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Abstract

Estimating frequencies of elements appearing in a data stream is a key task in large-
scale data analysis. Popular sketching approaches to this problem (e.g., CountMin
and CountSketch) come with worst-case guarantees that probabilistically bound
the error of the estimated frequencies for any possible input. The work of Hsu
et al. (2019) introduced the idea of using machine learning to tailor sketching
algorithms to the specific data distribution they are being run on. In particular, their
learning-augmented frequency estimation algorithm uses a learned heavy-hitter
oracle which predicts which elements will appear many times in the stream. We
give a novel algorithm, which in some parameter regimes, already theoretically
outperforms the learning based algorithm of Hsu et al. without the use of any pre-
dictions. Augmenting our algorithm with heavy-hitter predictions further reduces
the error and improves upon the state of the art. Empirically, our algorithms achieve
superior performance in all experiments compared to prior approaches.

1 Introduction

In frequency estimation, we stream a sequence of elements from [n] := {1, . . . , n}, and the goal is to
estimate fi, the frequency of the ith element, at the end of the stream using low-space. Frequency
estimation is one of the central problems in data streaming with a wide range of applications from
networking (gathering important monitoring statistics [31, 62, 46]) to machine learning (NLP [33],
feature selection [3], semi supervised learning [58]). CountMin (CM) [20] and CountSketch (CS)
[14] are arguably the most popular and versatile of the algorithms for frequency estimation, and are
implemented in many popular packages such as Spark [63], Twitter Algebird [10], and Redis.

Standard approaches to frequency estimation are designed to perform well in the worst-case due to
the multitudinous benefits of worst-case guarantees. However, algorithms designed to handle any
possible input do not exploit special structure of the particular distribution of inputs they are used
for. In practice, these patterns can be described by domain experts or learned from historical data.
Following the burgeoning trend of combining machine learning and classical algorithm design, [36]
initiated the study of learning-augmented frequency estimation by extending the classical CM and CS
algorithms in a simple but effective manner via a heavy-hitters oracle. During a training phase, they
construct a classifier (e.g. a neural network) to detect whether an element i is “heavy” (e.g., whether
fi is among the most frequent items). After such a classifier is trained, they scan the input stream,
and apply the classifier to each element i. If the element is predicted to be heavy, it is allocated a
unique bucket, so that an exact value of fi is computed. Otherwise, the stream element is inputted
into the standard sketching algorithms.
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The advantage of their algorithm was analyzed under the assumption that the true frequencies follow
a heavy-tailed Zipfian distribution. This is a common and natural reoccurring pattern in real world
data where there are a few very frequent elements and many infrequent elements. Experimentally,
[36] showed several real datasets where the Zipfian assumption (approximately) held and useful
heavy-hitter oracles could be trained in practice. Our paper is motivated by the following natural
questions and goals in light of prior works:

Can we design better frequency estimation algorithms (with and without predic-

tions) for heavy-tailed distributions?

In particular, we consider the setting of [36] where the underlying data follow a heavy-tailed distri-
bution and investigate whether sketching algorithms can be further tailored for such distributions.
Before tackling this question, we must tightly characterize the benefits–and limitations–of these
existing methods, which is another goal of our paper:

Give tight error guarantees for CountMin and CountSketch, as well as their

learning-augmented variants, on Zipfian data.

Lastly, any algorithms we design must possess worst case bounds in the case that either the data does
not match our Zipfian (or more generally, heavy-tailed) assumption or the learned predictions have
high error, leading to the following ‘best of both worlds’ goal:

Design algorithms which exploit heavy tailed distributions and ML predictions but

also maintain worst-case guarantees.

We addresses these challenges and goals and our contributions can be summarized as follows:

• We give tight upper and lower bounds for CM and CS, with and without predictions, for heavy
tailed distributions. A surprising conclusion from our analysis is that (for a natural error metric)
a constant number of rows is optimal for both CM and CS. In addition, our theoretical analysis
shows that CS outperforms CM, both with and without predictions, validating the experimental
results of [36].

• We go beyond CM and CS based algorithms to give a better frequency estimation algorithm for
heavy tailed distributions, with and without the use of predictions. We show that our algorithms can
deliver up to a logarithmic factor improvement in the error bound over CS and its learned variant.
In addition, our algorithm has worst case guarantees.

• Prior learned approaches require querying an oracle for every element in the stream. In contrast,
we obtain a parsimonious version of our algorithm which only requires a limited number of queries
to the oracle. The number of queries we use is approximately equal to the given space budget.

• Lastly, we evaluate our algorithms on two real-world datasets with and without ML based predic-
tions and show superior empirical performance compared to prior work in all cases.

1.1 Preliminaries

Notation and Estimation Error The stream updates an n dimensional frequency vector and
every stream element is of the form (i,�) where i 2 [n] and � 2 R denotes the update on the
coordinate. The final frequency vector is denoted as f 2 Rn. Let N =

P
i2[n] fi denote the sum of

all frequencies. To simplify notation, we assume that f1 � f2 � . . . � fn. f̃i denotes the estimate of
the frequency fi. Given estimates {f̃i}i2[n], the error of a particular frequency is |f̃i � fi|. We also
consider the following notion of overall weighted error as done in [36]:

Weighted Error: =
1

N

X

i2[n]

fi · |f̃i � fi|. (1)

The weighted error can be interpreted as measuring the error with respect to a query distribution
which is the same as the actual frequency distribution. As stated in [36], theoretical guarantees of
frequency estimation algorithms are typically phrased in the traditional (", �)-error formulations.
However as argued in there, the simple weighted objective (1) is a more holistic measure and does
not require tuning of two different parameters, and is thus more natural from an ML perspective.
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Zipfian Stream We also work under the common assumption that the frequencies follow the Zipfian
law, i.e., the ith largest frequency fi is equal to A/i for some parameter A. Note we know A at the
end of the stream since the stream length is A ·Hn. By rescaling, we may assume that A = 1 without
loss of generality. We will make this assumption throughout the paper.

CountMin (CM) For parameters k and B, which determine the total space used, CM uses k
independent and uniformly random hash functions h1, . . . , hk : [n]! [B]. Letting C be an array of
size [k]⇥ [B] we let C[`, b] =

P
j2[n][h`(j) = b]fj . When querying i 2 [n] the algorithm returns

f̃i = min`2[k] C[`, h`(i)]. Note that we always have that f̃i � fi.

CountSketch (CS) In CS, we again have the hash functions hi as above as well as sign functions
s1, . . . , sk : [n]! {�1, 1}. The array C of size [k]⇥ [B] is now tracks C[`, b] =

P
j2[n][h`(j) =

b]s`(j)fj . When querying i 2 [n] the algorithm returns the estimate f̃i = median`2[k] s`(i) ·
C[`, h`(i)].

Learning-Augmented Sketches [36] Given a base sketching algorithm (either CM or CS) and
a space budget B, the corresponding learning-augmented algorithm (learned CM or learned CS)
allocates a constant fraction of the space B to the base sketching algorithm and the rest of the space
to store items identified as heavy by a learned predictor. These items predicted to be heavy-hitters are
stored in a separate table which maintains their counts exactly, and their updates are not sent to the
sketching algorithm.

1.2 Summary of Main Results and Paper Outline

Our analysis, both of CM and CS, our algorithm, and prior work, is summarized in Table 1.

Algorithm Weighted Error Uses Predictions? Reference

CountMin (CM) ⇥
⇣

logn
B

⌘
No Theorem B.1

CountSketch (CS) ⇥
�
1
B

�
No Theorem C.4

Learned CountMin ⇥
⇣

log(n/B)2

B logn

⌘
Yes [36]

Learned CountSketch ⇥
⇣

log(n/B)
B logn

⌘
Yes Theorem D.1

Our (Without predictions) O
⇣

logB+poly(log logn)
B logn

⌘
No Theorem 2.1

Our (Learned version) O
⇣

1
B logn

⌘
Yes Theorem 3.1

Table 1: Bounds are stated assuming that the total space is B words of memory. Weighted error
means that element i is queried with probability proportional to 1/i. Moreover, the table considers
normalized frequencies, so that fi = 1/i.

Summary of Theoretical Results We interpret Table 1. B denotes the space bound, which is the
total number of entries used in the CM or CS tables. First note that CS achieves lower weighted
error compared to CM, proving the empirical advantage observed in [36]. However, the learned
version of CS only improves upon standard CS in the regime B = n1�o(1). While this setting does
appear sometimes in practice [33, 36] (referred to as high-accuracy regime), for CS, learning gives
no asymptotic advantage in the low space regime.

On the other hand, in the low space regime of B = poly(log n), our algorithm, without predictions,
already archives close to a logarithmic factor improvement over even learned CS. Furthermore, our
learning-augmented algorithm achieves a logarithmic factor improvement over classical CS across
all space regimes, whereas the learned CS only achieves a logarithmic factor improvement in the
regime B = n1�o(1). Furthermore, our learned version outperforms or matches learned CS in all
space regimes.
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Our learning-augmented algorithm can also be made parsimonious in the sense that we only query
the heavy-hitter oracle Õ(B) times. This is desirable in large-scale streaming applications where
evaluating even a small neural network on every single element would be prohibitive.

Remark 1.1. We remark that all bounds in this paper are proved by bounding the expected error

when estimating the frequency of a single item, E[|f̃i� fi|], then using linearity of expectation. While

we specialized our bounds to a query distribution which is proportional to the actual frequencies in

(1), our bounds can be easily generalized to any query distribution by simply weighing the expected

errors of different items according to the given query distribution.

Summary of Empirical Results We compare our algorithm without prediction to CS and our
algorithm with predictions to that of [36] on synthetic Zipfian data and on two real datasets corre-
sponding to network traffic and internet search queries. In all cases, our algorithms outperform the
baselines and often by a significant margin (up to 17x in one setting). The improvement is especially
pronounced when the space budget is small.

Outline of the Paper Our paper is divided into roughly two parts. One part covers novel and
tight analysis of the classical algorithms CountMin (CM) and CountSketch (CS). The second part
covers our novel algorithmic contributions which go beyond CM and CS. The main body of our
paper focuses on our novel algorithmic components, i.e. the second part, and we defer our analysis
of the performance of CountMin (CM) and CountSketch (CS), with and without predictions, to the
appendix: in Section B we give tight analysis of CM for a Zipfian frequency distribution. In Section
C we give the analogous bounds for CS. Lastly, Section D gives tight bounds for CS with predictions.
Section 2 covers our better frequency estimation without predictions while Section 3 covers the
learning-augmented version of the algorithm, as well as its extentions.

1.3 Related Works

Frequency Estimation While there exist other frequency estimation algorithms beyond CM and
CS (such as [51, 48, 21, 40, 49, 11] ) we study hashing based methods such as CM [20] and CS [14]
as they are widely employed in practice and have additional benefits, such as supporting insertions
and deletions, and have applications beyond frequency estimation, such as in machine learning
(feature selection [3], compressed sending [13, 25], and dimensionality reduction [61, 18] etc.).

Learning-augmented algorithms The last few years have witnessed a rapid growth in using
machine learning methods to improve “classical” algorithmic problems. For example, they have
been used to improve the performance of data structures [42, 52], online algorithms [47, 56, 32,
5, 60, 43, 1, 6, 4, 22, 34], combinatorial optimization [41, 7, 43, 53, 23, 16], similarity search and
clustering [59, 24, 30, 54, 57]. Similar to our work, sublinear constraints, such as memory or sample
complexity, have also been studied under this framework [36, 38, 39, 19, 27, 28, 15, 44, 57].

2 Improved Algorithm without Predictions

We first present our frequency estimation algorithm which does not use any predictions. Later, we
build on top of it for our final learning-augmented frequency estimation algorithm.

The main guarantees of of the algorithm is the following:

Theorem 2.1. Consider Algorithm 1 with space parameter B � log n updated over a Zipfian stream.

Let {f̂i}ni=1 denote the estimates computed by Algorithm 2. The expected weighted error (1) is

E
h

1
N ·

Pn
i=1 fi · |fi � f̂i|

i
= O

⇣
logB+poly(log logn)

B logn

⌘
.

Algorithm and Proof intuition: Let B0 = B/ log log n. At a high level, we show that for
every i  B0, we execute line 10 of Algorithm 2 and the error satisfies |1/i � f̂i| ⇡ 1/B0 (recall
in the Zipfian case, the ith largest frequency is fi = 1/i). On the other hand, for i � B0, we
show that (with sufficiently high probability) line 8 of Algorithm 2 will be executed, resulting in
|1/i� f̂i| = |1/i� 0| = 1/i.
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Algorithm 1 (Not augmented) Frequency update algorithm
1: Input: Stream of updates to an n dimensional vector, space budget B
2: procedure UPDATE
3: T  ⇥(log log n)
4: for j = 1 to T � 1 do
5: Sj  CountSketch table with 3 rows and B

6T columns
6: end for
7: ST  CountSketch table with 3 rows and B

6 columns
8: for stream element (i,�) do
9: Input (i,�) in each of the T CountSketch tables Sj

10: end for
11: end procedure

Algorithm 2 (Not augmented) Frequency estimation algorithm

1: Input: Index i 2 [n] for which we want to estimate fi
2: procedure QUERY
3: for j = 1 to T � 1 do
4: f̂ j

i  estimate of the ith frequency given by table Sj

5: end for
6: f̃i  Median(f̂1

i , . . . , f̂
T�1
i )

7: if f̃i < O((log log n))/B then
8: Return 0
9: else

10: Return f̂T
i , the estimate given by table ST

11: end if
12: end procedure

It might be perplexing at first sight why we wish to set the estimate to be 0, but this idea has solid
intuition: it turns out the additive error of standard CountSketch with B0 columns is actually of the
order 1/B0. Thus, it does not make sense to estimate elements whose true frequencies are much
smaller than 1/B0 using CountSketch. A challenge is that we do not know a priori which elements
these are. We circumvent this via the following reasoning: if CountSketch itself outputs ⇡ 1/B0 as
the estimate, then either one of the following must hold:

• The element has frequency 1/i⌧ 1/B0, in which case we should set the estimate to 0 to obtain
error 1/i, as opposed to error 1/B0 � 1/i ⇡ 1/B0.

• The true element has frequency ⇡ 1/B0 in which case either using the output of the CountSketch
table or setting the estimate to 0 both obtain error approximately O(1/B0), so our choice is
inconsequential.

In summary, the output of CountSketch itself suggests whether we should output an estimated
frequency as 0. We slightly modify the above approach with O(log log n) repetitions to obtain
sufficiently strong concentration, leading to a robust method to identify small frequencies. The proof
formalizes the above plan and is given in full detail in Section E.

By combining our algorithm with predictions, we obtain improved guarantees.

3 Improved Learning-Augmented Algorithm

Theorem 3.1. Consider Algorithm 3 with space parameter B � log n updated over a Zipfian stream.

Suppose we have access to a heavy-hitter oracle which correctly identifies the top B/2 heavy-hitters

in the stream. Let {f̂i}ni=1 denote the estimates computed by Algorithm 4. The expected weighted

error (1) is E
h

1
N ·

Pn
i=1 fi · |fi � f̂i|

i
= O

⇣
1

B logn

⌘
.
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Algorithm 3 (Learning-augmented) Frequency update algorithm
1: Input: Stream of updates to an n dimensional vector, space budget B, access to a heavy-hitter

oracle which correctly identifies the top B/2 heavy-hitters
2: procedure UPDATE
3: T  O(log log n)
4: for j = 1 to T � 1 do
5: Sj  CountSketch table with 3 rows and B

12T columns
6: end for
7: ST  CountSketch table with 3 rows and B

12 columns
8: for stream element (i,�) do
9: if i is a top B/2 heavy-hitter then

10: Maintain the frequency of i exactly
11: else
12: Input (i,�) in each of the T CountSketch tables Sj

13: end if
14: end for
15: end procedure

Algorithm 4 (Learning-augmented) Frequency estimation algorithm

1: Input: Index i 2 [n] for which we want to estimate fi
2: procedure QUERY
3: if i is a top B/2 heavy-hitter then
4: Output the exact maintained frequency of i
5: else
6: Return f̂i  output of Alg. 2 using the CountSkech tables created in Alg.3
7: end if
8: end procedure

Algorithm and Proof Intuition: Our final algorithm follows a similar high-level design pattern
used in the learned CM algorithm of [36]: given an oracle prediction, we either store the frequency of
heavy element directly, or input the element into our algorithm from the prior section which does not
use any predictions.

The workhorse of our analysis is the proof of Theorem 2.1. First note that we obtain 0 error for
i < B/2. Thus, all error comes from indices i � B/2. Recall the intuition for this case from
Theorem 2.1: we want to output 0 as our estimates as this results in lower error than the additive error
from CS. The same analysis as in the proof of Theorem 2.1 shows that we are able to detect small
frequencies and appropriately output an estimate from either the T th CS table or output 0.

3.1 Parsimonious Learning

In Theorem 3.1, we assumed access to a heavy-hitter oracle which we can use on every single stream
element to predict if it is heavy. In practical streaming applications, this will likely be infeasible.
Indeed, even if the oracle is a small neural network, it is unlikely that we can query it for every single
element in a large-scale streaming application. We therefore consider the so called parsimonious

setting with the goal of obtaining the same error bounds on the expected error but with an algorithm
that makes limited queries to the heavy-hitter oracle. This setting has recently been explored for other
problems in the learning-augmented literature [37, 9, 26].

Our algorithm works similarly to Algorithm 3 except that when an element (i,�) arrives, we only
query the heavy-hitter oracle with some probability p (proportional to �). We will choose p so that
we in expectation only query Õ(B) elements, rather than querying the entire stream. To be precise,
whenever an item arrives, we first check if it is already classified as one of the top B/2 heavy-hitters
in which case, we update its exact count (from the point in time where was classified as heavy).
Otherwise, we query the heavy-hitter oracle with probability p. In case the item is queried and is
indeed one of the top B/2 heavy-hitters, we start an exact count of that item. An arriving item which
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is not used as a query for the heavy-hitter oracle and was not earlier classified as a heavy-hitter is
processed as in Algorithm 3.

Querying for an element, we first check if it is classified as a heavy-hitter and if so, we use the
estimate from the separate lookup table. If not, we estimate its frequency using Algorithm 4. With
this algorithm, the count of a heavy-hitter will be underestimated since it may appear several times in
the stream before it is used as a query for the oracle and we start counting it exactly. However, with
our choice of sampling probability, with high probability it will be sampled sufficiently early to not
affect its final count too much. We present the pseudocode of the algorithm as well as the precise
result and its proof in Appendix G.

3.2 Algorithm variant with worst case guarantees

In this section we discuss a variant of our algorithm with worst case guarantees. To be more precise,
we consider the case where the actual frequency distribution is not Zipfian. The algorithm we discuss
is actually a more general case of Algorithm 2 and in fact, it completely recovers the asymptotic error
guarantees of Theorem 2.1 (as well as Theorem 4 if we use predictions).

Recall that Algorithm 2 outputs 0 when the estimated frequency is below T/B for T = O(log log n).
This parameter has been tuned to the Zipfian case. As stated in Section 2, the main intuition for
this parameter is that it is of the same order as the additive error inherent in CountSketch, which we
discuss now. Denote by fP the frequency vector where we zero out the largest P coordinates. For
every frequency, the expected additive error incurred by a CountSketch table with B0 columns is
O(kfB0k2/

p
B0). In the Zipfian case, this is equal to O

⇣
kf

B0k2p
B0

⌘
= O

�
1
B0

�
, which is exactly the

threshold we set1. Thus, our robust variant simply replaces this tuned parameter O(T/B) with an
estimate of O(kfB0k2/

p
B0) where B0 = B/T . We given an algorithm which efficiently estimates

this quantity in a stream. Note this quantity is only needed for the query phase.
Lemma 3.2. With probability at least 1� exp (⌦ (B)), Algorithm 6 outputs an estimate V satisfying

⌦
⇣
kf3B0k22 /B

0
⌘
 V  O

✓���fB0/10

���
2

2
/B0

◆
.

The algorithm and analysis are given in Section H. Replacing the threshold in Line 7 of Algorithm
2 with the output of Algorithm 6 (more precisely the square root of the value) readily gives us the
following worst case guarantees. Lemma 3.3 states that the expected error of the estimates outputted
by Algorithm 2 using B, regardless of the true frequency distribution, is no worse than that of a
standard CountSketch table using slightly smaller O(B/ log log n) space.

Lemma 3.3. Suppose B � log n. Let {f̂i}ni=1 denote the estimates of Algorithm 2 using B/2 space

and with Line 7 replaced by the square root of the estimate of Algorithm 6, also using B/2 space.

Suppose the condition of Lemma 3.2 holds. Let {f̂ 0
i}ni=1 denote the estates computed by a CountSketch

table with
cB

log logn columns for a sufficiently small constant c. Then, E[|f̂i � fi|]  E[|f̂ 0
i � fi|].

Remark 3.1. The learned version of the algorithm automatically inherits any worst case guarantees

from the unlearned (without predictions) version. This is because we only set aside half the space to

explicitly track the frequency of some elements, which has worst case guarantees, while the other half

is used for the unlearned version, also with worst case guarantees.

4 Experiments

We experimentally evaluate our algorithms with and without predictions on real and synthetic
datasets and demonstrate that the improvements predicted by theory hold in practice. Comprehensive
additional figures are given in Appendix J.

Algorithm Implementations In the setting without predictions, we compare our algorithm to
CountSketch (CS) (which was shown to have favorable empirical performance compared to CountMin
(CM) in [36] and better theoretical performance due to our work). In the setting with predictions, we
compare the algorithm of [36], using CS as the base sketch and dedicated half of the space for items

1Recall B0 = B/T in Algorithm 2.
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Figure 1: Log-log plots of the sorted frequencies of the first day/minute of the CAIDA/AOL datasets.
Both data distributions are heavy-tailed with few items accounting for much of the total stream.

Figure 2: Comparison of weighted error without predictions on the CAIDA dataset. The left plot
compares the performance of various algorithms (including our algorithm with different choices
of C) for a fixed dataset and varying space. The right plot compares algorithms over time across
separate streams for each minute of data for a specific choice of space being 750.

which are predicted to be heavy by the learned oracle. For all implementations, we use three rows in
the CS table and vary the number of columns. We additionally augment each of these baselines with a
version that truncates all negative estimated frequencies to zero as none of our datasets include stream
deletions. This simple change does not change the asymptotic (", �) classic sketching guarantees but
does make a big difference when measuring empirical weighted error.

We implement a simplified and practical version of our algorithm which uses a single CS table. If the
median estimate of an element is below a threshold of Cn/w for domain size n, sketch width w (a
third of the total space), and a tunable constant C, the estimate is instead set to 0. As all algorithms
use a single CS table as the basic building block with different estimation functions, for each trial we
randomly sample hash functions for a single CS table and only vary the estimation procedure used.

We evaluate algorithms according the weighted error as in Equation (1) but also according to
unweighted error which is simply the sum over all elements of the absolute estimation error, given byP

i |fi � f̃i|. Space is measured by the size of the sketch table, and all errors are averaged over 10
independent trials with standard deviations shown shaded in.

Datasets We compare our algorithm with prior work on three datasets. We use the same two real-
world datasets and predictions from [36]: the CAIDA and AOL datasets. The CAIDA dataset [12]
contains 50 minutes of internet traffic data. For each minute of data, the stream is formed of the IP
addresses associated with packets going through a Tier1 ISP. A typical minute of data contains 30
million packets accounted for by 1 million IPs. The AOL dataset [55] contains 80 days of internet
search queries with a typical day containing ⇡ 3 · 105 total queries and ⇡ 105 unique queries. As
shown in Figure 1, both datasets approximately follow a power law distribution. For both datasets, we
use the predictions from prior work [36] formed using recurrent neural networks. We also generate
synthetic data following a Zipfian distribution with n = 107 elements and where the ith element has
frequency n/i.

Results Across the board, our algorithm outperforms the baselines. On the CAIDA and AOL
datasets without predictions, our algorithm consistently outperforms the standard CS with up to 4x
smaller error with space 300. This gap widens when we compare our algorithm with predictions
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Figure 3: Comparison of weighted error with predictions on the CAIDA dataset.

Figure 4: Comparison of weighted error without predictions on the AOL dataset.

to that of [36] with a gap of up to 17x with space 300. In all cases, the performance of CS and
[36] is significantly improved by the simple trick of truncating negative estimates to zero. However,
our algorithm still outperforms these “nonneg” baselines. The longitudinal plots which compare
algorithms over time show that our algorithm consistently outperforms the state-of-the-art with and
without predictions.

In the case of the CAIDA dataset, predictions do not generally improve the performance of any
of the algorithms. This is consistent with the findings of [36] where the prediction quality for the
CAIDA dataset was relatively poor. However, for the AOL which has a more accurate learned oracle,
our algorithm in particular is significantly improved when augmented with predictions. Intuitively,
the benefit of our algorithm comes from removing error due to noise for low frequency elements.
Conversely, good predictions help to obtain very good estimates of high frequency elements. In
combination, this yields very small total weighted error.

In Appendix J, we display comprehensive experiments of the performance of the algorithms across
the CAIDA and AOL datasets with varying space and for both weighted and unweighted error as
well as results for synthetic Zipfian data. In all cases, our algorithm outperforms the baselines. On
synthetic Zipfian, the gap between our algorithm and the non-negative CS for weighted error is
relatively small compared to that for the real datasets. While we mainly focus on weighted error in
this work, the benefits of our algorithm are even more significant for unweighted error as setting
estimates below the noise floor to zero is especially impactful for this error measure. In general, we
see the trend, matching our theoretical results, that as space increases, the gap between the different
algorithms shrinks as the estimates of the base CS become more accurate.
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Figure 5: Comparison of weighted error with predictions on the AOL dataset.
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[29] Paul Erdős. On a lemma of littlewood and offord. Bulletin of the American Mathematical

Society, 51(12):898–902, 1945.

[30] Jon C. Ergun, Zhili Feng, Sandeep Silwal, David P. Woodruff, and Samson Zhou. Learning-
augmented k-means clustering. In 10th International Conference on Learning Representations,

ICLR, 2022.

11



[31] Cristian Estan and George Varghese. New directions in traffic measurement and accounting:
Focusing on the elephants, ignoring the mice. ACM Transactions on Computer Systems (TOCS),
21(3):270–313, 2003.

[32] Sreenivas Gollapudi and Debmalya Panigrahi. Online algorithms for rent-or-buy with expert
advice. In Proceedings of the 36th International Conference on Machine Learning, pages
2319–2327, 2019.

[33] Amit Goyal, Hal Daumé III, and Graham Cormode. Sketch algorithms for estimating point
queries in nlp. In Proceedings of the 2012 joint conference on empirical methods in natural

language processing and computational natural language learning, pages 1093–1103, 2012.

[34] Anupam Gupta, Debmalya Panigrahi, Bernardo Subercaseaux, and Kevin Sun. Augmenting
online algorithms with "-accurate predictions. Advances in Neural Information Processing

Systems, 35:2115–2127, 2022.

[35] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of

the American Statistical Association, 58(301):13–30, 1963.

[36] Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakilian. Learning-based frequency estimation
algorithms. In 7th International Conference on Learning Representations, ICLR 2019, New

Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[37] Sungjin Im, Ravi Kumar, Aditya Petety, and Manish Purohit. Parsimonious learning-augmented
caching. In International Conference on Machine Learning, pages 9588–9601. PMLR, 2022.

[38] Piotr Indyk, Ali Vakilian, and Yang Yuan. Learning-based low-rank approximations. In
Advances in Neural Information Processing Systems, pages 7400–7410, 2019.

[39] Tanqiu Jiang, Yi Li, Honghao Lin, Yisong Ruan, and David P. Woodruff. Learning-augmented
data stream algorithms. In International Conference on Learning Representations, 2020.

[40] Richard M Karp, Scott Shenker, and Christos H Papadimitriou. A simple algorithm for finding
frequent elements in streams and bags. ACM Transactions on Database Systems (TODS),
28(1):51–55, 2003.

[41] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. In Advances in Neural Information Processing Systems,
pages 6348–6358, 2017.

[42] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. The case for learned
index structures. In Proceedings of the 2018 International Conference on Management of Data,
pages 489–504, 2018.

[43] Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Online schedul-
ing via learned weights. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on

Discrete Algorithms, pages 1859–1877. SIAM, 2020.

[44] Yi Li, Honghao Lin, Simin Liu, Ali Vakilian, and David Woodruff. Learning the positions in
countsketch. In 11th International Conference on Learning Representations, ICLR, 2023.

[45] John Edensor Littlewood and Albert C Offord. On the number of real roots of a random
algebraic equation. ii. In Mathematical Proceedings of the Cambridge Philosophical Society,
volume 35, pages 133–148. Cambridge University Press, 1939.

[46] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir Braverman.
One sketch to rule them all: Rethinking network flow monitoring with univmon. In Proceedings

of the 2016 ACM SIGCOMM Conference, pages 101–114, 2016.

[47] Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice.
In International Conference on Machine Learning, pages 3302–3311, 2018.

[48] Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency counts over data streams.
In VLDB’02: Proceedings of the 28th International Conference on Very Large Databases, pages
346–357. Elsevier, 2002.

12



[49] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient computation of frequent
and top-k elements in data streams. In International Conference on Database Theory, pages
398–412. Springer, 2005.

[50] Gregory T Minton and Eric Price. Improved concentration bounds for count-sketch. In
Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pages
669–686. Society for Industrial and Applied Mathematics, 2014.

[51] Jayadev Misra and David Gries. Finding repeated elements. Science of computer programming,
2(2):143–152, 1982.

[52] Michael Mitzenmacher. A model for learned bloom filters and optimizing by sandwiching. In
Advances in Neural Information Processing Systems, pages 464–473, 2018.

[53] Michael Mitzenmacher. Scheduling with predictions and the price of misprediction. In 11th

Innovations in Theoretical Computer Science Conference (ITCS 2020). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2020.

[54] Thy Nguyen, Anamay Chaturvedi, and Huy Le Nguyen. Improved learning-augmented algo-
rithms for k-means and k-medians clustering. 2023.

[55] Greg Pass, Abdur Chowdhury, and Cayley Torgeson. A picture of search. In Proceedings of the

1st international conference on Scalable information systems, pages 1–es, 2006.

[56] Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ml predictions.
In Advances in Neural Information Processing Systems, pages 9661–9670, 2018.

[57] Sandeep Silwal, Sara Ahmadian, Andrew Nystrom, Andrew McCallum, Deepak Ramachandran,
and Seyed Mehran Kazemi. Kwikbucks: Correlation clustering with cheap-weak and expensive-
strong signals. In The Eleventh International Conference on Learning Representations, 2023.

[58] Partha Talukdar and William Cohen. Scaling graph-based semi supervised learning to large
number of labels using count-min sketch. In Artificial Intelligence and Statistics, pages 940–947.
PMLR, 2014.

[59] Jun Wang, Wei Liu, Sanjiv Kumar, and Shih-Fu Chang. Learning to hash for indexing big data -
a survey. Proceedings of the IEEE, 104(1):34–57, 2016.

[60] Alexander Wei and Fred Zhang. Optimal robustness-consistency trade-offs for learning-
augmented online algorithms. Advances in Neural Information Processing Systems, 33:8042–
8053, 2020.

[61] David P Woodruff et al. Sketching as a tool for numerical linear algebra. Foundations and

Trends® in Theoretical Computer Science, 10(1–2):1–157, 2014.

[62] Minlan Yu, Lavanya Jose, and Rui Miao. Software defined traffic measurement with opensketch.
In NSDI, volume 13, pages 29–42, 2013.

[63] Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur Dave,
Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J Franklin, et al. Apache spark:
a unified engine for big data processing. Communications of the ACM, 59(11):56–65, 2016.

13


	Introduction
	Preliminaries
	Summary of Main Results and Paper Outline
	Related Works

	Improved Algorithm without Predictions
	Improved Learning-Augmented Algorithm
	Parsimonious Learning
	Algorithm variant with worst case guarantees

	Experiments
	Organization of the Appendix
	Tight Bounds for Count-Min with Zipfians
	(Nearly) Tight Bounds for Count-Sketch with Zipfians
	One hash function
	Multiple hash functions

	Learned Count-Sketch for Zipfians
	One hash function
	More hash functions

	Proof of Theorem 2.1
	Proof of Theorem 3.1
	Parsimonious learning
	Omitted Proofs of Section 3.2
	Concentration bounds
	Additional Experiments

