step, the network ϕ = {ϕfut, ϕunobs} leverages two bidirectional LSTMs
to encode unobserved trajectories and future trajectories as mutual guidance gmfut and gmunobs used for
generating each other in the m− 1th step. Considering the guidance information contains relatively
high noise during the initial steps, we introduce a gate mechanism to balance the contributions
between the observed guidance vobs and future guidance gmfut, as well as the observed guidance
vobs and unobserved guidance gmunobs, ultimately producing the appropriate guidance cϕ,fut and
cϕ,unobs. Then the network θ = {θfut, θunobs} fuses the guidance with both predicted unobserved
historical and future trajectories at current steps to generate the denoise intensities, which is used
to simultaneously generate Xm−1

fut and Xm−1
unobs of the next step. It is noteworthy that both previous

unobserved historical trajectories and future trajectories contain the information of the same pedestrian
at different timesteps, thus we adopt a parameter-shared transformer across θfut and θunobs.

4



3.3 Bidirectional Consistent Diffusion

In this section, we introduce our proposed BCDiff framework, which contains two coupled diffusion
models to consistently generate trajectories in two directions, i.e., simultaneously predicting previous
unobserved trajectories and future trajectories. In this paper, we utilize DDPM [16] as our basic
diffusion model, because of its excellent performance in various tasks. For the generation of each
direction, the diffusion model executes diffusion and conditional denoising processes. The diffusion
process aims to intentionally add a series of noises to a ground-truth trajectory, while the conditional
denoising process recovers the trajectory from noise inputs conditioned on the guidance.

Diffusion Process. The diffusion process is defined as a Markov chain, conditioned on the ground-
truth trajectories X0

fut, X
0
unobs. To write conveniently, we omit the subscripts, allowing X0 to

represent unobserved historical trajectories or future trajectories. The diffusion process generates the
sequence {Xi}Mi=1 by accumulating noise M times, i.e.,

q(X1:M |X0) =

M∏
m=1

q(Xm|Xm−1), q(Xm|Xm−1) = N (Xm;
√
αmXm−1, (1− αm)I), (1)

where N denotes the Gaussian distribution, and αm represents the noise intensity from Xm to Xm−1.
Typically, αm is equal to 1− βm, where βm is a pre-defined value belonging to the interval [0,1].
Due to the additivity of Gaussian distributions, we are able to directly obtain Xm from X0:

q(Xm|X0) = N (Xm;
√
αmX0, (1− αm)I), αm =

m∏
i=1

αi, (2)

where αm =
∏m

i=1 α
i. Note that as M becomes sufficiently large, α approaches to zero, making

q(XM |X0) converge to the standard Gaussian distribution. By employing the above process, the
ground-truth trajectory is transformed into the Gaussian noise XM ∼ N (0, I).

Conditional Denoising Process. In this process, we aim to generate X0 from the Gaussian noise
XM ∼ N (0, I). We can reverse the aforementioned diffusion process, to gradually denoise from
the Gaussian noise XM and reconstruct X0. Based on the proof in [10]: If q(Xm|Xm−1) follows
a Gaussian distribution and βm is sufficiently small, q(Xm−1|Xm) also satisfies a Gaussian dis-
tribution. Therefore, we formulate q(Xm−1|Xm) as a Gaussian Markov process. However, it is
intractable to directly obtain q(Xm−1|Xm). Consequently, we employ a denoising neural network to
estimate its mean and variance:

pΘ(X
0:M |cmϕ ) = p(XM |cmϕ )

M∏
m=1

pΘ(X
m−1|Xm, cmϕ ), (3)

pΘ(X
m−1|Xm, cmϕ ) = N (Xm−1|cmϕ ;µΘ(X

m,m, cmϕ ),ΣΘ(X
m,m, cmϕ )), (4)

where Θ = {ϕ, θ} is the parameter of the neural network. µΘ and ΣΘ are the predicted mean and
variance by Θ. cmϕ is produced by network ϕ, serving as conditions to guide the denoising (we
will introduce it in detail later). Our ultimate goal in the denoising process is to ensure that the
denoising step becomes the inverse process of the diffusion step, thus enabling pΘ(X

m−1|Xm, cmϕ )

and q(Xm−1|Xm) to have the same distribution. For more details, please refer to Section 3.4.

Bidirectional Consistent Denoising Unit. To utilize more temporal complementary information in
trajectories, we propose the BCDUnit to couple two diffusion models. One is called the backward
model, used to generate previous unobserved historical trajectories. The other, named as the forward
model, is employed to produce future trajectories. We design a mutual guidance mechanism in the
two diffusion models: At each step, the predicted unobserved historical trajectories and observed
trajectories are jointly utilized to guide the forward model to generate future trajectories of the next
step. Likewise, the predicted future trajectories together with observed trajectories are responsible
for guiding the backward model to generate the unobserved historical trajectories. In this way, the
BCDUnit continuously refines the future and unobserved historical trajectories, ultimately leading to
accurate predictions.

We denote the network in BCDUnit as Θ = {{ϕfut, θfut}, {ϕunobs, θunobs}}. As illustrated in
Figure 1 (c), the forward model {ϕfut, θfut}, marked as red, is used to generate future trajecto-
ries, while the backward model {ϕunobs, θunobs}, depicted in yellow, is responsible for generating
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unobserved historical trajectories. Here, the guidance information can be obtained by the network
ϕ = {ϕfut, ϕunobs}. At the mth step, ϕ first generates future guidance gmfut and unobserved guid-
ance gmunobs by sending the unobserved historical trajectories Xm

unobs and future trajectories Xm
fut to

Bidirectional Long-Short Term Memory (Bi-LSTM), respectively:

gmfut = Bi-LSTM(Xm
unobs), g

m
unobs = Bi-LSTM(Xm

fut). (5)

We further incorporate observed trajectory guidance vobs into future and unobserved guidance
to obtain more informative guidance cmϕ,fut and cmϕ,unobs, cmϕ,fut = [gmfut, vobs,m], cmϕ,unobs =

[gmunobs, vobs,m], where [·, ·] represents the concatenation operation. However, considering that it
contains relatively high noise in the initial steps due to the inherent property of the diffusion model,
it is not appropriate to directly concatenate them in the beginning. To this end, we adopt a gating
mechanism to automatically learn the weights for balancing the contributions between two kinds
of guidance information. We first calculate the weights for the future guidance gmfut and observed
trajectory guidance vobs to produce appropriate guidance. Formally,

γm
fut = Gatefut([g

m
fut, vobs,m]), (6)

where γm
fut is the learnt weight. Gate is a two layers MLP with the Sigmoid activation in this paper.

The guidance cmϕ,fut can be then obtained by:

cmϕ,fut = γm
futg

m
fut + (1− γm

fut)vobs. (7)

Similarly, cmϕ,unobs can be obtained in the same way. After obtaining cmϕ,fut and cmϕ,unobs, the
network θ = {θfut, θunobs} utilizes them to perform mutual guidance. They fuse the guidance
with the predicted trajectories at the mth step. Then, a transformer is leveraged to capture temporal
dependencies in the fused features. Finally, the outputs of the transformer are passed through two
MLPs, i.e., Wfut and Wunobs, to obtain denoising intensities ϵmfut and ϵmunobs, respectively. These
denoising intensities are employed to generate trajectories of the next steps, i.e., Xm−1

fut and Xm−1
unobs.

In this way, we can bidirectionally and consistently generate unobserved historical trajectories and
future trajectories step-by-step, effectively utilizing the complementary information between them.

3.4 The Objective Function

We define the objective as the negative log-likelihood of the model pΘ under X0
fut and X0

unobs as

L = E[−logpΘ(X
0)]. (8)

Here, we also omit the subscript for convenient writing. By minimizing the objective L, the original
trajectories X0

fut, and X0
unobs can be recovered through the denoising process. However, it is difficult

to directly compute L. Therefore, we employ the variational methods to derive the Variational Lower
Bound (VLB) [20] of the expectation, denoted as:

L ≤ −LV LB = Eq

[
log

q(X1:M |X0)

pΘ(X0:M )

]
= Eq[KL(q(XM |X0)||pΘ(XM |cMϕ )

− logpΘ(X
0|X1, c1ϕ) +

M∑
m=2

KL(q(Xm−1|Xm, X0)||pΘ(Xm−1|Xm, cmϕ ))].

The first term of LV LB approximates to 0, as both q(XM |X0) and pΘ(X
M |cMϕ ) are approximate to

N (0, I). The second term can be formulated as a special case of the third term when m = 1. The
third term computes the KL divergence between the estimated distribution pΘ(X

m−1|Xm, cmϕ ) and
the true posterior distribution q(Xm−1|Xm, X0), aiming to lower the error between the estimated
distribution and the ground-truth posterior distribution. To determine the q(Xm−1|Xm, X0), we
apply the Bayes formula as follows:

q(Xm−1|Xm, X0) = q(Xm|Xm−1, X0)
q(Xm−1|X0)

q(Xm|X0)
= q(Xm|Xm−1)

q(Xm−1|X0)

q(Xm|X0)
. (9)
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By applying the Bayes formula, we observe each term can be calculated with Equation 2. We then
substitute the results of Equation 2 to Equation 9 to obtain the mean and variance of the posterior
distribution q(Xm−1|Xm, X0) as:

σ̃m =
1− αm−1

1− αm · βm, µ̃m(Xm, X0) =

√
αm(1− αm−1)

1− αm
Xm +

√
αm−1βm

1− αm X0. (10)

Note that σ̃m is a constant value related to βm, thus the KL in the third term can be further derived as:

KL(q(Xm−1|Xm, X0)||pΘ(Xm−1|Xm, cmϕ )) ∝ ||µ̃m(Xm, X0)− µΘ(X
m,m, cmϕ )||2. (11)

By reparameterizing µΘ and substituting it into Equation 11, we can further simplify the expression
and finally obtain the diffusion loss.

Lunobs = EX0
unobs,ϵ,m

||ϵ− ϵΘ(X
m
unobs,m, cmϕ,unobs)||2

Lfut = EX0
fut,ϵ,m

||ϵ− ϵΘ(X
m
fut,m, cmϕ,fut)||2

Ld = Lfut + Lunobs (12)

where ϵ ∼ N (0, I), Xm
fut and Xm

unobs are calculated by Equation 2, and ϵΘ represents the aforemen-
tioned BCDUnit.

3.5 Mutual Guidance based Optimizing and Inference

When optimizing the model, we take the following four steps: Firstly, we sample future ground-
truth trajectories X0

fut, instantaneous observations Xobs, and unobserved historical ground-truth
trajectories X0

unobs from the training dataset. We also sample a timestep m ∼ uniform(1,M) and
a Gaussian noise ϵ ∼ N (0, I). Secondly, we use the encoder to encode Xobs as the vobs, and employ
the Equation 2 to obtain the Xm

fut and Xm
unobs. Thirdly, we utilize the Equation 5,6, and 7 to obtain

mutual guidance cmϕ,unobs and cmϕ,fut. Finally, we calculate the loss defined in Equation 12 and take
the gradient descent to optimize the model until it converges.

For inference, we first sample instantaneous observations Xobs from the testing data and two Gaussian
noises X̂M

fut and X̂M
unobs from N (0, I). Following the third step in the optimizing stage, we obtain

mutual guidance cMϕ,fut and cMϕ,unobs. Finally, we execute the following two updates from m = M to
1 so that the predicted trajectories can be continuously refined until X̂0

fut and X̂0
unobs are generated,

X̂m−1
fut :=

1√
αm

(X̂m
fut −

βm

√
1− αm

ϵΘ(X̂
m
fut,m, cmϕ,fut)) + σ̃mϵ, (13)

X̂m−1
unobs :=

1√
αm

(X̂m
unobs −

βm

√
1− αm

ϵΘ(X̂
m
unobs,m, cmϕ,unobs)) + σ̃mϵ, (14)

where ϵ is a random noise sampled from the standard Gaussian distribution. The details of training
and inference procedures are provided in Appendix.

4 Experiments

4.1 Experiment Settings

Dataset. We verify the effectiveness of our proposed method on the widely used ETH/UCY [37, 26]
and Stanford Drone [38] Dataset (SDD). ETH/UCY is a dataset group. It consists of 5 different
scenes, among which 2 scenes (ETH, HOTEL) are from the ETH dataset, and the other three scenes
(UNIV, ZARA1, and ZARA2) come from the UCY dataset. The whole dataset includes more than
1500 pedestrians. We follow the widely used leave-one-scene-out protocol, i.e., the models are trained
on 4 scenes and tested on the remaining one [15, 42]. SDD is a large scale dataset consisting of 20
scenes. It contains various agents such as pedestrians, bicycles, and vehicles.

Evaluation Metrics. Following previous works [43, 19, 14, 53, 48], we employ the Average Dis-
placement Error (ADE) and Final Displacement Error (FDE) as metrics to evaluate the performance
of future trajectory predictions. In the instantaneous trajectory prediction setting, the observations are

7



Table 1: Comparisons of different methods on the ETH/UCY dataset. The metrics are presented as
ADE/FDE (m).

Model Methods
Dataset

ETH HOTEL UNIV ZARA1 ZARA2 AVG

Trajectron++

Instantaneous 0.76/1.43 0.30/0.56 0.36/0.74 0.22/0.42 0.18/0.34 0.36/0.70
MOE [46] 0.64/1.12 0.20/0.33 0.33/0.62 0.22/0.42 0.17/0.32 0.31/0.56

MOE w/o Image 0.68/1.22 0.25/0.49 0.35/0.68 0.22/0.42 0.18/0.33 0.34/0.63
DTO [34] 0.70/1.23 0.22/0.45 0.32/0.62 0.22/0.42 0.17/0.33 0.33/0.61
BCDiff 0.61/1.09 0.16/0.28 0.28/0.53 0.22/0.41 0.18/0.33 0.29/0.53

PCCSNet

Instantaneous 0.34/0.65 0.14/0.25 0.31/0.63 0.23/0.46 0.16/0.37 0.24/0.47
MOE [46] 0.31/0.57 0.13/0.21 0.25/0.53 0.20/0.41 0.14/0.31 0.20/0.41

MOE w/o Image 0.32/0.61 0.14/0.24 0.28/0.57 0.21/0.45 0.15/0.34 0.22/0.44
DTO [34] 0.33/0.64 0.14/0.24 0.31/0.62 0.22/0.46 0.15/0.35 0.23/0.46
BCDiff 0.30/0.56 0.13/0.20 0.25/0.52 0.18/0.37 0.14/0.31 0.19/0.39

SGCN

Instantaneous 0.88/1.66 0.55/1.16 0.38/0.71 0.30/0.54 0.25/0.46 0.47/0.91
MOE [46] 0.74/1.41 0.45/0.85 0.38/0.71 0.29/0.54 0.25/0.45 0.42/0.79

MOE w/o Image 0.79/1.52 0.50/1.05 0.38/0.71 0.30/0.54 0.25/0.46 0.44/0.85
DTO [34] 0.80/1.56 0.49/1.02 0.38/0.71 0.30/0.54 0.25/0.46 0.44/0.86
BCDiff 0.66/1.18 0.34/0.62 0.38/0.70 0.30/0.54 0.25/0.44 0.39/0.72

SocialVAE

Instantaneous 0.64/1.10 0.21/0.34 0.27/0.51 0.22/0.39 0.18/0.34 0.30/0.54
MOE [46] 0.57/1.01 0.17/0.29 0.26/0.44 0.22/0.36 0.17/0.32 0.28/0.48

MOE w/o Image 0.59/1.06 0.20/0.33 0.27/0.49 0.22/0.38 0.18/0.33 0.29/0.52
DTO [34] 0.61/1.06 0.18/0.31 0.25/0.43 0.22/0.38 0.17/0.33 0.29/0.50
BCDiff 0.53/0.91 0.17/0.27 0.24/0.40 0.21/0.37 0.16/0.26 0.26/0.44

reduced to 2 frames, and the length of future predictions is 12 frames. Following previous works
[46, 15, 31], we sample 20 future predicted trajectories, and report the final error by the minimum
error over all predicted trajectories.

Backbone and Baselines. To demonstrate the compatible ability of our BCDiff, we apply it to three
popular trajectory prediction models, Trajectron++ [42], PCCSNet [47], SGCN [43], and SocialVAE
[50] by replacing their decoders with our BCDiff. Moreover, we compare BCDiff with the following
baselines: Instantaneous means directly predicting the trajectories of the next 12 frames conditions
on 2 frames of observations using the above three backbones. Additionally, we take MOE [46] and
DTO [34] as two baselines for instantaneous trajectory prediction. Since the original MOE employs
image semantic information, we also implement MOE without using image semantic information,
denoted as MOE w/o Image, in order to fairly compare with other methods.

4.2 Experiment Results and Analysis

Performance on Instantaneous Trajectory Prediction. The overall performance are listed in Table
1 and 2. The results by applying our BCDiff to three different backbones, consistently outperform the
baseline methods on all the datasets. This demonstrates the effectiveness of our proposed method for
instantaneous trajectory prediction. Meanwhile, it also illustrates our method can be well compatible
with different trajectory prediction models. Note that the performance of MOE declines when image
information is not included, which shows that MOE heavily depends on image semantic information.
In contrast, our proposed method does not rely on any additional image information.

Ablation Study. We perform the ablation studies, as listed in Table 3. We first utilize two separate
diffusion models to predict previous unobserved trajectories and future trajectories, respectively,
denoting it as BCDiff-w/o.Guidance. Then, we only utilize unobserved and observed trajectories to
guide the generation of future trajectories, denoted as BCDiff-Uni.Guidance. BCDiff-Uni.Guidance
is better than BCDiff-w/o.Guidance, meaning that the guidance from previous unobserved historical
trajectories is helpful for improving the prediction performance of future trajectories. Moreover, by
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Table 2: Comparisons of different methods on the Stanford Drone dataset. The metrics are presented
as ADE/FDE (m).

Methods Trajectron++ PCCSNet SGCN SocialVAE
Instantaneous 13.07/22.88 9.19/17.71 15.40/25.69 9.56/16.10

MOE[46] 11.71/19.54 8.40/16.08 14.45/24.88 9.12/14.98
MOE w/o Image 12.41/21.46 8.87/16.80 15.02/25.13 9.39/15.87

DTO[34] 12.32/20.79 8.93/16.92 14.99/25.07 9.28/15.58
BCDiff 11.56/19.32 8.32/15.87 13.67/23.92 9.05/14.86

Table 3: Ablation Studies using Trajectron++ on the ETH/UCY and Stanford Drone datasets.

Method ETH/UCY SDD
BCDiff-w/o.Guidance 0.36/0.70 13.07/22.88
BCDiff-Uni.Guidance 0.33/0.60 12.57/21.26
BCDiff-Bi.Guidance 0.32/0.57 11.96/19.88
BCDiff-Bi.Guidance & Gate 0.29/0.53 11.56/19.32

incorporating bidirectional guidance, called BCDiff-Bi.Guidance, we observe the performance is
further improved. This illustrates the guidance from future trajectories is beneficial for predicting
previous unobserved trajectories, thereby improving the final prediction performance. Finally, we
integrate the gating mechanism into our model, named as BCDiff-Bi.Guidance & Gate. It achieves
the best performance, showing the gating mechanism is effective for trajectory prediction.

Analysis on Length of Predicted Unobserved Points. We investigate the impact of the number
of predicted unobserved points on trajectory prediction. We use the Trajectron++ encoder [42], as
listed in Table 4. As the number of predicted points increases, the accuracy of future predictions
gradually improves, which can be attributed to the additional unobserved points providing more
useful information. When T = 5, the prediction performance starts to decline. This is because it
becomes unprecise when predicting previous unobserved historical points with a larger length, thus
introducing noise into our method.

Table 4: Analysis of different unobserved point lengths Tunobs

Dataset Direction Tunobs = 1 Tunobs = 2 Tunobs = 3 Tunobs = 4 Tunobs = 5 Tunobs = 6

ETH/UCY
Future 0.31/0.55 0.30/0.54 0.30/0.53 0.29/0.53 0.32/0.57 0.34/0.60

Unobserved 0.006/0.006 0.034/0.033 0.055/0.063 0.086/0.089 0.108/0.133 0.149/0.212

SDD
Future 11.86/19.78 11.81/19.71 11.68/19.50 11.56/19.32 11.92/20.01 12.33/20.98

Unobserved 0.311/0.312 1.564/1.492 2.626/2.678 3.552/3.884 4.828/5.423 6.177/7.894

40 30 20 10 1
m

γmfut

40 30 20 10 1
m

γmunobs

Figure 3: Visualization of
weights γm

fut and γm
unobs. Darker

colors represent larger values.

Qualitative Analysis. We visualize the predicted trajectories in
four different scenarios: Walking side-by-side, walking along,
turning and yielding, as shown in Figure 2. BCDiff can accurately
predict future trajectories, compared to MOE and DTO in all four
scenarios. This is because BCDiff utilizes temporal information of
unobserved trajectories to aid the prediction of future trajectories.
Note that when pedestrians are walking side-by-side, as depicted
in the first column of Figure 2, BCDiff utilizes the predicted un-
observed historical trajectories to capture the walking patterns
between two pedestrians, thereby precisely forecasting future tra-
jectories. However, DTO and MOE predict deviated trajectories,
due to only using two observed frames. Moreover, we visualize
the gating weights γm

fut and γm
unobs in the denoising process from m = 40 to m = 1. As shown in

Figure 3, the weights are gradually increased. It indicates our gating mechanism can adaptively learn
weights, assigning lower weights to the predicted guidance in the initial steps.
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a)

b)

c)

Figure 2: Visualization of predicted trajectories on the ETH/UCY Dataset. Given the instantaneous
observed trajectories (red), we predict the future trajectories (green) by (a) MOE, (b) DTO and (c)
Our BCDiff. The ground-truth future trajectories are shown in orange color. In addition, we also draw
the predicted unobserved trajectories (blue) by our BCDiff and ground-truth (cyan). Our predicted
future trajectories are closer to the ground-truth, compared to other methods.

5 Conclusion

We proposed a diffusion model based framework for the task of instantaneous trajectory prediction.
The proposed framework simultaneously generated both unobserved historical and future trajectories
by designing a mutual guidance mechanism to couple two diffusion models, such that more temporal
information can be leveraged for future trajectory prediction. We introduced a gating strategy, auto-
matically balancing the contributions of different guidance information. Experiments demonstrated
our proposed framework achieved superior performance to the state-of-the-art methods.
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