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Abstract

The ability of graph neural networks (GNNs) to count certain graph substructures,
especially cycles, is important for the success of GNNs on a wide range of tasks.
It has been recently used as a popular metric for evaluating the expressive power
of GNNs. Many of the proposed GNN models with provable cycle counting
power are based on subgraph GNNs, i.e., extracting a bag of subgraphs from
the input graph, generating representations for each subgraph, and using them to
augment the representation of the input graph. However, those methods require
heavy preprocessing, and suffer from high time and memory costs. In this paper,
we overcome the aforementioned limitations of subgraph GNNs by proposing a
novel class of GNNs—d-Distance-Restricted FWL(2) GNNs, or d-DRFWL(2)
GNNs, based on the well-known FWL(2) algorithm. As a heuristic method for
graph isomorphism testing, FWL(2) colors all node pairs in a graph and performs
message passing among those node pairs. In order to balance the expressive power
and complexity, d-DRFWL(2) GNNs simplify FWL(2) by restricting the range
of message passing to node pairs whose mutual distances are at most d. This
way, d-DRFWL(2) GNNs exploit graph sparsity while avoiding the expensive
subgraph extraction operations in subgraph GNNs, making both the time and space
complexity lower. We theoretically investigate both the discriminative power and
the cycle counting power of d-DRFWL(2) GNNs. Our most important finding is
that d-DRFWL(2) GNNs have provably strong cycle counting power even with
d = 2: they can count all 3, 4, 5, 6-cycles. Since 6-cycles (e.g., benzene rings) are
ubiquitous in organic molecules, being able to detect and count them is crucial for
achieving robust and generalizable performance on molecular tasks. Experiments
on both synthetic datasets and molecular datasets verify our theory. To the best of
our knowledge, 2-DRFWL(2) GNN is the most efficient GNN model to date (both
theoretically and empirically) that can count up to 6-cycles.

1 Introduction

Graphs are important data structures suitable for representing relational or structural data. As a
powerful tool to learn node-level, link-level or graph-level representations for graph-structured data,
graph neural networks (GNNs) have achieved remarkable successes on a wide range of tasks [54, 61].
Among the various GNN models, Message Passing Neural Networks (MPNNs) [27, 36, 50, 55] are
a widely adopted class of GNNs. However, the expressive power of MPNNs has been shown to be
upper-bounded by the Weisfeiler-Leman test [55]. More importantly, MPNNs even fail to detect
some simple substructures (e.g., 3, 4-cycles) [33], thus losing great structural information in graphs.
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The weak expressive power of MPNNs has aroused a search for more powerful GNN models. To
evaluate the expressive power of these GNN models, there are usually two perspectives. One is to
characterize their discriminative power, i.e., the ability to distinguish between non-isomorphic graphs.
It is shown in [14] that an equivalence exists between distinguishing all non-isomorphic graph pairs
and approximating any permutation-invariant functions on graphs. Although the discriminative power
partially reveals the function approximation ability of a GNN model, it fails to tell what specific
functions a model is able to approximate. Another perspective is to directly characterize what specific
function classes a model can approximate. In particular, we can study the expressive power of a GNN
model by asking what graph substructures it can count. This perspective is often more practical since
the task of counting substructures (especially cycles) is closely related to a variety of domains such
as chemistry [18, 35], biology [37], and social network analysis [34].

Despite the importance of counting cycles, the task gets increasingly difficult as the length of cycle
increases [2].To have an intuitive understanding of this difficulty, we first discuss why MPNNs fail
to count any cycles. The reason is clear: MPNNs only keep track of the rooted subtree around
each node [55], and without node identity, any neighboring node v of u has no idea which of its
neighbors are also neighbors of u. Therefore, MPNNs cannot count even the simplest 3-cycles. In
contrast, the 2-dimensional Folklore Weisfeiler-Leman, or FWL(2) test [12], uses 2-tuples of nodes
instead of nodes as the basic units for message passing, and thus natually encodes closed walks. For
example, when a 2-tuple (u, v) receives messages from 2-tuples (w, v) and (u,w) in FWL(2), (u, v)
gets aware of the walk u → w → v → u, whose length is d(u,w) + d(w, v) + d(u, v) =: l. As
long as the intermediate nodes do not overlap, we immediately get an l-cycle passing both u and v.
In fact, FWL(2) can provably count up to 7-cycles [5, 25].

However, FWL(2) has a space and time complexity of O(n2) and O(n3), which makes it impractical
for large graphs and limits its real-world applications. Inspired by the above discussion, we naturally
raise a question: to what extent can we retain the cycle counting power of FWL(2) while reducing
the time and space complexity? Answering this question requires another observation: cycle
counting tasks are intrinsically local. For example, the number of 6-cycles that pass a given node u
has nothing to do with the nodes that have a shortest-path distance ⩾ 4 to u. Therefore, if we only
record the embeddings of node pairs with mutual distance ⩽ d in FWL(2), where d is a fixed positive
integer, then the ability of FWL(2) to count substructures with diameter ⩽ d should be retained.
Moreover, given that most real-world graphs are sufficiently sparse, this simplified algorithm runs
with complexities much lower than FWL(2), since we only need to store and update a small portion of
the n2 embeddings for all 2-tuples. We call this simplified version d-Distance-Restricted FWL(2),
or d-DRFWL(2), reflecting that only 2-tuples with restricted distances get updated.

Main contributions. Our main contributions are summarized as follows:

1. We propose d-DRFWL(2) tests as well as their neural versions, d-DRFWL(2) GNNs. We study
how the hyperparameter d affects the discriminative power of d-DRFWL(2), and show that a strict
expressiveness hierarchy exists for d-DRFWL(2) GNNs with increasing d, both theoretically
and experimentally.

2. We study the cycle counting power of d-DRFWL(2) GNNs. Our major results include:

• 2-DRFWL(2) GNNs can already count up to 6-cycles, covering common structures like
benzene rings in organic chemistry. The time and space complexities of 2-DRFWL(2) are
O(n deg4) and O(n deg2) respectively, making it the most efficient one to date among
other models with 6-cycle counting power such as I2-GNN [33].

• With d ⩾ 3, d-DRFWL(2) GNNs can count up to 7-cycles, fully retaining the cycle counting
power of FWL(2) but with complexities strictly lower than FWL(2). This finding also
confirms the existence of GNNs with the same cycle counting power as FWL(2), but strictly
weaker discriminative power.

3. We compare the performance and empirical efficiency of d-DRFWL(2) GNNs (especially for
d = 2) with other state-of-the-art GNNs on both synthetic and real-world datasets. The results
verify our theory on the counting power of d-DRFWL(2) GNNs. Additionally, for the case
of d = 2, the amount of GPU memory required for training 2-DRFWL(2) GNNs is greatly
reduced compared with subgraph GNNs like ID-GNN [57], NGNN [59] and I2-GNN [33]; the
preprocessing time and training time of 2-DRFWL(2) GNNs are also much less than I2-GNN.
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2 Preliminaries

2.1 Notations

For a simple, undirected graph G, we use VG and EG to denote its node set and edge set respectively.
For every node v ∈ VG, we define its k-th hop neighbors as Nk(v) = {u ∈ VG : d(u, v) = k},
where d(u, v) is the shortest-path distance between nodes u and v. We further introduce the symbols
N⩽k(v) =

⋃k
i=1 Ni(v) and N (v) = N1(v). For any n ∈ N, we denote [n] = {1, 2, . . . , n}.

An ℓ-cycle (ℓ ⩾ 3) in the (simple, undirected) graph G is a sequence of ℓ edges
{v1, v2}, {v2, v3}, . . . , {vℓ, v1} ∈ EG with vi ̸= vj for any i ̸= j and i, j ∈ [ℓ]. The ℓ-cycle is
said to pass a node v if v is among the nodes {vi : i ∈ [ℓ]}. An ℓ-path is a sequence of ℓ edges
{v1, v2}, {v2, v3}, . . . , {vℓ, vℓ+1} ∈ EG with vi ̸= vj for any i ̸= j and i, j ∈ [ℓ + 1], and it is
said to start at node v1 and end at node vℓ+1. An ℓ-walk from v1 to vℓ+1 is a sequence of ℓ edges
{v1, v2}, {v2, v3}, . . . , {vℓ, vℓ+1} ∈ EG but the nodes v1, v2, . . . , vℓ+1 can coincide. An ℓ-clique is
ℓ nodes v1, . . . , vℓ such that {vi, vj} ∈ EG for all i ̸= j and i, j ∈ [ℓ].

Let G be the set of all simple, undirected graphs. If S is a graph substructure on G, and G ∈ G is a
graph, we use C(S,G) to denote the number of inequivalent substructures S that occur as subgraphs
of G. Similarly, if u is a node of G, we use C(S, u,G) to denote the number of inequivalent
substructures S that pass node u and occur as subgraphs of G.

Following [15, 33], we give the definition of whether a function class F on graphs can count a
certain substructure S.

Definition 2.1 (Graph-level count). Let Fgraph be a function class on G, i.e., fgraph : G → R
for all fgraph ∈ Fgraph. Fgraph is said to be able to graph-level count a substructure S on G
if for ∀G1, G2 ∈ G such that C(S,G1) ̸= C(S,G2), there exists fgraph ∈ Fgraph such that
fgraph(G1) ̸= fgraph(G2).

Definition 2.2 (Node-level count). Let G × V = {(G, u) : G ∈ G, u ∈ VG}. Let Fnode be
a function class on G × V , i.e., fnode : G × V → R for all fnode ∈ Fnode. Fnode is said to
be able to node-level count a substructure S on G if for ∀(G1, u1), (G2, u2) ∈ G × V such that
C(S, u1, G1) ̸= C(S, u2, G2), there exists fnode ∈ Fnode such that fnode(G1, u1) ̸= fnode(G2, u2).

Notice that C(S,G) can be calculated by
∑

u∈VG
C(S, u,G) divided by a factor only depending on

S, for any given substructure S. (For example, for triangles the factor is 3.) Therefore, counting a
substructure at node level is harder than counting it at graph level.

2.2 FWL(k) graph isomorphism tests

WL(1) test. The 1-dimensional Weisfeiler-Leman test, or WL(1) test, is a heuristic algorithm for
the graph isomorphism problem [52]. For a graph G, the WL(1) test iteratively assigns a color W (v)
to every node v ∈ VG. At the 0-th iteration, the color W (0)(v) is identical for every node v. At the
t-th iteration with t ⩾ 1,

W (t)(v) = HASH(t)
(
W (t−1)(v),POOL(t)

(
{{W (t−1)(u) : u ∈ N (v)}}

))
, (1)

where HASH(t) and POOL(t) are injective hashing functions, and {{·}} means a multiset (set with
potentially identical elements). The algorithm stops when the node colors become stable, i.e.,
∀v, u ∈ VG,W

(t+1)(v) = W (t+1)(v) ⇔ W (t)(v) = W (t)(u). We denote the stable coloring of
node v as W (∞)(v); then the representation for graph G is

W (G) = READOUT
(
{{W (∞)(v) : v ∈ VG}}

)
, (2)

where READOUT is an arbitrary injective multiset function.

FWL(k) tests. For k ⩾ 2, the k-dimensional Folklore Weisfeiler-Leman tests, or FWL(k) tests,
define a hierarchy of algorithms for graph isomorphism testing, as described in [12, 32, 42]. For
a graph G, the FWL(k) test assigns a color W (v) for every k-tuple v = (v1, . . . , vk) ∈ Vk

G. At
the 0-th iteration, the color W (0)(v) is the atomic type of v, denoted as atp(v). If we denote the
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subgraphs of G induced by v and v′ as G(v) and G(v′) respectively, then the function atp(·) can
be any function on Vk

G that satisfies the following condition: atp(v) = atp(v′) iff the mapping
vi 7→ v′i, i ∈ [k] (i.e., the mapping that maps each vi to its corresponding v′i, for i ∈ [k]) induces an
isomorphism from G(v) to G(v′).

At the t-th iteration with t ⩾ 1, FWL(k) updates the color of v ∈ Vk
G as

W (t)(v) = HASH(t)
(
W (t−1)(v),POOL(t)

(
{{sift(W (t−1),v, w) : w ∈ VG}}

))
, (3)

where sift(f,v, w) is defined as

sift(f,v, w) = (f(v[1 → w]), f(v[2 → w]), . . . , f(v[k → w])) . (4)

Here we use v[j → w] to denote (v1, . . . , vj−1, w, vj+1, . . . , vk) for j ∈ [k] and w ∈ VG.

HASH(t) and POOL(t) are again injective hashing functions. The algorithm stops when all k-tuples
receive stable colorings. The stable coloring of v ∈ Vk

G is denoted as W (∞)(v). We then calculate
the representation for graph G as

W (G) = READOUT
(
{{W (∞)(v) : v ∈ Vk

G}}
)
, (5)

where READOUT is an arbitrary injective multiset function.

3 d-Distance-Restricted FWL(2) GNNs

In this section, we propose the d-Distance Restricted FWL(2) tests/GNNs. They use 2-tuples like
FWL(2), but restrict the distance between nodes in each 2-tuple to be ⩽ d, which effectively reduces
the number of 2-tuples to store and aggregate while still retaining great cycle counting power.

3.1 d-DRFWL(2) tests

We call a 2-tuple (u, v) ∈ V2
G a distance-k tuple if the shortest-path distance between u and v is k in

the following. d-Distance Restricted FWL(2) tests, or d-DRFWL(2) tests, assign a color W (u, v)
for every distance-k tuple (u, v) with 0 ⩽ k ⩽ d. Initially, the color W (0)(u, v) only depends on
d(u, v). For the t-th iteration with t ⩾ 1, d-DRFWL(2) updates the colors using the following rule,

For each k = 0, 1, . . . , d,

W (t)(u, v) = HASH
(t)
k

(
W (t−1)(u, v),

(
M

k(t)
ij (u, v)

)
0⩽i,j⩽d

)
, if d(u, v) = k, (6)

where HASH
(t)
k is an injective hashing function for distance k and iteration t, and M

k(t)
ij (u, v) is

defined as

M
k(t)
ij (u, v) = POOL

k(t)
ij

({{(
W (t−1)(w, v),W (t−1)(u,w)

)
: w ∈ Ni(u) ∩Nj(v)

}})
. (7)

The symbol
(
M

k(t)
ij (u, v)

)
0⩽i,j⩽d

stands for
(
M

k(t)
00 (u, v),M

k(t)
01 (u, v), . . . ,M

k(t)
0d (u, v), . . . ,

M
k(t)
dd (u, v)

)
. Each of the POOL

k(t)
ij with 0 ⩽ i, j, k ⩽ d is an injective multiset hashing function.

Briefly speaking, the rules (6) and (7) update the color of a distance-k tuple (u, v) using colors of
distance-i and distance-j tuples.

When every distance-k tuple (u, v) with 0 ⩽ k ⩽ d receives its stable coloring, denoted as
W (∞)(u, v), the representation of G is calculated as

W (G) = READOUT
(
{{W (∞)(u, v) : (u, v) ∈ V2

G and 0 ⩽ d(u, v) ⩽ d}}
)
. (8)
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Figure 1: Neighbor aggregation in 2-
DRFWL(2) for 2-tuple (u, v).

Figure 1 illustrates how 2-DRFWL(2) updates the color
of a distance-2 tuple (u, v). Since only distance-k tuples
with 0 ⩽ k ⩽ 2 are colored in 2-DRFWL(2) tests, there
are 7 terms of the form ((W (w, v),W (u,w)) (with w ∈
{u, v, x, y, z, t, r}) contributing to the update of W (u, v).
The 7 nodes u, v, x, y, z, t, r are filled with different colors,
according to their distances to u and to v. For example,
the violet node u has distance 0 to u and distance 2 to
v, thus contributing to M2

02(u, v); the green nodes x and
y have distance 1 to either u or v, thus contributing to
M2

11(u, v). Analogously, nodes with red, blue, orange and
pink colors contribute to M2

20(u, v),M
2
12(u, v),M

2
21(u, v)

and M2
22(u, v), respectively. Finally, the uncolored nodes

q and s do not contribute to the update of W (u, v), since
they have distance 3 (which is greater than 2) to u. From the figure, we can observe that by redefining
neighbors and sparsifying 2-tuples of FWL(2), d-DRFWL(2) significantly reduces the complexity
and focuses only on local structures, especially on sparse graphs.

Now we study the expressive power of d-DRFWL(2) tests by comparing them with the WL hierarchy.
First, we can prove that d-DRFWL(2) tests are strictly more powerful than WL(1), for every d.
Theorem 3.1. In terms of the ability to distinguish between non-isomorphic graphs, the d-DRFWL(2)
test is strictly more powerful than WL(1), for any d ⩾ 1.

Next, we compare d-DRFWL(2) tests with FWL(2). Actually, since it is easy for the FWL(2) test to
compute distance between every pair of nodes (we can initialize W (u, v) as 0, 1 and ∞ for u = v,
(u, v) ∈ EG and all other cases, and iteratively update W (u, v) with min{W (u, v),minw{W (u,w)+
W (w, v)}}), the FWL(2) test can use its update rule to simulate (6) and (7) by applying different
HASH

(t)
k and POOL

k(t)
ij functions to different (i, j, k) values. This implies that d-DRFWL(2) tests

are at most as powerful as the FWL(2) test. Actually, this hierarchy in expressiveness is strict, due
to the following theorem.
Theorem 3.2. In terms of the ability to distinguish between non-isomorphic graphs, FWL(2) is
strictly more powerful than d-DRFWL(2), for any d ⩾ 1. Moreover, (d+ 1)-DRFWL(2) is strictly
more powerful than d-DRFWL(2).

The proofs of all theorems within this section are included in Appendix B.

3.2 d-DRFWL(2) GNNs

Based on the d-DRFWL(2) tests, we now propose d-DRFWL(2) GNNs. Let G be a graph which
can have node features fv ∈ Rdf , v ∈ VG and (or) edge features euv ∈ Rde , {u, v} ∈ EG. A
d-DRFWL(2) GNN is defined as a function of the form

f = M ◦R ◦ LT ◦ σT−1 ◦ · · · ◦ σ1 ◦ L1. (9)

The input of f is the initial labeling h
(0)
uv , 0 ⩽ d(u, v) ⩽ d. Each Lt with t = 1, 2, . . . , T in (9) is

called a d-DRFWL(2) GNN layer, which transforms h(t−1)
uv into h

(t)
uv using rules

For each k = 0, 1, . . . , d,

For each (u, v) ∈ V2
G with d(u, v) = k,

aijk(t)uv =
⊕

w∈Ni(u)∩Nj(v)

m
(t)
ijk

(
h(t−1)
wv , h(t−1)

uw

)
, (10)

h(t)
uv = f

(t)
k

(
h(t−1)
uv ,

(
aijk(t)uv

)
0⩽i,j⩽d

)
, (11)

where m(t)
ijk and f

(t)
k are arbitrary learnable functions;

⊕
denotes a permutation-invariant aggregation

operator (e.g., sum, mean or max). (10) and (11) are simply counterparts of (7) and (6) with
POOL

k(t)
ij and HASH

(t)
k replaced with continuous functions. σt, t = 1, . . . , T − 1 are entry-wise

activation functions. R is a permutation-invariant readout function, whose input is the multiset
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{{h(T )
uv : (u, v) ∈ V2

G and 0 ⩽ d(u, v) ⩽ d}}. Finally, M is an MLP that acts on the graph
representation output by R.

We can prove that (i) the representation power of any d-DRFWL(2) GNN is upper-bounded by the
d-DRFWL(2) test, and (ii) there exists a d-DRFWL(2) GNN instance that has equal representation
power to the d-DRFWL(2) test. We leave the formal statement and proof to Appendix B.

4 The cycle counting power of d-DRFWL(2) GNNs

By Theorem 3.2, the expressive power of d-DRFWL(2) tests (or d-DRFWL(2) GNNs) strictly
increases with d. However, the space and time complexities of d-DRFWL(2) GNNs also increase
with d. On one hand, since there are O(n degk) distance-k tuples in a graph G, at least O(n degk)
space is necessary to store the representations for all distance-k tuples. For d-DRFWL(2) GNNs,
this results in a space complexity of O(n degd). On the other hand, since there are at most
O(degmin{i,j}) nodes in Ni(u)∩Nj(v), ∀0 ⩽ i, j ⩽ d, there are at most O(degd) terms at the RHS
of (10). Therefore, it takes O(d2 degd) time to update a single representation vector h(t)

uv using (10)
and (11). This implies the time complexity of d-DRFWL(2) GNNs is O(nd2 deg2d).

For scalability, d-DRFWL(2) GNNs with a relatively small value of d are used in practice. But how
to find the d value that best strikes a balance between expressive power and efficiency? To
answer this question, we need a practical, quantitative metric of expressive power. In the following,
we characterize the cycle counting power of d-DRFWL(2) GNNs. We find that 2-DRFWL(2) GNNs
are powerful enough to node-level count up to 6-cycles, as well as many other useful graph
substructures. Since for d = 2, the time and space complexities of d-DRFWL(2) GNNs are
O(n deg4) and O(n deg2) respectively, our model is much more efficient than I2-GNN which
requires O(n deg5) time and O(n deg4) space to count up to 6-cycles [33]. Moreover, with d ⩾ 3,
d-DRFWL(2) GNNs are able to node-level count up to 7-cycles, already matching the cycle counting
power of FWL(2).

Our main results are stated in Theorems 4.3–4.8. Before we present the theorems, we need to
give revised definitions of C(S, u,G) for some certain substructures S. This is because in those
substructures not all nodes are structurally equal.
Definition 4.1. If S is an ℓ-path with ℓ ⩾ 2, C(S, u,G) is defined to be the number of ℓ-paths in G
starting from node u.

Figure 2a illustrates Definition 4.1 for the ℓ = 4 case.
Definition 4.2. The substructures in Figures 2b, 2c and 2d are called tailed triangles, chordal cycles
and triangle-rectangles, respectively. If S is a tailed triangle (or chordal cycle or triangle-rectangle),
C(S, u,G) is defined to be the number of tailed triangles (or chordal cycles or triangle-rectangles)
that occur as subgraphs of G and include node u at a position shown in the figures.

u

(a) A 4-path that starts at
node u

u

(b) A tailed triangle that
passes node u

u

(c) A chordal cycle that
passes node u

u

(d) A triangle-rectangle
that passes node u

Figure 2: Illustrations of node-level counts of certain substructures.

Now we state our main theorems. In the following, the definition for “node-level counting” is the
same as Definition 2.2, but one should treat C(S, u,G) differently (following Definitions 4.1 and
4.2) when S is a path, a tailed triangle, a chordal cycle, or a triangle-rectangle. To define the output
of a d-DRFWL(2) GNN f on domain G × V , we denote

f(G, u) = h(T )
uu , u ∈ VG, (12)
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i.e., we treat the embedding of (u, u) as the representation of node u. For 1-DRFWL(2) GNNs, we
have
Theorem 4.3. 1-DRFWL(2) GNNs can node-level count 3-cycles, but cannot graph-level count any
longer cycles.

For 2-DRFWL(2) GNNs, we investigate not only their cycle counting power, but also their ability to
count many other graph substructures. Our results include
Theorem 4.4. 2-DRFWL(2) GNNs can node-level count 2, 3, 4-paths.
Theorem 4.5. 2-DRFWL(2) GNNs can node-level count 3, 4, 5, 6-cycles.
Theorem 4.6. 2-DRFWL(2) GNNs can node-level count tailed triangles, chordal cycles and triangle-
rectangles.
Theorem 4.7. 2-DRFWL(2) GNNs cannot graph-level count k-cycles with k ⩾ 7 or k-cliques with
k ⩾ 4.

For d-DRFWL(2) GNNs with d ⩾ 3, we have
Theorem 4.8. For any d ⩾ 3, d-DRFWL(2) GNNs can node-level count 3, 4, 5, 6, 7-cycles, but
cannot graph-level count any longer cycles.

The proofs of all theorems within this section are included in Appendix C. To give an intuitive
explanation for the cycle counting power of d-DRFWL(2) GNNs, let us consider, e.g., why 2-
DRFWL(2) GNNs can count up to 6-cycles. The key reason is that they allow a distance-2 tuple
(u, v) to receive messages from other two distance-2 tuples (u,w) and (w, v), and are thus aware of
closed 6-walks (since 6 = 2+2+2). Indeed, if we forbid such kind of message passing, the modified
2-DRFWL(2) GNNs can no longer count 6-cycles, as experimentally verified in Appendix F.2.

5 Related works

The cycle counting power of GNNs. It is proposed in [33] to use GNNs’ ability to count given-length
cycles as a metric for their expressiveness. Prior to this work, Arvind et al. [5] and Fürer [25] have
discussed the cycle counting power of the FWL(2) test: FWL(2) can and only can graph-level count
up to 7-cycles. Huang et al. [33] also characterizes the node-level cycle counting power of subgraph
MPNNs and I2-GNN. Apart from counting cycles, there are also some works analyzing the general
substructure counting power of GNNs. Chen et al. [15] discusses the ability of WL(k) tests to count
general subgraphs or induced subgraphs, but the result is loose. Tahmasebi et al. [48] analyzes the
substructure counting power of Recursive Neighborhood Pooling, which can be seen as a subgraph
GNN with recursive subgraph extraction procedures.

The trade-off between expressive power and efficiency of GNNs. Numerous methods have been
proposed to boost the expressive power of MPNNs. Many of the provably powerful GNN models have
direct correspondence to the Weisfeiler-Leman hierarchy [12, 28], such as higher-order GNNs [44]
and IGNs [41–43]. Despite their simplicity in theory, those models require O(nk+1) time and O(nk)
space in order to achieve equal expressive power to FWL(k) tests, and thus do not scale to large
graphs even for k = 2.

Recent works try to strike a balance between the expressive power of GNNs and their efficiency.
Among the state-of-the-art GNN models with sub-O(n3) time complexity, subgraph GNNs have
gained much research interest [8, 17, 24, 33, 39, 46, 57–60]. Subgraph GNNs process a graph G by
1) extracting a bag of subgraphs {Gi : i = 1, 2, . . . , p} from G, 2) generating representations for
every subgraph Gi, i = 1, 2, . . . , p (often using a weak GNN such as MPNN), and 3) combining
the representations of all subgraphs into a representation of G. Most commonly, the number p of
subgraphs extracted is equal to the number of nodes n (called a node-based subgraph extraction
policy [24]). In this case, the time complexity of subgraph GNNs is upper-bounded by O(nm), where
m is the number of edges. If we further adopt the K-hop ego-network policy, i.e., extracting a K-hop
subgraph Gu around each node u, the time complexity becomes O(n degK+1). Frasca et al. [24] and
Zhang et al. [58] theoretically characterize the expressive power of subgraph GNNs, and prove that
subgraph GNNs with node-based subgraph extraction policies lie strictly between WL(1) and FWL(2)
in the Weisfeiler-Leman hierarchy. Despite the lower complexity, in practice subgraph GNNs still
suffer from heavy preprocessing and a high GPU memory usage.

7



Apart from subgraph GNNs, there are also attempts to add sparsity to higher-order GNNs. Morris et al.
[45] proposes δ-k-LWL, a variant of the WL(k) test that updates a k-tuple u only from the k-tuples
with a component connected to the corresponding component in u. Zhang et al. [58] proposes
LFWL(2) and SLFWL(2), which are variants of FWL(2) that update a 2-tuple (u, v) from nodes in
either N (v) or N (u) ∪N (v). Our model can also be classified into this type of approaches, yet we
not only sparsify neighbors of a 2-tuple, but also 2-tuples used in message passing, which results in
much lower space complexity. A detailed comparison between our method and LFWL(2)/SLFWL(2)
is included in Appendix D.

6 Experiments

In this section, we empirically evaluate the performance of d-DRFWL(2) GNNs (especially for the
case of d = 2) and verify our theoretical results. To be specific, we focus on the following questions:

Q1: Can d-DRFWL(2) GNNs reach their theoretical counting power as stated in Theorems 4.3–4.8?

Q2: How do d-DRFWL(2) GNNs perform compared with other state-of-the-art GNN models on
open benchmarks for graphs?

Q3: What are the time and memory costs of d-DRFWL(2) GNNs on various datasets?

Q4: Do d-DRFWL(2) GNNs with increasing d values construct a hierarchy in discriminative power
(as shown in Theorem 3.2)? Further, does this hierarchy lie between WL(1) and FWL(2) empirically?

We answer Q1–Q3 in 6.1–6.3, as well as in Appendix F. The answer to Q4 is included in Appendix F.1.
The details of our implementation of d-DRFWL(2) GNNs, along with the experimental settings, are
included in Appendix E. Our code for all experiments, including those in Section 6 of the main paper
and in Appendix F, is available at https://github.com/zml72062/DR-FWL-2.

6.1 Substructure counting

Datasets. To answer Q1, we perform node-level substructure counting tasks on the synthetic dataset
in [33, 60]. The synthetic dataset contains 5,000 random graphs, and the training/validation/test split-
ting is 0.3/0.2/0.5. The task is to perform regression on the node-level counts of certain substructures.
Normalized MAE is used as the evaluation metric.

Tasks and baselines. To verify Theorems 4.4–4.6, we use 2-DRFWL(2) GNN to perform node-
level counting task on 9 different substructures: 3-cycles, 4-cycles, 5-cycles, 6-cycles, tailed triangles,
chordal cycles, 4-cliques, 4-paths and triangle-rectangles. We choose MPNN, node-based subgraph
GNNs (ID-GNN, NGNN, GNNAK+), PPGN, and I2-GNN as our baselines. Results for all baselines
are from [33].

To verify Theorem 4.8, we compare the performances of 2-DRFWL(2) GNN and 3-DRFWL(2) GNN
on node-level cycle counting tasks, with the cycle length ranging from 3 to 7.

We also conduct ablation studies to investigate what kinds of message passing are essential (among
those depicted in Figure 1) for 2-DRFWL(2) GNNs to successfully count up to 6-cycles and other
substructures. The experimental details and results are given in Appendix F.2. The studies also serve
as a verification of Theorem 4.3.

Table 1: Normalized MAE results of node-level counting cycles and other substructures on synthetic
dataset. The colored cell means an error less than 0.01.

Method
Synthetic (norm. MAE)

3-Cyc. 4-Cyc. 5-Cyc. 6-Cyc. Tail. Tri. Chor. Cyc. 4-Cliq. 4-Path Tri.-Rect.
MPNN 0.3515 0.2742 0.2088 0.1555 0.3631 0.3114 0.1645 0.1592 0.2979
ID-GNN 0.0006 0.0022 0.0490 0.0495 0.1053 0.0454 0.0026 0.0273 0.0628
NGNN 0.0003 0.0013 0.0402 0.0439 0.1044 0.0392 0.0045 0.0244 0.0729
GNNAK+ 0.0004 0.0041 0.0133 0.0238 0.0043 0.0112 0.0049 0.0075 0.1311
PPGN 0.0003 0.0009 0.0036 0.0071 0.0026 0.0015 0.1646 0.0041 0.0144
I2-GNN 0.0003 0.0016 0.0028 0.0082 0.0011 0.0010 0.0003 0.0041 0.0013
2-DRFWL(2) GNN 0.0004 0.0015 0.0034 0.0087 0.0030 0.0026 0.0009 0.0081 0.0070
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Results. From Table 1, we see that 2-DRFWL(2) GNN achieves less-than-0.01 normalized MAE
on all 3, 4, 5 and 6-cycles, verifying Theorem 4.5; 2-DRFWL(2) GNN also achieves less-than-
0.01 normalized MAE on tailed triangles, chordal cycles, 4-paths and triangle-rectangles, verifying
Theorems 4.4 and 4.6.

It is interesting that 2-DRFWL(2) GNN has a very good performance on the task of node-level
counting 4-cliques, which by Theorem 4.7 it cannot count in theory. A similar phenomenon happens
for subgraph GNNs. This may be because 2-DRFWL(2) GNN and subgraph GNNs still learn some
local structural biases that have strong correlation with the number of 4-cliques.

Table 2: Normalized MAE results of node-level counting k-cycles
(3 ⩽ k ⩽ 7) on synthetic dataset.

Method
Synthetic (norm. MAE)

3-Cyc. 4-Cyc. 5-Cyc. 6-Cyc. 7-Cyc.
2-DRFWL(2) GNN 0.0004 0.0015 0.0034 0.0087 0.0362
3-DRFWL(2) GNN 0.0006 0.0020 0.0047 0.0099 0.0176

From Table 2, we see that
3-DRFWL(2) GNN achieves
a comparable performance to
2-DRFWL(2) GNN on the
tasks of counting 3, 4, 5 and
6-cycles. Yet when it comes to
counting 7-cycles, 3-DRFWL(2)
GNN greatly outperforms
2-DRFWL(2) GNN, verifying
Theorems 4.7 and 4.8.

Finally, from the last row of Table 7 we see that 1-DRFWL(2) GNN achieves less-than-0.01 normal-
ized MAE on 3-cycles, but performs badly on 4, 5 and 6-cycles. This result verifies Theorem 4.3.

6.2 Molecular property prediction

Datasets. To answer Q2, we evaluate the performance of d-DRFWL(2) GNNs on four popular
molecular graph datasets—QM9, ZINC, ogbg-molhiv and ogbg-molpcba. QM9 contains 130k small
molecules, and the task is regression on 12 targets. One can refer to the page for the meaning of those
12 targets. ZINC [20], including a smaller version (ZINC-12K) and a full version (ZINC-250K), is
a dataset of chemical compounds and the task is graph regression. The ogbg-molhiv (containing
41k molecules) and ogbg-molpcba (containing 438k molecules) datasets belong to the Open Graph
Benchmark (OGB) [31]; the task on both datasets is binary classification. Details of the four datasets
are given in Appendix E.2.2.

Table 3: MAE results on QM9 (smaller the better). The top two are highlighted as First, Second.
Target 1-GNN 1-2-3-GNN DTNN Deep LRP PPGN NGNN I2-GNN 2-DRFWL(2) GNN
µ 0.493 0.476 0.244 0.364 0.231 0.428 0.428 0.346
α 0.78 0.27 0.95 0.298 0.382 0.29 0.230 0.222
εhomo 0.00321 0.00337 0.00388 0.00254 0.00276 0.00265 0.00261 0.00226
εlumo 0.00355 0.00351 0.00512 0.00277 0.00287 0.00297 0.00267 0.00225
∆ε 0.0049 0.0048 0.0112 0.00353 0.00406 0.0038 0.0038 0.00324
R2 34.1 22.9 17.0 19.3 16.07 20.5 18.64 15.04
ZPVE 0.00124 0.00019 0.00172 0.00055 0.0064 0.0002 0.00014 0.00017
U0 2.32 0.0427 2.43 0.413 0.234 0.295 0.211 0.156
U 2.08 0.111 2.43 0.413 0.234 0.361 0.206 0.153
H 2.23 0.0419 2.43 0.413 0.229 0.305 0.269 0.145
G 1.94 0.0469 2.43 0.413 0.238 0.489 0.261 0.156
Cv 0.27 0.0944 2.43 0.129 0.184 0.174 0.0730 0.0901

Baselines. For QM9, the baselines are chosen as 1-GNN, 1-2-3-GNN [44], DTNN [53], Deep
LRP [15], PPGN, NGNN [59] and I2-GNN [33]. Methods [3, 26, 40, 47] utilizing geometric features
or quantum mechanic theory are omitted to fairly compare the graph representation power of the
models. For ZINC and ogbg-molhiv, we adopt GIN, PNA [16], DGN [7], HIMP [23], GSN [10], Deep
LRP [15], CIN [9], NGNN, GNNAK+, SUN [24] and I2-GNN as our baselines. For ogbg-molpcba,
the baselines are GIN, PNA, DGN, NGNN and GNNAK+. The experimental details are given in
Appendix E.2.2. We leave the results on ZINC, ogbg-molhiv and ogbg-molpcba to Appendix F.3.

Results. On QM9, Table 3 shows that 2-DRFWL(2) GNN attains top two results on most (11 out
of 12) targets. Moreover, 2-DRFWL(2) GNN shows a good performance on targets U0, U,H and
G, where subgraph GNNs like NGNN or I2-GNN have a poor performance. The latter fact actually
reveals that our method has a stronger ability to capture long-range interactions on graphs than
subgraph GNNs, since the targets U0, U,H and G are macroscopic thermodynamic properties of
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molecules and heavily depend on such long-range interactions. We leave the detailed analysis to
Appendix F.4. Apart from QM9, Table 8 of Appendix F.3 shows that d-DRFWL(2) GNN outperforms
CIN [9] on ZINC-12K; the performance on ogbg-molhiv is also comparable to baseline methods.
These results show that although designed for cycle counting, d-DRFWL(2) GNN is also highly
competitive on general molecular tasks.

It is interesting to notice that d-DRFWL(2) GNN shows an inferior performance on ogbg-molpcba,
compared with baseline methods. We conjecture that the results on ogbg-molpcba might be insensitive
to the gain in cycle counting power, and might prefer simple model architectures rather than highly
expressive ones.

6.3 Empirical efficiency

To answer Q3, we compare the time and memory costs of 2-DRFWL(2) GNN with MPNN, NGNN
and I2-GNN on two datasets—QM9 and ogbg-molhiv. We use three metrics to evaluate the em-
pirical efficiency of 2-DRFWL(2) GNNs: the maximal GPU memory usage during training, the
preprocessing time, and the training time per epoch.

To make a fair comparison, we fix the number of 2-DRFWL(2) GNN layers and the number of
message passing layers in all baseline methods to 5; we also fix the size of hidden dimension to 64
for QM9 and 300 for ogbg-molhiv. The subgraph heights for NGNN and I2-GNN are both 3. The
batch size is always 64.

Table 4: Empirical efficiency of 2-DRFWL(2) GNN.

Method
QM9 ogbg-molhiv

Memory (GB) Pre. (s) Train (s/epoch) Memory (GB) Pre. (s) Train (s/epoch)
MPNN 2.28 64 45.3 2.00 2.4 18.8
NGNN 13.72 2354 107.8 5.23 1003 42.7
I2-GNN 19.69 5287 209.9 11.07 2301 84.3
2-DRFWL(2) GNN 2.31 430 141.9 4.44 201 44.3

Results. From Table 4, we see that the preprocessing time of 2-DRFWL(2) GNN is much shorter
than subgraph GNNs like NGNN or I2-GNN. Moreover, 2-DRFWL(2) GNN requires much less GPU
memory while training, compared with subgraph GNNs. The training time of 2-DRFWL(2) GNN is
comparable to NGNN (which can only count up to 4-cycles), and much shorter than I2-GNN.

We also evaluate the empirical efficiency of 2-DRFWL(2) GNN on graphs of larger sizes. The results,
along with details of the datasets we use, are given in Appendix F.5. From Table 14 in Appendix
F.5, we see that 2-DRFWL(2) GNN easily scales to graphs with ∼ 500 nodes, as long as the average
degree is small.

7 Conclusion and limitations

Motivated by the analysis of why FWL(2) has a stronger cycle counting power than WL(1), we
propose d-DRFWL(2) tests and d-DRFWL(2) GNNs. It is then proved that with d = 2, d-DRFWL(2)
GNNs can already count up to 6-cycles, retaining most of the cycle counting power of FWL(2).
Because d-DRFWL(2) GNNs explicitly leverage the local nature of cycle counting, they are much
more efficient than other existing GNN models that have comparable cycle counting power. Besides,
d-DRFWL(2) GNNs also have an outstanding performance on various real-world tasks. Finally, we
have to point out that our current implementation of d-DRFWL(2) GNNs, though being efficient
most of the time, still has difficulty scaling to datasets with a large average degree such as ogbg-ppa,
since the preprocessing time is too long (∼40 seconds per graph on ogbg-ppa). This also makes our
method unsuitable for node classification tasks, since these tasks typically involve graphs with large
average degrees. We leave the exploration of more efficient d-DRFWL(2) implementation to future
work.
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A Message passing neural networks

Message passing neural networks (MPNNs) [27, 36, 50, 55] are a class of GNNs that iteratively
updates node representations hu, u ∈ VG by aggregating information from neighbors. At the t-th
(t ⩾ 1) iteration, the update rule for MPNNs is

h(t)
u = f (t)

h(t−1)
u ,

⊕
v∈N (u)

m(t)
(
h(t−1)
u , h(t−1)

v , euv

) , (13)

where h
(t)
u is the representation of node u at the t-th iteration and euv is the edge feature of {u, v} ∈

EG. f (t) and m(t) are learnable functions, and
⊕

is a permutation-invariant aggregation operator,
such as sum, mean or max. The representation of graph G is obtained by

hG = R({{hu : u ∈ VG}}), (14)

where R is a permutation-invariant function of multisets.

It is known [55] that the ability of MPNNs to discriminate between non-isomorphic graphs is upper-
bounded by the WL(1) test. When it comes to counting cycles, MPNNs cannot graph-level count any
cycles, as stated in [33].

B Proofs of theorems in Section 3

B.1 Proof of Theorem 3.1

We restate Theorem 3.1 as following,
Theorem B.1. In terms of the ability to distinguish between non-isomorphic graphs, the d-DRFWL(2)
test is strictly more powerful than WL(1), for any d ⩾ 1.

Proof. In Theorem 3.2 we will prove that (d + 1)-DRFWL(2) is strictly more powerful than d-
DRFWL(2), for any d ⩾ 1. Therefore, we only need to show that 1-DRFWL(2) is strictly more
powerful than WL(1). We will first prove that 1-DRFWL(2) can give an implementation of the WL(1)
test. Actually, let

W (0)(u, v) =

{
W

(0)
WL(1)(u), d(u, v) = 0,

NULL, d(u, v) = 1,
(15)

be the initial 1-DRFWL(2) colors of (u, v) ∈ V2
G with 0 ⩽ d(u, v) ⩽ 1. Here W (0)

WL(1)(u) is the initial
WL(1) color of node u (which is identical for all u ∈ VG). It is obvious that W (0)(u, v) does only
depend on d(u, v). As for the update rule, at the (2t− 1)-th iteration with t ⩾ 1, we ask

POOL
1(2t−1)
01

(
{{(W (2t−2)(u, v),W (2t−2)(u, u))}}

)
= W (2t−2)(u, u), (16)

and

POOL
1(2t−1)
10

(
{{(W (2t−2)(v, v),W (2t−2)(u, v))}}

)
= W (2t−2)(v, v), (17)

for those (u, v) with distance 1. Here, both N0(u) ∩ N1(v) and N1(u) ∩ N0(v) have only one
element, so POOL

1(2t−1)
01 and POOL

1(2t−1)
10 simply select the second and the first component from

the unique 2-tuple in the corresponding multisets, respectively. The HASH
(2t−1)
k functions for k = 0

or 1 are chosen as

HASH
(2t−1)
1

(
W (2t−2)(u, v),

(
M

1(2t−1)
ij

)
0⩽i,j⩽1

)
= CONCAT

(
M

1(2t−1)
01 ,M

1(2t−1)
10

)
, (18)

for d(u, v) = 1,

HASH
(2t−1)
0

(
W (2t−2)(u, u),

(
M

0(2t−1)
ij

)
0⩽i,j⩽1

)
= W (2t−2)(u, u), (19)

for d(u, v) = 0.
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What we did is to ask the (2t − 1)-th iteration of 1-DRFWL(2) to record the WL(1) colors(
W

(t−1)
WL(1) (u),W

(t−1)
WL(1) (v)

)
in the 1-DRFWL(2) color of node pair (u, v). In the 2t-th iteration,

1-DRFWL(2) then uses this record to update the colors of (u, u) and (v, v):

HASH
(2t)
1

(
W (2t−1)(u, v),

(
M

1(2t)
ij

)
0⩽i,j⩽1

)
= W (2t−1)(u, v), (20)

for d(u, v) = 1,

HASH
(2t)
0

(
W (2t−1)(u, u),

(
M

0(2t)
ij

)
0⩽i,j⩽1

)
= M

0(2t)
11 , (21)

for d(u, v) = 0.

And we ask

M
0(2t)
11 (u, v) = HASH

(t)
WL(1)

(
W (2t−2)(u, u),POOL

(t)
WL(1)

(
{{W (2t−2)(v, v) : v ∈ N (u)}}

))
.

(22)

Here W (2t−2)(u, u) and W (2t−2)(v, v) are stored in W (2t−1)(u, v) in the last iteration (in the first
and the second components respectively). HASH

(t)
WL(1) and POOL

(t)
WL(1) are the hashing functions

used by WL(1) test, as in (1). It is easy to see the above implementation uses 2 iterations of 1-
DRFWL(2) update to simulate 1 iteration of WL(1) update. Therefore, 1-DRFWL(2) is at least as
powerful as WL(1) in terms of the ability to distinguish between non-isomorphic graphs.

To see why 1-DRFWL(2) is strictly more powerful than WL(1), we only need to find out a pair of
graphs G and H such that WL(1) cannot distinguish between them while 1-DRFWL(2) can. Let G be
two 3-cycles and H be one 6-cycle. Of course WL(1) cannot distinguish between G and H . However,
1-DRFWL(2) can distinguish between them because there are no triangles in H but two in G, as is
made clear in the following. In the first iteration of 1-DRFWL(2), the M

1(1)
11 term collects common

neighbors of every node pair (u, v) with distance 1. In G this results in non-empty common neighbor
multisets for all distance-1 tuples (u, v), while in H all such multisets are empty. 1-DRFWL(2) then
makes use of this discrepancy by properly choosing the HASH

(1)
1 function that assigns different

colors for distance-1 tuples in G and in H . Therefore, 1-DRFWL(2) can distinguish between G and
H .

B.2 Proof of Theorem 3.2

We restate Theorem 3.2 as following,
Theorem B.2. In terms of the ability to distinguish between non-isomorphic graphs, FWL(2) is
strictly more powerful than d-DRFWL(2), for any d ⩾ 1. Moreover, (d+ 1)-DRFWL(2) is strictly
more powerful than d-DRFWL(2).

Proof. First we show that FWL(2) can give an implementation of d-DRFWL(2) for any d ⩾ 1. The
implementation is in three steps:

Distance calculation. For any 2-tuple (u, v) ∈ V2
G, let its FWL(2) color W (0)(u, v) be 0 if u = v,

1 if {u, v} ∈ EG, and ∞ otherwise. In the first (n − 1) iterations, FWL(2) can use the following
update rule to calculate distance between any pair of nodes,

W (t)(u, v) = min

(
W (t−1)(u, v), min

w∈VG

(
W (t−1)(w, v) +W (t−1)(u,w)

))
. (23)

When t = n− 1, the FWL(2) color for any (u, v) ∈ V2
G gets stable and becomes d(u, v).

Initial color generation. At the n-th iteration, FWL(2) transforms W (n−1)(u, v) = d(u, v) into

W (n)(u, v) =

{
CONCAT

(
d(u, v),W

(0)
d-DRFWL(2)(u, v)

)
, if 0 ⩽ d(u, v) ⩽ d,

CONCAT(d(u, v),NULL) , otherwise.
(24)

Here W (0)
d-DRFWL(2)(u, v) is the initial d-DRFWL(2) color of 2-tuple (u, v). Because W (0)

d-DRFWL(2)(u, v)

only depends on d(u, v), the RHS in (24) is a function of W (n−1)(u, v) = d(u, v), and thus complies
with the general form of FWL(2) as in (3).
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u

v

(a) When running 4-DRFWL(2) in a 10-cycle,
there are 8 (marked as colored, with 3 on the
inferior arc and 3 on the superior arc) nodes
contributing to the update of any distance-4
tuple (u, v)

u

v

(b) When running 3-DRFWL(2) in a 10-cycle
(or any cycle with length ⩾ 10), there are
only 4 (marked as colored) nodes contribut-
ing to the update of any distance-3 tuple
(u, v)

Figure 3: Illustration on the counterexample used in the proof of the separation result in Theorem
3.2. Here we take d = 3 and a (3d+ 1)-cycle, or 10-cycle, is shown. It is clear that for a distance-
(d+ 1) tuple there are nodes on both the inferior arc and the superior arc that contribute to its update.
Contrarily, for a distance-d tuple only nodes on the inferior arc contribute.

d-DRFWL(2) Update. For the (n+ t)-th iteration with t ⩾ 1, the FWL(2) test uses the following
POOL(n+t) and HASH(n+t) functions to simulate the t-th iteration of d-DRFWL(2):

• HASH(n+t) reads the first field of W (n+t−1)(u, v) to get d(u, v) = k, and decides whether
to update the color for (u, v) (if 0 ⩽ k ⩽ d) or not (otherwise).

• For every w ∈ VG, POOL(n+t) reads the first field of W (n+t−1)(w, v) and W (n+t−1)(u,w)

to find that d(w, v) = i and d(u,w) = j, and then either selects W
(t−1)
d-DRFWL(2)(w, v) and

W
(t−1)
d-DRFWL(2)(u,w) from the second field of W (n+t−1)(w, v) and W (n+t−1)(u,w), and

applies (7) to get Mk(t)
ij (u, v), if it finds 0 ⩽ i, j ⩽ d, or ignores the contribution from(

W (n+t−1)(w, v),W (n+t−1)(u,w)
)

otherwise.

• HASH(n+t) calculates W
(t)
d-DRFWL(2)(u, v) using (6), and assigns it to the second field of

W (n+t)(u, v), if it has decided that the color for (u, v) should be updated.

For the READOUT part, FWL(2) simply ignores the tuples (u, v) with d(u, v) > d. It is easy to see
the above construction does provide an implementation for d-DRFWL(2).

Similarly, one can prove that (d+ 1)-DRFWL(2) also gives an implementation of d-DRFWL(2), for
any d ⩾ 1, by only executing the “initial color generation” and “d-DRFWL(2) update” steps stated
above. Since the colors for (u, v) with d(u, v) > d never update, it is sufficient only keeping track of
pairs with mutual distance ⩽ d+ 1, which (d+ 1)-DRFWL(2) is capable of.

Now we will turn to prove the separation result: for any d ⩾ 1, there exist graphs G and H that
FWL(2) (or (d + 1)-DRFWL(2)) can distinguish, but d-DRFWL(2) cannot. We ask G to be two
(3d+ 1)-cycles, and H a single (6d+ 2)-cycle. FWL(2) can distinguish between G and H by (i)
calculating distance between every pair of nodes in G and H; (ii) check if there is (u, v) ∈ V2 such
that d(u, v) = ∞ at the READOUT step. The above procedure will give G a true label and H a
false label.

To see why (d+1)-DRFWL(2) can also distinguish between G and H , we designate that POOL
d+1(1)
ij

be a multiset function that counts the elements in the multiset, for all 0 ⩽ i, j ⩽ d + 1, and that
HASH

(1)
d+1 be the sum of all items in

(
M

d+1(1)
ij (u, v)

)
0⩽i,j⩽d+1

. Briefly speaking, we are asking

the first iteration of (d+ 1)-DRFWL(2) to count how many nodes w contribute to the update of
a distance-(d+ 1) tuple (u, v), via the form

(
W (0)(w, v),W (0)(u,w)

)
. For any distance-(d+ 1)

tuple in G, the count is 4 for d = 1 and d+5 for d > 1 (actually when d > 1, a distance-(d+1) tuple
(u, v) splits a (3d+ 1)-cycle into an inferior arc of length (d+ 1) and a superior arc of length 2d; d
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nodes on the inferior arc and 3 nodes on the superior arc, along with u and v, sum up to the number;
Figure 3a illustrates the case of d = 3). For a distance-(d+ 1) tuple in H , the count becomes d+ 2,
which is always different from the count in G. The (d+1)-DRFWL(2) test then uses this discrepancy
to render different colors for a distance-(d+ 1) tuple in G and in H , thus telling G from H .

The above proof also reveals why d-DRFWL(2) fails to distinguish between G and H . Actually, let
(u, v) be a distance-k tuple in V2

G or V2
H with 0 ⩽ k ⩽ d. In the following we use W (t)(u, v) to

denote the d-DRFWL(2) color of (u, v) at the t-th iteration, both for (u, v) ∈ V2
G and (u, v) ∈ V2

H .
We will now use induction to prove that for all t, W (t)(u, v) only depends on d(u, v), and does
not depend on whether (u, v) is in G or H . This implies that for (u, v) ∈ V2

G and (u′, v′) ∈ V2
H ,

W (t)(u, v) = W (t)(u′, v′) holds for all iterations t as long as d(u, v) = d(u′, v′).

Base case. Since the initial d-DRFWL(2) color of a distance-k tuple (0 ⩽ k ⩽ d) only depends on
k, the t = 0 case is trivial.

Induction step. Now we assume W (t−1)(u, v) only depends on d(u, v) no matter which graph
(u, v) is in, for some t ⩾ 1. We will then prove that no matter what HASH

(t)
k and POOL

k(t)
ij functions

we choose, W (t)(u, v) only depends on d(u, v) no matter which graph (u, v) is in. Actually, it is
sufficient to prove that the multisets

{{(i, j) : w ∈ Ni(u) ∩Nj(v), 0 ⩽ i, j ⩽ d}} (25)

are equal, for any (u, v) ∈ V2
G ∪ V2

H with d(u, v) = k and 0 ⩽ k ⩽ d. This is because the inductive
hypothesis leads us to the fact that

M
k(t)
ij (u, v) = POOL

k(t)
ij

({{(
W (t−1)(w, v),W (t−1)(u,w)

)
: w ∈ Ni(u) ∩Nj(v)

}})
.

can only depend on the number of elements of the multiset on the RHS, because all elements in the
RHS multiset must be equal. Therefore, the aforementioned condition guarantees that Mk(t)

ij (u, v)

are all the same for any distance-k tuple (u, v) ∈ V2
G ∪ V2

H with any fixed i, j, k and any t. This,
along with the update rule (6), makes the induction step.

Now we prove that multisets defined by (25) are equal for all (u, v) ∈ V2
G ∪ V2

H with any given
d(u, v) = k,0 ⩽ k ⩽ d. The intuition of the proof can be obtained from Figure 3b, which shows
that for any distance-d tuple (u, v) in a cycle not shorter than (3d+ 1), the nodes that contribute to
(25) are exactly those nodes on the inferior arc cut out by (u, v), plus u and v. This means that the
distance-d tuple is completely agnostic about the length of the cycle in which it lies, as long as
the cycle length is ⩾ 3d+ 1. Therefore, any distance-d tuple cannot tell whether it is in G or in H ,
resulting in the conclusion that the multisets in (25) are equal for all distance-d tuples (u, v). Similar
arguments apply to all distance-k tuples in G and H , as long as 0 ⩽ k ⩽ d. Therefore, we assert that
W (t)(u, v) does only depend on d(u, v), no matter which graph (u, v) is in, at the t-th iteration. This
finishes the inductive proof.

Notice that there are (6d + 2) distance-k tuples in either G or H , for any 0 ⩽ k ⩽ d; moreover,
each of those distance-k tuples have identical colors. We then assert that G and H must get identical
representations after running d-DRFWL(2) on them. Therefore, d-DRFWL(2) fails to distinguish
between G and H .

We remark that for any d ⩾ 1, d-DRFWL(2) tests cannot distinguish between two k-cycles and a
2k-cycle, as long as k ⩾ 3d+ 1. The proof for this fact is similar to the one elaborated above.

B.3 Proof of the equivalence in representation power between d-DRFWL(2) tests and
d-DRFWL(2) GNNs

At the end of 3.2, we informally state the fact that d-DRFWL(2) GNNs have equal representation
power to d-DRFWL(2) tests under certain assumptions. We now restate the fact as the following

Proposition B.3. Let q : G → colors be a d-DRFWL(2) test whose HASH
(t)
k , POOL

k(t)
ij and

READOUT functions are injective, ∀0 ⩽ i, j, k ⩽ d and ∀t ⩾ 1; in addition, q assigns different
initial colors to 2-tuples (u, v) with different u, v distances. Let f : G → Rp be a d-DRFWL(2) GNN
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with T d-DRFWL(2) GNN layers; the initial representations h(0)
uv are assumed to depend only on

d(u, v).

If two graphs G and H get different representations under f , i.e. f(G) ̸= f(H), then q assigns
different colors for G and H . Moreover, if G and H are graphs such that q assigns different colors
for G and H , there exists a d-DRFWL(2) GNN f such that f(G) ̸= f(H).

Proof. For simplicity, we denote

V2
G,⩽d = {(u, v) ∈ V2

G : 0 ⩽ d(u, v) ⩽ d}. (26)

We prove the first part by proving that, if two tuples (u, v) and (u′, v′) get different representations
h
(T )
uv and h

(T )
u′v′ after applying LT ◦ σT−1 ◦ · · · ◦ σ1 ◦ L1, then

W (T )(u, v) ̸= W (T )(u′, v′), (27)

after we apply q for T iterations. Since W (∞)(u, v) is a refinement of W (T )(u, v), (27) implies
that W (∞)(u, v) ̸= W (∞)(u′, v′). Now, f(G) ̸= f(H) means for all bijections b from V2

G,⩽d to

V2
H,⩽d, there exists a pair (u, v) ∈ V2

G,⩽d such that h(T )
uv ̸= h

(T )
u′v′ with (u′, v′) = b(u, v). If the above

statement holds true, this means for (u, v) and (u′, v′) we have W (∞)(u, v) ̸= W (∞)(u′, v′). Since
this is the case for any bijection b, we assert

READOUT
(
{{W (∞)(u, v) : (u, v) ∈ V2

G,⩽d}}
)

̸= READOUT
(
{{W (∞)(u, v) : (u, v) ∈ V2

H,⩽d}}
)
,

or simply W (G) ̸= W (H), and the first part is proved.

Proof for the above statement can be conducted inductively. When T = 0, h(0)
uv ̸= h

(0)
u′v′ means

d(u, v) ̸= d(u′, v′), since the initial representation h
(0)
uv of (u, v) only depends on the distance d(u, v).

By the second condition of q, the above fact further implies W (0)(u, v) ̸= W (0)(u′, v′), and the base
case is proved.

Now, assuming that the above statement is true for T = ℓ − 1 with ℓ ⩾ 1, we now prove the
T = ℓ case. Given h

(ℓ)
uv ̸= h

(ℓ)
u′v′ , there are two possibilities: (a) h(ℓ−1)

uv ̸= h
(ℓ−1)
u′v′ ; (b) for some i, j,

a
ijk(ℓ)
uv ̸= a

ijk(ℓ)
u′v′ , where k = d(u, v) = d(u′, v′) (we can safely assume d(u, v) = d(u′, v′), since

otherwise (27) trivially holds).

For possibility (a), the inductive hypothesis tells us W (ℓ−1)(u, v) ̸= W (ℓ−1)(u′, v′), thus
W (ℓ)(u, v) ̸= W (ℓ)(u′, v′). For possibility (b), notice that aijk(ℓ)uv is a function of the multiset

{{(h(ℓ−1)
wv , h(ℓ−1)

uw ) : w ∈ Ni(u) ∩Nj(v)}}.

Therefore, aijk(ℓ)uv ̸= a
ijk(ℓ)
u′v′ means that for all bijection b′ from Ni(u) ∩Nj(v) to Ni(u

′) ∩Nj(v
′),

there exists w ∈ Ni(u) ∩ Nj(v) such that (h(ℓ−1)
wv , h

(ℓ−1)
uw ) ̸= (h

(ℓ−1)
w′v′ , h

(ℓ−1)
u′w′ ), where w′ = b′(w).

Without loss of generality, let us discuss the case where h
(ℓ−1)
wv ̸= h

(ℓ−1)
w′v′ . In this case, the induc-

tive hypothesis tells us W (ℓ−1)(w, v) ̸= W (ℓ−1)(w′, v′), thus (W (ℓ−1)(w, v),W (ℓ−1)(u,w)) ̸=
(W (ℓ−1)(w′, v′),W (ℓ−1)(u′, w′)). The other case h

(ℓ−1)
uw ̸= h

(ℓ−1)
u′w′ also leads to this result. Since

the bijection b′ is arbitrary, we assert that the multisets

{{(W (ℓ−1)(w, v),W (ℓ−1)(u,w)) : w ∈ Ni(u) ∩Nj(v)}}

and

{{(W (ℓ−1)(w′, v′),W (ℓ−1)(u′, w′)) : w′ ∈ Ni(u
′) ∩Nj(v

′)}}

are not equal. Since the functions POOL
k(ℓ)
ij and HASH

(ℓ)
k are injective, the above result implies

W (ℓ)(u, v) ̸= W (ℓ)(u′, v′). So far, we have finished the induction step. Therefore, the first part of
the theorem is true.
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For the second part of the theorem, we quote the well-known result of Xu et al. [55] (Lemma 5 of the
paper), that there exists a function f : X → Rn on a countable input space X such that any multiset
function g can be written as

g(X) = ϕ

(∑
x∈X

f(x)

)
(28)

for some function ϕ, where X is an arbitrary multiset whose elements are in X .

Now, let G and H be graphs that both obtain their d-DRFWL(2) stable colorings under q after
T iterations, and that q assigns different colors for them. We will now prove that there exists a
d-DRFWL(2) GNN with T d-DRFWL(2) GNN layers that gives G and H different representations.

Since the set of d-DRFWL(2) colors generated by q is countable, we can designate a mapping
ν : colors → N that assigns a unique integer for every kind of d-DRFWL(2) color. Under mapping
ν, all HASH

(t)
k ,POOL

k(t)
ij and READOUT functions can be seen as functions with codomain N.

Then, the initial representation for (u, v) with 0 ⩽ d(u, v) ⩽ d is h
(0)
uv = ν

(
W (0)(u, v)

)
. For

the update rules, the lemma in [55] tells us that by choosing proper m(t)
ijk and ϕ

(t)
ijk functions, the

following equality can hold,

POOL
k(t)
ij (X) = ϕ

(t)
ijk

(∑
x∈X

m
(t)
ijk(ν(x))

)
,

with X being any multiset of 2-tuples of d-DRFWL(2) colors. Therefore, we can choose m(t)
ijk in (10)

following the instructions of the above lemma, and choose
⊕

as
∑

. We then choose the functions
f
(t)
k in (11) as

f
(t)
k

(
h(t−1)
uv ,

(
aijk(t)uv

)
0⩽i,j⩽d

)
= HASH

(t)
k

(
ν−1

(
h(t−1)
uv

)
,
(
ϕ
(t)
ijk

(
aijk(t)uv

))
0⩽i,j⩽d

)
. (29)

It is now easy to iteratively prove that h(t)
uv is exactly ν

(
W (t)(u, v)

)
. For the pooling layer, we again

leverage the lemma in [55] to assert that there exist functions r and M ′ such that

READOUT(X) = M ′

(∑
x∈X

r(ν(x))

)
, (30)

where X is any multiset of d-DRFWL(2) colors. We then choose

R(X) =
∑
x∈X

r(ν(x)), (31)

and choose M = ν ◦M ′. Now the d-DRFWL(2) GNN constructed above with T d-DRFWL(2) GNN
layers produces exactly the same output as q (except that the output is converted to integers via ν).
Because q assigns G and H different colors, the d-DRFWL(2) GNN gives different representations
for G and H .

C Proofs of theorems in Section 4

We first give a few definitions that will be useful in the proofs.
Definition C.1 (Pair-wise cycle counts). Let u, v ∈ VG, we denote Ck,l(u, v) as the number of
(k + l)-cycles S that satisfy:

• S passes u and v.

• There exists a k-path and an l-path (distinct from one another) from u to v, such that every
edge in either path is an edge included in S.

For instance, the substructures counted by C2,3(u, v) and C3,4(u, v) are depicted in Figures 4a and
4b respectively.
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Definition C.2 (Tailed triangle counts). Let u, v ∈ VG, T (u, v) is defined as the number of tailed
triangles in which u and v are at positions shown in Figure 4c.
Definition C.3 (Chordal cycle counts). Let u, v ∈ VG, CC1(u, v) and CC2(u, v) are defined as the
numbers of chordal cycles in which u and v are at positions shown in Figures 4d and 4e, respectively.
Moreover, we use CC1(u) and CC2(u) to denote the node-level chordal cycle counts with the node
u located at positions shown in Figures 4f and 4g, respectively.

The notations CC1 and CC2 are overloaded in the above definition, which shall not cause ambiguities
with a check on the number of arguments.
Definition C.4 (Triangle-rectangle counts). Let u, v ∈ VG, TR1(u, v) and TR2(u, v) are defined
as the numbers of triangle-rectangles in which u and v are at positions shown in Figures 4h and 4i,
respectively. We also define three types of node-level triangle-rectangle counts, namely TR1(u),
TR2(u) and TR3(u). They are the numbers of triangle-rectangles where node u is located at
positions shown in Figures 4j, 4k and 4l respectively.

vu

(a) C2,3(u, v)

vu

(b) C3,4(u, v)

u

v

(c) T (u, v)

v

u

(d) CC1(u, v)

vu

(e) CC2(u, v)

u

(f) CC1(u)

u

(g) CC2(u)

u

v

(h) TR1(u, v)

u

v

(i) TR2(u, v)

u

(j) TR1(u)

u

(k) TR2(u)

u

(l) TR3(u)

Figure 4: Illustrations of certain substructure counts.

There are relations between the above-defined counts. For chordal cycle counts we have

CC1(u) =
1

2

∑
v∈N1(u)

CC1(v, u), CC2(u) =
1

2

∑
v∈N1(u)

CC1(u, v). (32)

and

CC2(u) =
∑

v∈N1(u)

CC2(u, v). (33)

For triangle-rectangle counts we have

TR1(u) =
1

2

∑
v∈N1(u)

TR1(u, v), TR2(u) =
∑

v∈N1(u)

TR1(v, u), (34)

and

TR2(u) =
∑

v∈N1(u)∪N2(u)

TR2(u, v), TR3(u) =
∑

v∈N1(u)∪N2(u)

TR2(v, u). (35)
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We also denote Pk(u, v) as the number of k-paths starting at node u and ending at node v, Wk(u, v)
as the number of k-walks from u to v, and Ck(u) as the number of k-cycles that pass a node u.

The following lemma will be used throughout this section.
Lemma C.5. Let S be a graph substructure. If there exists a d-DRFWL(2) test q such that for any
graph G ∈ G,

W (T )(u, u) = C(S, u,G), ∀u ∈ VG (36)

after running q for T iterations on G, then d-DRFWL(2) GNNs can node-level count S.

Proof. Let (G1, u1), (G2, u2) ∈ G × V , and C(S, u1, G1) ̸= C(S, u2, G2). Then by assumption,

W (T )(u1, u1) ̸= W (T )(u2, u2) (37)

after running q for T iterations on G1 and G2. From the proof of Proposition B.3 (which is in
Appendix B.3), we see that there exists a d-DRFWL(2) GNN f with T d-DRFWL(2) GNN layers
such that a tuple (u, v) with 0 ⩽ d(u, v) ⩽ d gets its representation h

(T )
uv = ν

(
W (T )(u, v)

)
, where

ν is an injective mapping from the color space of q to N. Therefore, (37) implies h(T )
u1u1 ̸= h

(T )
u2u2 , or

f(G1, u1) ̸= f(G2, u2). This means that d-DRFWL(2) GNNs can node-level count S.

C.1 Proof of Theorem 4.3

We restate Theorem 4.3 as following,
Theorem C.6. 1-DRFWL(2) GNNs can node-level count 3-cycles, but cannot graph-level count any
longer cycles.

Proof. To prove that 1-DRFWL(2) GNNs can node-level count 3-cycles, it suffices to find a 1-
DRFWL(2) test q such that after running q for T iterations on a graph G,

W (T )(u, u) = C3(u), ∀u ∈ VG.

Below we explicitly construct q. Notice that if d(u, v) = 1, M1(1)
11 (u, v) can know the count

C(u, v) = |N1(u) ∩ N1(v)| in the first 1-DRFWL(2) iteration. This is essentially the number of
triangles in which {u, v} ∈ EG is included as an edge. In the second iteration, we can ask

W (2)(u, u) =
1

2

∑
v∈N1(u)

C(u, v), (38)

and we have W (2)(u, u) = C3(u). Therefore, the positive result is proved.

To prove that 1-DRFWL(2) GNNs cannot graph-level count k-cycles with k ⩾ 4, we make use of
the fact mentioned at the end of Appendix B.2, that 1-DRFWL(2) tests (and thus GNNs) cannot
distinguish between two k-cycles and one 2k-cycle, as long as k ⩾ 4. This set of counterexamples
leads to the negative result.

C.2 Proofs of Theorems 4.4–4.7

Before proving the theorems, we state and prove a series of lemmas.
Lemma C.7. There exists a 2-DRFWL(2) test q such that for any graph G ∈ G and for any 2-tuple
(u, v) ∈ V2

G with d(u, v) = 1 or d(u, v) = 2, q assigns

W (T )(u, v) = P2(u, v), (39)

for some integer T ⩾ 1.

Proof. Let q be a 2-DRFWL(2) test that satisfies: at the first iteration, M1(1)
11 (u, v) and M

2(1)
11 (u, v)

both count the number of nodes in N1(u) ∩ N1(v), and HASH
(1)
k of q simply selects the M

k(1)
11

component, for k = 1, 2; q stops updating colors for any tuple from the second iteration. It is easy to
see that q satisfies the condition stated in the lemma.
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Lemma C.8. There exists a 2-DRFWL(2) test q such that for any graph G ∈ G and for any node
u ∈ VG, q assigns

W (T )(u, u) = deg(u), (40)

for some integer T ⩾ 1. Here deg(u) is the degree of node u ∈ VG.

Proof. Let q be a 2-DRFWL(2) test that satisfies: at the first iteration, M0(1)
11 (u, u) counts |N1(u)| =

deg(u), and HASH
(1)
0 of q selects the M

0(1)
11 component, then W (1)(u, u) = deg(u). q then stops

updating colors for any tuple from the second iteration. It is obvious that q satisfies the condition
stated in the lemma.

Lemma C.9. There exists a 2-DRFWL(2) test q such that for any graph G ∈ G and for any 2-tuple
(u, v) ∈ V2

G with d(u, v) = 1 or d(u, v) = 2, q assigns

W (T )(u, v) = deg(u) + deg(v), (41)

for some integer T ⩾ 2.

Proof. By Lemma C.8, there exists a 2-DRFWL(2) test q that assigns W (T )(u, u) = deg(u) for
distance-0 tuples (u, u) with u ∈ VG, where T ⩾ 1. Now, for the (T + 1)-th iteration of q, we ask

M
k(T+1)
0k (u, v) = W (T )(u, u), (42)

M
k(T+1)
k0 (u, v) = W (T )(v, v), (43)

where k = 1 or 2; q then assigns

W (T+1)(u, v) = M
k(T+1)
0k (u, v) +M

k(T+1)
k0 (u, v), (44)

for d(u, v) = k and k = 1, 2. Now W (T+1)(u, v) = deg(u) + deg(v) for T + 1 ⩾ 2.

Lemma C.10. There exists a 2-DRFWL(2) test q such that for any graph G ∈ G and for any 2-tuple
(u, v) ∈ V2

G with d(u, v) = 1 or d(u, v) = 2, q assigns

W (T )(u, v) = P3(u, v), (45)

for some integer T ⩾ 2.

Proof. A 3-path starting at u and ending at v is a 3-walk u → x → y → v with u ̸= y and x ̸= v.
Therefore,

P3(u, v) = W3(u, v)−#(u → x → u → v)−#(u → v → y → v) + 1(u,v)∈EG
. (46)

Here #(u → x → u → v) is the number of different ways to walk from u to a neighboring node
x, then back to u, and finally to v, which is also a neighbor of u (x can coincide with v). The term
#(u → v → y → v) can be interpreted analogously. The 1(u,v)∈EG

takes value 1 if (u, v) ∈ EG, and
0 otherwise. This term accounts for the count #(u → v → u → v) which is subtracted twice.

It is easy to see that

#(u → x → u → v) = 1(u,v)∈EG
deg(u), (47)

#(u → v → y → v) = 1(u,v)∈EG
deg(v). (48)

Now we construct q as following: at the first iteration, q chooses proper POOL
k(1)
ij and HASH

(1)
k

functions (0 ⩽ i, j, k ⩽ 2) such that

W (1)(u, v) =

{ arbitrary, if d(u, v) = 0,
(P2(u, v),deg(u) + deg(v)), if d(u, v) = 1,
P2(u, v), if d(u, v) = 2.

(49)
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vu
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(c) Setting x = z
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(z) (x)

(d) Setting u = z and
x = v

Figure 5: The four types of redundant 4-walks requiring subtraction in the proof of Lemma C.12.
Each of the 4 situations is obtained by coalescing one or more node pairs from (u, z), (x, z) and
(x, v) in a 4-walk u → x → y → z → v, while subject to constraints u ̸= y and y ̸= v.

From Lemmas C.7 and C.9, this is possible. At the second iteration, we ask M
k(2)
11 , Mk(2)

12 and M
k(2)
21

to be

M
k(2)
11 (u, v) =

∑
w∈N1(u)∩N1(v)

(P2(u,w) + P2(w, v)) , (50)

M
k(2)
12 (u, v) =

∑
w∈N1(u)∩N2(v)

P2(w, v), (51)

M
k(2)
21 (u, v) =

∑
w∈N2(u)∩N1(v)

P2(u,w), (52)

respectively. Here k takes 1 or 2. We notice that if d(u, v) = k with k = 1, 2,

W3(u, v) =
1

2

(
M

k(2)
11 (u, v) +M

k(2)
12 (u, v) +M

k(2)
21 (u, v) + 1d(u,v)=1(deg(u) + deg(v))

)
(53)

because the RHS of (53) is exactly 1
2

(∑
w∈N1(v)

W2(u,w) +
∑

w∈N1(u)
W2(w, v)

)
. Therefore,

for a distance-k tuple (u, v) where k = 1 or 2,

P3(u, v) = W3(u, v)− 1d(u,v)=1(deg(u) + deg(v)− 1) (54)

is a function of Mk(2)
11 , Mk(2)

12 , Mk(2)
21 and W (1)(u, v), and thus can be assigned to W (2)(u, v) by

choosing proper HASH
(2)
k functions. After q assigns W (2)(u, v) = P3(u, v) for those (u, v) with

d(u, v) = 1 or d(u, v) = 2, it then stops updating colors for any tuple from the third iteration. It is
now clear that q satisfies the condition stated in the lemma.

Lemma C.11. There exists a 2-DRFWL(2) test q such that for any graph G ∈ G and for any node
u ∈ VG, q assigns

W (T )(u, u) = C3(u), (55)

for some integer T ⩾ 2.

Proof. This lemma follows from Theorem 4.3 and the fact that the update rule of 2-DRFWL(2) tests
encompasses that of 1-DRFWL(2) tests.

Lemma C.12. There exists a 2-DRFWL(2) test q such that for any graph G ∈ G and for any 2-tuple
(u, v) ∈ V2

G with d(u, v) = 1 or d(u, v) = 2, q assigns

W (T )(u, v) = P4(u, v), (56)

for some integer T ⩾ 3.

Proof. A 4-path starting at u and ending at v is a 4-walk u → x → y → z → v with u ̸= y, u ̸=
z, x ̸= z, x ̸= v and y ̸= v. We will calculate P4(u, v) as following: first define

P2,2(u, v) =
∑

y ̸=u,y ̸=v

P2(u, y)P2(y, v). (57)
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It is easy to see that P2,2(u, v) gives the number of 4-walks u → x → y → z → v with only
constraints u ̸= y and y ̸= v. Therefore,

P4(u, v) = P2,2(u, v)−#(a)−#(b)−#(c) + #(d), (58)

where #(a), #(b), #(c) and #(d) are the numbers of four types of 4-walks illustrated in Figure 5a,
5b, 5c and 5d, respectively. They correspond to setting u = z, x = v, x = z and both setting u = z
and x = v in the 4-walk u → x → y → z → v, respectively, while keeping u ̸= y and y ̸= v.

Now, it is not hard to get the following results,

#(a) = 1(u,v)∈EG
(2C3(u)− P2(u, v)), (59)

#(b) = 1(u,v)∈EG
(2C3(v)− P2(u, v)), (60)

#(c) =
∑

x∈N1(u)∩N1(v)

(deg(x)− 2), (61)

#(d) = 1(u,v)∈EG
P2(u, v). (62)

We will briefly explain (59)–(62) in the following. The contribution from (59), (60) and (62) only
exists when u and v are neighbors, which accounts for the 1(u,v)∈EG

factor. For #(a), if we allow
v = y, then the count is simply C3(u) times 2 (because two directions of a 3-cycle that passes u are
counted as two different walks); the contribution of counts from the additional v = y case is exactly
#(d), and is P2(u, v), as long as (u, v) ∈ EG. A similar argument applies to #(b). Determining
#(c) and #(d) is easier and the calculation will not be elaborated here.

Combining the above results, we can give a formula for P4(u, v),

P4(u, v) = P2,2(u, v)−
∑

x∈N1(u)∩N1(v)

(deg(x)− 2)− 1(u,v)∈EG
(2C3(u) + 2C3(v)− 3P2(u, v)).

(63)

Given the explicit formula (63), we now construct q as follows: at the first iteration, q chooses proper
POOL

k(1)
ij and HASH

(1)
k functions (0 ⩽ i, j, k ⩽ 2) such that

W (1)(u, v) =

{ arbitrary, if d(u, v) = 0,
(1, P2(u, v),deg(u) + deg(v)), if d(u, v) = 1,
(2, P2(u, v),deg(u) + deg(v)), if d(u, v) = 2.

(64)

From Lemmas C.7 and C.9, this is possible. At the second iteration, we let

P ij
2,2(u, v) =

∑
w∈Ni(u)∩Nj(v)

P2(u,w)P2(w, v), (65)

where 1 ⩽ i, j ⩽ 2, and

D11(u, v) =
∑

w∈N1(u)∩N1(v)

[(deg(u) + deg(w)) + (deg(w) + deg(v))], (66)

N11(u, v) = |N1(u) ∩N1(v)|, (67)

for every (u, v) with d(u, v) = 1 or d(u, v) = 2. Notice that (65), (66) and (67) can be calculated by
an iteration of 2-DRFWL(2) with proper POOL

k(2)
ij functions, where 1 ⩽ i, j, k ⩽ 2. Therefore, we

assert that ∑
x∈N1(u)∩N1(v)

(deg(x)− 2) =
1

2
D11(u, v)−

(
2 +

deg(u) + deg(v)

2

)
N11(u, v) (68)

can be calculated by an iteration of 2-DRFWL(2), with proper POOL
k(2)
ij and HASH

(2)
k functions,

1 ⩽ i, j, k ⩽ 2. We now ask q to assign

W (2)(u, v) =


C3(u), if d(u, v) = 0,(
P2(u, v),

∑
x∈N1(u)∩N1(v)

(deg(x)− 2),
∑

1⩽i,j⩽2 P
ij
2,2(u, v)

)
, if d(u, v) = 1,(∑

x∈N1(u)∩N1(v)
(deg(x)− 2),

∑
1⩽i,j⩽2 P

ij
2,2(u, v)

)
, if d(u, v) = 2,

(69)

25



at the second iteration. From the above discussion and Lemma C.11, this is possible. At the third
iteration, q gathers information from (69) and assigns W (3)(u, v) = P4(u, v) for those (u, v) with
d(u, v) = 1 or d(u, v) = 2, using formula (63); since we already have all the terms of (63) prepared in
(69) (notice that

∑
1⩽i,j⩽2 P

ij
2,2(u, v) = P2,2(u, v)), it is easy to see that P4(u, v) can be calculated

by an iteration of 2-DRFWL(2) with proper POOL
k(3)
ij and HASH

(3)
k functions, 1 ⩽ i, j, k ⩽ 2. We

then ask q to stop updating colors for any tuple from the fourth iteration. Now q satisfies the condition
stated in the lemma.

Lemma C.13. There exists a 2-DRFWL(2) test q such that for any graph G ∈ G and for any 2-tuple
(u, v) ∈ V2

G with d(u, v) = 1 or d(u, v) = 2, q assigns

W (T )(u, v) = W4(u, v), (70)

for some integer T ⩾ 3.

Proof. Following the notations in the proof of Lemma C.12, we have

W4(u, v) = W2,2(u, v) + #(u → x → u → z → v) + #(u → x → v → z → v), (71)

where #(u → x → u → z → v) is the number of different ways to walk from u to a neighboring
node x, then back to u, and, through another neighboring node z, finally to v (x, z, v can coincide
with each other). The number #(u → x → v → z → v) can be interpreted analogously. It is easy to
see that

#(u → x → u → z → v) = deg(u)P2(u, v), (72)
#(u → x → v → z → v) = deg(v)P2(u, v), (73)

for d(u, v) = 1 or d(u, v) = 2. Therefore,

W4(u, v) = W2,2(u, v) + (deg(u) + deg(v))P2(u, v). (74)

From Lemma C.12, there exists a 2-DRFWL(2) test q such that q assigns W (2)(u, v) = P2,2(u, v)
for (u, v) with d(u, v) = 1 or d(u, v) = 2. Moreover, from Lemmas C.7 and C.9, there exists
another 2-DRFWL(2) test q′ such that q′ assigns W (2)(u, v) = (deg(u) + deg(v))P2(u, v), for
d(u, v) = 1 or d(u, v) = 2. Synthesizing the colors that q and q′ assign to (u, v) respectively, it is
easy to construct a 2-DRFWL(2) test that assigns W (3)(u, v) = W4(u, v), where d(u, v) = 1 or
d(u, v) = 2. We then let it stop updating colors for any tuple from the fourth iteration to make it
satisfy the condition stated in the lemma.

In the following, we denote Pk(u) as the number of k-paths that starts at a node u, and Wk(u) as the
number of k-walks that starts at a node u.
Lemma C.14. There exists a 2-DRFWL(2) test q for any k ⩾ 1 such that for any graph G ∈ G and
for any node u ∈ VG, q assigns

W (T )(u, u) = Wk(u), (75)

for some integer T .

Proof. We prove by induction. When k = 1, W1(u) = deg(u), and by Lemma C.8, the conclusion
is obvious. Now we assume that for k = ℓ, there exists a 2-DRFWL(2) test q such that q assigns

W (T )(u, u) = Wℓ(u), ∀u ∈ VG, (76)

for some integer T . Then, at the (T + 1)-th iteration, we ask

W (T+1)(u, v) =


(
deg(u),W (T )(u, u)

)
, if d(u, v) = 0,

W (T )(u, u) +W (T )(v, v), if d(u, v) = 1,
arbitrary, if d(u, v) = 2.

(77)

At the (T + 2)-th iteration, we ask

W (T+2)(u, u) =
∑

v∈N1(u)

W (T+1)(u, v)− deg(u)W (T )(u, u), (78)
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for every distance-0 tuple (u, u) ∈ V2
G. It is easy to see that

W (T+2)(u, u) =
∑

v∈N1(u)

Wℓ(v). (79)

Therefore, W (T+2)(u, u) = Wℓ+1(u), and the induction step is finished. We then assert that the
lemma is true.

Lemma C.15. There exists a 2-DRFWL(2) test q such that for any graph G ∈ G and for any node
u ∈ VG, q assigns

W (T )(u, u) = C4(u), (80)

for some integer T ⩾ 3.

Proof. From Lemma C.10, there exists a 2-DRFWL(2) test q such that q assigns W (T )(u, v) =
C1,3(u, v) for some integer T ⩾ 2, for any graph G ∈ G and any 2-tuple (u, v) ∈ V2

G with
d(u, v) = 1. C4(u) can be calculated from C1,3(u, v) in another iteration.

Lemma C.16. There exists a 2-DRFWL(2) test q such that for any graph G ∈ G and for any node
u ∈ VG, q assigns

W (T )(u, u) = C5(u), (81)

for some integer T ⩾ 4.

Proof. From Lemma C.12, there exists a 2-DRFWL(2) test q such that q assigns W (T )(u, v) =
C1,4(u, v) for some integer T ⩾ 3, for any graph G ∈ G and any 2-tuple (u, v) ∈ V2

G with
d(u, v) = 1. C5(u) can be calculated from C1,4(u, v) in another iteration.

Lemma C.17. There exists a 2-DRFWL(2) test q such that for any graph G ∈ G and for any node
u ∈ VG, q assigns

W (T )(u, u) = CC1(u), (82)

for some integer T ⩾ 3.

Proof. By the first equation of (32),

CC1(u) =
1

2

∑
v∈N1(u)

CC1(v, u)

=
1

2

∑
v∈N1(u)

∑
x∈N1(u)∩N1(v)

(P2(x, v)− 1)

=
1

2

∑
v∈N1(u)

∑
x∈N1(u)∩N1(v)

(P2(x, v) + P2(u, x)− 1)

− 1

2

∑
v∈N1(u)

∑
x∈N1(u)∩N1(v)

P2(u, x)

=
1

2

∑
v∈N1(u)

∑
x∈N1(u)∩N1(v)

(P2(x, v) + P2(u, x)− 1)

− 1

2

∑
x∈N1(u)

P2(u, x)

 ∑
v∈N1(u)∩N1(x)

1

 . (83)

Now, using Lemma C.7, CC1(u) can be assigned by a 2-DRFWL(2) test to W (T )(u, u), for some
integer T ⩾ 3 and for all nodes u ∈ VG.
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(a) A 6-cycle with u
and v on meta-positions.
The number of such
6-cycles is exactly
C2,4(u, v). We require
t ̸= x, t ̸= y, t ̸= z

u v
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y

z(t)

(b) Setting t = x, the
count of the substructure
is #(b)

u v

x

y

z

(t)

(c) Setting t = y, the
count of the substructure
is #(c)

u v

x

y

z (t)

(d) Setting t = z, the
count of the substructure
is #(d)

Figure 6: Illustrations accompanying the proof of Lemma C.19. In all subfigures, it is assumed that
u → x → y → z → v is a 4-path and u → t → v is a 2-path.

Lemma C.18. There exists a 2-DRFWL(2) test q such that for any graph G ∈ G and for any node
u ∈ VG, q assigns

W (T )(u, u) = TR1(u), (84)
for some integer T ⩾ 4.

Proof. We first calculate TR1(u, v) as following,

TR1(u, v) =
∑

z∈N1(u)∩N1(v)

P3(z, v)−
∑

z∈N1(u)∩N1(v)

(P2(u, z)− 1)− P2(u, v)(P2(u, v)− 1).

(85)
Therefore, by the first equation of (34),

TR1(u) =
1

2

∑
v∈N1(u)

TR1(u, v)

=
1

2

∑
v∈N1(u)

∑
z∈N1(u)∩N1(v)

(P3(u, z) + P3(z, v))

− 1

2

∑
z∈N1(u)

P3(u, z)

 ∑
v∈N1(u)∩N1(z)

1


− 1

2

∑
z∈N1(u)

(P2(u, z)− 1)

 ∑
v∈N1(u)∩N1(z)

1


− 1

2

∑
v∈N1(u)

P2(u, v)(P2(u, v)− 1). (86)

By Lemmas C.7 and C.10, TR1(u) can be assigned by a 2-DRFWL(2) test to W (T )(u, u), for some
integer T ⩾ 4 and for all nodes u ∈ VG.

Lemma C.19. There exists a 2-DRFWL(2) test q such that for any graph G ∈ G and for any node
u ∈ VG, q assigns

W (T )(u, u) = C6(u), (87)
for some integer T ⩾ 5.

Proof. We first try to calculate C2,4(u, v), which is shown in Figure 6a. (If the 6-cycle is thought to
be a benzene ring in organic chemistry, then u and v are on meta-positions.) It is easy to see that

C6(u) =
1

2

 ∑
v∈N1(u)

C2,4(u, v) +
∑

v∈N2(u)

C2,4(u, v)

 . (88)
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We calculate C2,4(u, v) as following,

C2,4(u, v) = P2(u, v)P4(u, v)−#(b)−#(c)−#(d), (89)

where #(b), #(c) and #(d) are the numbers of substructures illustrated in Figure 6b, 6c and 6d,
respectively. In those figures, we always assume that u → x → y → z → v is a 4-path and
u → t → v is a 2-path. Since every 4-path u → x → y → z → v and every 2-path u → t → v
with t ̸= x, t ̸= y and t ̸= z contribute one count to C2,4(u, v), it is clear that (89) gives the correct
number C2,4(u, v).

We now calculate #(b), #(c) and #(d). For #(b), we have

#(b) =
∑

x∈N1(u)∩N1(v)

P3(x, v)−#(b, u = y)−#(b, u = z). (90)

Here, #(b, u = y) or #(b, u = z) is the count of substructure obtained by coalescing nodes u, y or
u, z in Figure 6b, while keeping y ̸= v and x ̸= z. It is easy to see that

#(b, u = y) = P2(u, v)(P2(u, v)− 1), (91)

#(b, u = z) = 1d(u,v)=1

∑
x∈N1(u)∩N1(v)

(P2(u, x)− 1). (92)

The count #(d) can be calculated analogously, and we summarize the results below.

#(b) + #(d) =
∑

x∈N1(u)∩N1(v)

(P3(x, v) + P3(u, x))− 2P2(u, v)(P2(u, v)− 1)

− 1d(u,v)=1

∑
x∈N1(u)∩N1(v)

(P2(u, x) + P2(x, v)− 2). (93)

By Lemmas C.7, C.10 and C.12, there exist 2-DRFWL(2) tests that assign the numbers
P2(u, v)P4(u, v) and #(b) + #(d) to W (T )(u, v) respectively, for some integer T ⩾ 4 and for
all pairs (u, v) with d(u, v) = 1 or d(u, v) = 2. Therefore, both∑

v∈N1(u)

P2(u, v)P4(u, v) +
∑

v∈N2(u)

P2(u, v)P4(u, v)

and ∑
v∈N1(u)

(#(b) + #(d)) +
∑

v∈N2(u)

(#(b) + #(d))

can be assigned by a specific 2-DRFWL(2) test q to W (T )(u, u) for some T ⩾ 5 and for all nodes u.
To prove the lemma it now suffices to show that∑

v∈N1(u)

#(c) +
∑

v∈N2(u)

#(c)

can be assigned by a 2-DRFWL(2) test to W (T )(u, u) for some T ⩾ 5 and for all nodes u. We
calculate #(c) as following,

#(c) =
∑

x∈N1(u)∩N1(v)

P2(u, x)P2(x, v)−#(c, u = z)−#(c, x = v)−#(c, x = z)

−#(c, u = z, x = v). (94)

Here #(c, u = z) is the count of substructure obtained by coalescing nodes u, z in Figure 6c, while
keeping x ̸= v. The counts #(c, x = v), #(c, x = z) and #(c, u = z, x = v) can be understood
analogously, but one needs to notice that when counting #(c, x = v) we keep u ̸= z. We have

#(c, u = z) = 1d(u,v)=1

∑
z∈N1(u)∩N1(v)

(P2(u, z)− 1), (95)

#(c, x = v) = 1d(u,v)=1CC1(v, u), (96)

#(c, u = z, x = v) = 1d(u,v)=1P2(u, v), (97)
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and ∑
v∈N1(u)

#(c, x = z) +
∑

v∈N2(u)

#(c, x = z) = CC1(u). (98)

By Lemmas C.7, C.17 and C.18, after summing over all nodes v ∈ N1(u)∪N2(u), each of the terms
in (94) can be assigned by a 2-DRFWL(2) test to W (T )(u, u), for some T ⩾ 5 and for all nodes u.
Therefore, we have finally reached the end of the proof.

We are now in a position to give the proofs for Theorems 4.4, 4.5, 4.6 and 4.7.

We restate Theorem 4.4 as following.

Theorem C.20. 2-DRFWL(2) GNNs can node-level count 2, 3, 4-paths.

Proof. By Lemma C.5, it suffices to prove that for each k = 2, 3, 4, there exists a 2-DRFWL(2) test
q such that for any graph G ∈ G and for any node u ∈ VG, q assigns

W (T )(u, u) = Pk(u), (99)

for some integer T .

In the following proofs, we no longer care the exact value of T ; instead, we are only interested in
whether a graph property can be calculated by a 2-DRFWL(2) test, i.e. there exists a finite integer
T and a subset of 2-DRFWL(2) colors (for example, W (T )(u, u), u ∈ VG for node-level properties,
or W (T )(u, v), d(u, v) ⩽ 2 for pair-level properties) that the subset of 2-DRFWL(2) colors gives
exactly the values of the graph property, at the T -th iteration.

For k = 2,

P2(u) =
∑

v∈N1(u)

P2(u, v) +
∑

v∈N2(u)

P2(u, v). (100)

But by Lemma C.7, there exists a 2-DRFWL(2) test q and an integer T such that (39) holds for all
pairs (u, v) with d(u, v) = 1 or d(u, v) = 2. Therefore, at the (T + 1)-th iteration, q can assign
W (T+1)(u, u) = P2(u) using (100).

For k = 3,

P3(u) =
∑

v∈N1(u)

P3(u, v) +
∑

v∈N2(u)

P3(u, v) +
∑

v∈N3(u)

P3(u, v). (101)

Using Lemma C.10 and a similar argument to above, the first two terms of (101) can be calculated by
a 2-DRFWL(2) test. For the last term of (101), we notice that∑

v∈N3(u)

P3(u, v) =
∑

v∈N3(u)

W3(u, v)

= W3(u)−W3(u, u)−
∑

v∈N1(u)

W3(u, v)−
∑

v∈N2(u)

W3(u, v). (102)

By Lemma C.14, W3(u) can be calculated by a 2-DRFWL(2) test. From the proof of Lemma
C.10, one can see that W3(u, v) can be calculated by a 2-DRFWL(2) test, for d(u, v) = 1 or
d(u, v) = 2. Therefore, the last two terms of (102) can also be calculated by a 2-DRFWL(2) test.
Since W3(u, u) = 2C3(u), it can be seen from Lemma C.11 that this term can also be calculated by
a 2-DRFWL(2) test. Therefore, we conclude that

∑
v∈N3(u)

P3(u, v), thus P3(u), can be calculated
by a 2-DRFWL(2) test.

For k = 4,

P4(u) =
∑

v∈N1(u)

P4(u, v) +
∑

v∈N2(u)

P4(u, v) +
∑

v∈N3(u)

P4(u, v) +
∑

v∈N4(u)

P4(u, v). (103)
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Using Lemma C.12 and a similar argument to above, the first two terms of (103) can be calculated by
a 2-DRFWL(2) test. Like in the k = 3 case, we treat the last two terms of (103) as following,∑

v∈N3(u)

P4(u, v) +
∑

v∈N4(u)

P4(u, v) =
∑

v∈N3(u)

W4(u, v) +
∑

v∈N4(u)

W4(u, v)

= W4(u)−W4(u, u)

−
∑

v∈N1(u)

W4(u, v)−
∑

v∈N2(u)

W4(u, v). (104)

By Lemmas C.13 and C.14, the terms W4(u),
∑

v∈N1(u)
W4(u, v) and

∑
v∈N2(u)

W4(u, v) can be
calculated by 2-DRFWL(2) tests. Moreover, it is easy to verify that

W4(u, u) = 2C4(u) + (deg(u))2 + P2(u). (105)

Therefore, by Lemmas C.7, C.8 and C.15, W4(u, u) can also be calculated by a 2-DRFWL(2) test.
Summarizing the results above, we have proved that P4(u) can be calculated by a 2-DRFWL(2)
test.

We restate Theorem 4.5 as following.

Theorem C.21. 2-DRFWL(2) GNNs can node-level count 3, 4, 5, 6-cycles.

Proof. By Lemma C.5, it suffices to prove that for each k = 3, 4, 5, 6, Ck(u) can be calculated by a
2-DRFWL(2) test. From Lemmas C.11, C.15, C.16 and C.19, the above statement is true.

We restate Theorem 4.6 as following.

Theorem C.22. 2-DRFWL(2) GNNs can node-level count tailed triangles, chordal cycles and
triangle-rectangles.

Proof. By Lemmas C.17 and C.18, and using a similar argument to above, it is easy to prove that
2-DRFWL(2) GNNs can node-level count chordal cycles and triangle-rectangles. To see why 2-
DRFWL(2) GNNs can node-level count tailed triangles, we only need to give a 2-DRFWL(2) test q
that assigns

W (T )(u, u) = C(tailed triangle, u,G), ∀u ∈ VG, (106)

for some integer T . Actually, we have

C(tailed triangle, u,G) =
∑

v∈N1(u)

(C3(v)− P2(u, v)), (107)

or in a symmetric form,

C(tailed triangle, u,G) =
∑

v∈N1(u)

(C3(u) + C3(v)− P2(u, v))− C3(u)deg(u). (108)

Using this formula, along with Lemmas C.7, C.8 and C.11, it is straightforward to construct the
2-DRFWL(2) test q that satisfies (106), as long as T ⩾ 3. Therefore, 2-DRFWL(2) GNNs can also
node-level count tailed triangles.

We restate Theorem 4.7 as following.

Theorem C.23. 2-DRFWL(2) GNNs cannot graph-level count more than 7-cycles or more than
4-cliques.

Proof. The theorem is a direct corollary of Theorem 3.2. In the remark at the end of Appendix B.2,
we have shown that no d-DRFWL(2) test can distinguish between two k-cycles and a single 2k-cycle,
as long as k ⩾ 3d+ 1. For d = 2, we assert that no 2-DRFWL(2) test (thus no 2-DRFWL(2) GNN)
can distinguish between two k-cycles and a 2k-cycle, as long as k ⩾ 7. Therefore, 2-DRFWL(2)
GNNs cannot graph-level count more than 7-cycles.
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Moreover, Theorem 4.2 of [56] states that for any k ⩾ 2, there exists a pair of graphs with different
numbers of (k + 1)-cliques that FWL(k − 1) fails to distinguish between. Therefore, we assert that
FWL(2) cannot graph-level count more than 4-cliques. By Theorem 3.2, the 2-DRFWL(2) tests (thus
2-DRFWL(2) GNNs) are strictly less powerful than FWL(2) in terms of the ability to distinguish
between non-isomorphic graphs. Therefore, 2-DRFWL(2) GNNs cannot graph-level count more than
4-cliques.

C.3 Proof of Theorem 4.8

Before proving the theorem, we state and prove a series of lemmas.
Lemma C.24. There exists a 3-DRFWL(2) test q such that for any graph G ∈ G and for any 2-tuple
(u, v) ∈ V2

G with 1 ⩽ d(u, v) ⩽ 3, q assigns

W (T )(u, v) = P3(u, v), (109)

for some integer T .

Proof. If 1 ⩽ d(u, v) ⩽ 2, the result follows from Lemma C.10 since 2-DRFWL(2) tests constitute a
subset of 3-DRFWL(2) tests. If d(u, v) = 3, then equations (50)–(54) still hold (with the value of k
changed to 3), giving rise to

P3(u, v) = W3(u, v) =
1

2

 ∑
w∈N1(u)∩N2(v)

P2(w, v) +
∑

w∈N2(u)∩N1(v)

P2(u,w)

 , d(u, v) = 3.

(110)

The RHS of (110) is obviously calculable by 3-DRFWL(2) tests. Therefore, the lemma holds.

Lemma C.25. There exists a 3-DRFWL(2) test q such that for any graph G ∈ G and for any 2-tuple
(u, v) ∈ V2

G with 1 ⩽ d(u, v) ⩽ 3, q assigns

W (T )(u, v) = P4(u, v), (111)

for some integer T .

Proof. If 1 ⩽ d(u, v) ⩽ 2, the result follows from Lemma C.12. If d(u, v) = 3, then equation (63)
still holds, giving rise to

P4(u, v) = P2,2(u, v) =
∑

1⩽i,j⩽2

P ij
2,2(u, v), d(u, v) = 3. (112)

The definitions of P2,2(u, v) and P ij
2,2(u, v) are given in (57) and (65), respectively. In particular, we

point out that

P ij
2,2(u, v) =

∑
w∈Ni(u)∩Nj(v)

P2(u,w)P2(w, v)

is calculable by 3-DRFWL(2) tests, for any 1 ⩽ i, j ⩽ 2 and for d(u, v) = 3. Therefore, the lemma
holds.

Lemma C.26. There exists a 2-DRFWL(2) test q such that for any graph G ∈ G and for any 2-tuple
(u, v) ∈ V2

G with 1 ⩽ d(u, v) ⩽ 2, q assigns

W (T0)(u, v) = T (u, v), (113)

for some integer T0.

Proof. The lemma follows from

T (u, v) =
∑

w∈N1(u)∩N1(v)

P2(w, v)− 1d(u,v)=1P2(u, v), (114)

and Lemma C.7.
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Lemma C.27. There exist two 2-DRFWL(2) tests q1, q2 such that for any graph G ∈ G and for any
2-tuple (u, v) ∈ V2

G with 1 ⩽ d(u, v) ⩽ 2, q1, q2 assign

W
(T1)
1 (u, v) = CC1(u, v), W

(T2)
2 (u, v) = CC2(u, v), (115)

respectively, for some integers T1 and T2.

Proof. The existence of q1 follows from the proof of Lemma C.17. To see why 2-DRFWL(2) tests
can count CC2(u, v), notice that

CC2(u, v) =
1

2
P2(u, v)(P2(u, v)− 1), (116)

and the result follows from Lemma C.7.

Due to the relations (32) and (33), we assert that 2-DRFWL(2) tests can also node-level count CC1(u)
and CC2(u).

Lemma C.28. There exist three 2-DRFWL(2) tests q1, q2 and q3 such that for any graph G ∈ G and
for any node u ∈ VG, q1, q2 and q3 assign

W
(T1)
1 (u, u) = TR1(u), W

(T2)
2 (u, u) = TR2(u), W

(T3)
3 (u, u) = TR3(u), (117)

respectively, for some integers T1, T2 and T3.

Proof. From the proof of Lemma C.18 we see that 2-DRFWL(2) tests can count TR1(u, v). By (34),
2-DRFWL(2) tests can count TR1(u) and TR2(u). We only need to prove that 2-DRFWL(2) tests
can count TR3(u).

Notice that

TR3(u) =
∑

v∈N1(u)∪N2(u)

TR2(v, u)

=
∑

v∈N1(u)∪N2(u)

(P2(u, v)− 1)T (u, v)− 2CC1(u). (118)

Therefore, by Lemmas C.7, C.26 and C.27, the lemma is true.

Lemma C.29. There exists a 2-DRFWL(2) test q such that for any graph G ∈ G and for any 2-tuple
(u, v) ∈ V2

G with 1 ⩽ d(u, v) ⩽ 2, q assigns

W (T )(u, v) = C2,3(u, v), (119)

for some integer T .

Proof. Notice that

C2,3(u, v) = P2(u, v)P3(u, v)− T (u, v)− T (v, u). (120)

Therefore, the lemma follows from Lemmas C.7, C.10 and C.26.

Now, we turn to proving Theorem 4.8. We restate the theorem as following.
Theorem C.30. For any d ⩾ 3, d-DRFWL(2) GNNs can node-level count 3, 4, 5, 6, 7-cycles, but
cannot graph-level count any longer cycles.

Proof. We first prove the negative result: for any d ⩾ 3, d-DRFWL(2) GNNs cannot graph-level
count k-cycles, with k ⩾ 8. This is because in terms of the ability to distinguish between non-
isomorphic graphs, d-DRFWL(2) tests (and thus GNNs) are strictly less powerful than FWL(2),
for any d, as shown in Theorem 3.2. Nevertheless, even the more powerful FWL(2) tests fail to
graph-level count k-cycles with k ⩾ 8. [4]

Next, we will prove the positive result. Notice that the update rule of (d + 1)-DRFWL(2) GNNs
always encompasses that of d-DRFWL(2) GNNs. Therefore, for any d ⩾ 3, the node-level cycle
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counting power of d-DRFWL(2) GNNs is at least as strong as that of 2-DRFWL(2) GNNs. This
implies that d-DRFWL(2) GNNs can node-level count 3, 4, 5, 6-cycles for any d ⩾ 3.

For the same reason, to prove that d-DRFWL(2) GNNs can node-level count 7-cycles for any d ⩾ 3,
it suffices to prove that 3-DRFWL(2) GNNs can do so. By Lemma C.5, this reduces to proving the
existence of a 3-DRFWL(2) test q, such that for any graph G ∈ G and for any node u ∈ VG, q assigns

W (T )(u, u) = C7(u), (121)

for some integer T .

We try to calculate C7(u) via

C7(u) =
1

2

∑
v:1⩽d(u,v)⩽3

C3,4(u, v). (122)

We assert that

C3,4(u, v) = P3(u, v)P4(u, v)−#(a)−#(b)− · · · −#(l), (123)

where #(a),#(b), . . . ,#(l) refer to numbers of the substructures depicted in (a), (b), . . . , (l) of
Figure 7, respectively. Since P3(u, v) and P4(u, v) are calculable by 3-DRFWL(2) tests (by Lem-
mas C.24 and C.25), it now suffices to show that 3-DRFWL(2) tests can calculate the counts
#(a),#(b), . . . ,#(l), summed over all v with 1 ⩽ d(u, v) ⩽ 3.

vu

(a)

vu

(b)

vu

(c)

vu

(d)

vu

(e)

vu

(f)

vu

(g)

vu

(h)

vu

(i)

vu

(j)

vu

(k)

vu

(l)

Figure 7: The twelve substructures whose counts should be subtracted from P3(u, v)P4(u, v) to get
C3,4(u, v).

For the rest of the proof, we express each of the counts #(a),#(b), . . . ,#(l) (after summing over
{v ∈ VG : 1 ⩽ d(u, v) ⩽ 3}) in terms of numbers already known calculable by 3-DRFWL(2) tests.
Since the enumeration procedure is rather tedious, we directly provide the results below.

∑
v:1⩽d(u,v)⩽3

#(a) =
∑

v:1⩽d(u,v)⩽2

∑
w∈N1(u)∩N1(v)

C2,3(w, v)

+
∑

v:1⩽d(u,v)⩽3

∑
w∈N1(u)∩N2(v)

C2,3(w, v)
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− 4C5(u)− TR2(u), (124)∑
v:1⩽d(u,v)⩽3

#(b) =
∑

v:1⩽d(u,v)⩽2

∑
w∈N1(u)∩N1(v)

P2(u,w)P3(w, v)

−
∑

v∈N1(u)

∑
w∈N1(u)∩N1(v)

P2(u,w)(P2(u,w)− 1)

−
∑

v∈N1(u)

∑
w∈N1(u)∩N1(v)

P2(w, v)(P2(w, v)− 1)

− CC1(u)− 2CC2(u)− 4TR1(u)− TR2(u), (125)∑
v:1⩽d(u,v)⩽3

#(c) =
∑

v:1⩽d(u,v)⩽2

∑
w∈N1(u)∩N1(v)

P2(u,w)P2(w, v)(P2(w, v)− 1)

+
∑

v:1⩽d(u,v)⩽3

∑
w∈N1(u)∩N2(v)

P2(u,w)P2(w, v)(P2(w, v)− 1)

− 2TR2(u)− 4CC2(u), (126)∑
v:1⩽d(u,v)⩽3

#(d) =
∑

v:1⩽d(u,v)⩽2

∑
w∈N1(u)∩N1(v)

P2(u,w)P2(w, v)(P2(u,w)− 1)

+
∑

v:1⩽d(u,v)⩽3

∑
w∈N2(u)∩N1(v)

P2(u,w)P2(w, v)(P2(u,w)− 1)

−
∑

v∈N1(u)

∑
w∈N1(u)∩N1(v)

P2(u,w)(P2(u,w)− 1)

− 4CC1(u)− 4TR3(u), (127)∑
v:1⩽d(u,v)⩽3

#(e) =
∑

v:1⩽d(u,v)⩽2

∑
w∈N1(u)∩N1(v)

P3(u,w)P2(w, v)

− 2
∑

v∈N1(u)

∑
w∈N1(u)∩N1(v)

P2(w, v)(P2(w, v)− 1)

+ 2CC1(u)− 2CC2(u)− TR2(u)− 2TR3(u), (128)∑
v:1⩽d(u,v)⩽3

#(f) =
∑

v:1⩽d(u,v)⩽2

∑
w∈N1(u)∩N1(v)

C2,3(u,w)

+
∑

v:1⩽d(u,v)⩽3

∑
w∈N2(u)∩N1(v)

C2,3(u,w)

− 4C5(u)− TR3(u), (129)∑
v:1⩽d(u,v)⩽3

#(g) =
∑

v:1⩽d(u,v)⩽2

∑
w∈N1(u)∩N1(v)

P2(u,w)P2(w, v)

+
∑

v:1⩽d(u,v)⩽3

∑
w∈N2(u)∩N1(v)

P2(u,w)P2(w, v)

− 2CC2(u)− C(tailed triangle, u,G), (130)∑
v:1⩽d(u,v)⩽3

#(h) =
∑

v:1⩽d(u,v)⩽2

∑
w∈N1(u)∩N1(v)

T (u,w)

+
∑

v:1⩽d(u,v)⩽3

∑
w∈N2(u)∩N1(v)

T (u,w)

− 4C(tailed triangle, u,G), (131)∑
v:1⩽d(u,v)⩽3

#(i) = TR1(u), (132)

∑
v:1⩽d(u,v)⩽3

#(j) =
∑

v∈N1(u)

∑
w∈N1(u)∩N1(v)

P2(w, v)(P2(w, v)− 1)− 4CC1(u), (133)
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∑
v:1⩽d(u,v)⩽3

#(k) =
∑

v:1⩽d(u,v)⩽2

∑
w∈N1(u)∩N1(v)

P2(u,w)P2(w, v)

+
∑

v:1⩽d(u,v)⩽3

∑
w∈N1(u)∩N2(v)

P2(u,w)P2(w, v)

− 3
∑

v:1⩽d(u,v)⩽2

T (v, u)− 4C3(u)(d(u)− 2), (134)

∑
v:1⩽d(u,v)⩽3

#(l) = TR3(u). (135)

Combining the above results, we conclude that the theorem holds.

D Comparison between d-DRFWL(2) and localized FWL(2)

As mentioned in Section 5 of the main paper, d-DRFWL(2) can be seen as a sparse version of FWL(2).
Another representative of this class of methods (adding sparsity to FWL(2)) is the localized FWL(2),
proposed by Zhang et al. [58]. In [58], two instances of localized FWL(2) are provided, i.e., LFWL(2)
and SLFWL(2). Different from d-DRFWL(2), both LFWL(2) and SLFWL(2) assign a color W (u, v)
to every 2-tuple (u, v) ∈ V2

G, for any given graph G. Therefore, their space complexity is equal to
that of FWL(2), namely O(n2). The major difference between LFWL(2)/SLFWL(2) and FWL(2)
is in their update rules. Similar to FWL(2), both LFWL(2) and SLFWL(2) update W (u, v) using a
multiset of the form {{(W (w, v),W (u,w))}}. However, for LFWL(2), we restrict w to be in N (v);
for SLFWL(2), we restrict w to be in N (u) ∪ N (v). Since restricting the range of w reduces the
multiset size from O(n) (as in FWL(2)) to O(deg), the time complexity of LFWL(2) and SLFWL(2)
is O(n2 deg), which is usually much lower than the O(n3) time complexity of FWL(2).

We now compare d-DRFWL(2) with LFWL(2)/SLFWL(2) in terms of discriminative power. We
have the following results:

• No d-DRFWL(2) with a fixed d value can be more powerful than LFWL(2) or
SLFWL(2). This is because for any finite d, we can construct graph pairs that are separable
by LFWL(2) and SLFWL(2) but not separable by d-DRFWL(2). One of such graph pairs
can be two (3d+ 1)-cycles and one (6d+ 2)-cycle, between which d-DRFWL(2) cannot
discriminate (as shown in the proof of Theorem 3.2). However, since both LFWL(2) and
SLFWL(2) can calculate distance between every pair of nodes (following a procedure con-
structed in the proof of Theorem 3.2), it is easy for LFWL(2) or SLFWL(2) to distinguish
between the aforementioned pair of graphs, since they have different diameters.

• With sufficiently large d, d-DRFWL(2) is not less powerful than LFWL(2) or
SLFWL(2). This is because for graphs with diameter ⩽ d, d-DRFWL(2) has equal power to
FWL(2). Since it is shown in [58] that there exist graph pairs separable by FWL(2) but not
separable by LFWL(2) or SLFWL(2), once the value of d grows larger than the diameters of
such graph pairs, those graph pairs can be separated by d-DRFWL(2) but not LFWL(2) or
SLFWL(2).

Therefore, for sufficiently large d, the discriminative power of d-DRFWL(2) is neither stronger nor
weaker than LFWL(2) or SLFWL(2). However, it remains unknown the relation in discriminative
power between LFWL(2)/SLFWL(2) and d-DRFWL(2) with a practical d value, such as d = 2 or
d = 3. Are d-DRFWL(2) with those smaller d values less powerful than LFWL(2)/SLFWL(2),
or are they incomparable? We leave this question open for future research.

E Experimental details

E.1 Model implementation

Let G be a graph with node features fu, u ∈ VG and edge features euv, {u, v} ∈ EG. In most of our
experiments, we implement d-DRFWL(2) GNNs as following: we generate h

(0)
uv as
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h(0)
uv =

{
LIN0(fu), if d(u, v) = 0,
LIN1(fu + fv, euv), if d(u, v) = 1,
LINk(fu + fv), if d(u, v) = k ⩾ 2,

(136)

where LINi, i = 0, 1, . . . , d are linear functions. When node and edge features are absent, we assign
identical values to h

(0)
uv with the same d(u, v).

The m
(t)
ijk and f

(t)
k functions in (10) and (11) are chosen as

m
(t)
ijk

(
h(t−1)
wv , h(t−1)

uw

)
= ReLU

(
LIN(t)

(
h(t−1)
wv + h(t−1)

uw

))
, (137)

f
(t)
k

(
h(t−1)
uv ,

(
aijk(t)uv

)
0⩽i,j⩽d

)
= h(t−1)

uv +MLP
(t)
k

(
(1 + ϵ)h(t−1)

uv

+
∑

|i−j|⩽k⩽i+j
0⩽i,j⩽d

LIN
(t)
{{i,j,k}}

(
aijk(t)uv

))
, (138)

where LIN(t) in (137) is a linear module whose parameters are shared among all i, j, k combi-
nations; LIN(t)

{{i,j,k}} in (138) is a linear module whose parameters are shared among all i, j, k
that form the same multiset {{i, j, k}} (for example, the contributions a122uv , a212uv and a221uv are all
linearly transformed by an identical LIN(t)

{{1,2,2}}); MLP
(t)
k is a multilayer perceptron, and can depend

on k; ϵ can be a constant or a learnable parameter. After the d-DRFWL(2) GNN layers, we apply a
sum-pooling layer

R
(
{{h(T )

uv : (u, v) ∈ V2
G and 0 ⩽ d(u, v) ⩽ d}}

)
=

∑
0⩽d(u,v)⩽d

h(T )
uv , (139)

and then a final MLP.

We point out that our implementation of d-DRFWL(2) GNNs has the property h
(t)
uv = h

(t)
vu , for any

u, v ∈ VG with 0 ⩽ d(u, v) ⩽ d, and for any t = 0, 1, . . . , T . We call an instance of d-DRFWL(2)
GNN symmetrized, if it preserves the above property. It is obvious that symmetrized d-DRFWL(2)
GNNs only constitute a subspace of the function space of all d-DRFWL(2) GNNs.

Nevertheless, we remark that for the case of d = 2, symmetrized 2-DRFWL(2) GNNs have equal
node-level cycle counting power to 2-DRFWL(2) GNNs. Actually, in the proofs of Lemmas C.7–
C.19 and Theorems 4.4–4.6 (see Appendix C for details), all the 2-DRFWL(2) tests we constructed
have the property W (t)(u, v) = W (t)(v, u), for any u, v ∈ VG with 0 ⩽ d(u, v) ⩽ 2 and any t; on
the other hand, it is easy to establish the equivalence between such kind of 2-DRFWL(2) tests and
symmetrized 2-DRFWL(2) GNNs. Similar facts can be verified for d-DRFWL(2) GNNs with d = 1
or d = 3. Therefore, at least for all our experiments (where d ⩽ 3), our symmetrized implementation
of d-DRFWL(2) GNNs does no harm to their theoretical cycle counting power, although the model is
greatly simplified.

E.2 Experimental settings

E.2.1 Substructure counting

Datasets. The synthetic dataset is provided by open-source code of GNNAK on github. The
node-level substructure counts are calculated by simple DFS algorithms, which we implement in C
language. (This part of code is also available in our repository.)

Models. Implementations of all baseline methods (MPNN, ID-GNN, NGNN, GNNAK+, PPGN
and I2-GNN) follow [33]. For d-DRFWL(2) GNN (d = 1, 2, 3), we use 5 d-DRFWL(2) GNN layers.
In each layer (numbered by t = 1, . . . , 5), MLP

(t)
k is a 2-layer MLP, for k = 0, 1, . . . , d. (See (138)

for the definition of MLP
(t)
k .) The embedding size is 64.
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Training settings. We use Adam optimizer with initial learning rate 0.001, and use plateau scheduler
with patience 10, decay factor 0.9 and minimum learning rate 10−5. We train our model for 2,000
epochs. The batch size is 256.

E.2.2 Molecular property prediction

Datasets. The QM9 and ZINC datasets are provided by PyTorch Geometric package [22]. The
ogbg-molhiv and ogbg-molpcba datasets are provided by Open Graph Benchmark (OGB) [31]. We
rewrite preprocessing code for all four datasets.

The training/validation/test splitting for QM9 is 0.8/0.1/0.1. The training/validation/test splittings for
ZINC, ogbg-molhiv and ogbg-molpcba are provided in the original releases.

Models. For QM9, we adopt a 2-DRFWL(2) GNN with 5 2-DRFWL(2) GNN layers. In each layer
(numbered by t = 1, . . . , 5), MLP

(t)
k is a 2-layer MLP, for k = 0, 1, 2. The embedding size is 64.

For ZINC, we adopt a simplified version of 3-DRFWL(2) GNN, which only adds terms a313uv , a133uv
and a331uv to the update rules (10) and (11) of a 2-DRFWL(2) GNN. Notice that the adopted model
architecture is slightly different from the one described in Appendix E.1. This is because we
observe that including other kinds of message passing in 3-DRFWL(2) GNN does not improve the
performance on ZINC. The adopted 3-DRFWL(2) GNN has 6 3-DRFWL(2) GNN layers. In each
layer (numbered by t = 1, . . . , 6), MLP

(t)
k is a 2-layer MLP, for k = 0, 1, 2, 3. The embedding size

is 64. We apply batch normalization between every two 3-DRFWL(2) GNN layers.

For ogbg-molhiv, we also adopt a simplified version of 2-DRFWL(2) GNN; namely, we remove the
term a222uv in the update rules of the original 2-DRFWL(2) GNN. The adopted 2-DRFWL(2) GNN
has 5 2-DRFWL(2) GNN layers. In each layer (numbered by t = 1, . . . , 5), MLP

(t)
k is a 2-layer

MLP, for k = 0, 1, 2. The embedding size is 300. We apply a dropout layer with p = 0.2 after every
2-DRFWL(2) GNN layer.

For ogbg-molpcba, we adopt a 2-DRFWL(2) GNN with 3 2-DRFWL(2) GNN layers. In each layer
(numbered by t = 1, 2, 3), MLP

(t)
k is a 2-layer MLP, with layer normalization applied after every

MLP layer, for k = 0, 1, 2. The embedding size is 256. We apply layer normalization between every
two 2-DRFWL(2) GNN layers, and also apply a dropout layer with p = 0.2 after every 2-DRFWL(2)
GNN layer.

Training settings. For QM9, we use the Adam optimizer, and use plateau scheduler with patience
10, decay factor 0.9 and minimum learning rate 10−5. For each of the 12 targets on QM9, we
search hyperparameters from the following space: (i) initial learning rate ∈ {0.001, 0.002, 0.005};
(ii) whether to apply layer normalization between every two 2-DRFWL(2) GNN layers (yes/no). We
train our model for 400 epochs. The batch size is 64.

For both ZINC-12K and ZINC-250K, we use Adam optimizer with initial learning rate 0.001. For
ZINC-12K, we use plateau scheduler with patience 20, decay factor 0.5 and minimum learning rate
10−5; for ZINC-250K, we use plateau scheduler with patience 25, decay factor 0.5 and minimum
learning rate 5 × 10−5. We train our model for 500 epochs on ZINC-12K and 800 epochs on
ZINC-250K. The batch size is 128.

For both ogbg-molhiv and ogbg-molpcba, we use Adam optimizer with initial learning rate 0.0005.
For ogbg-molhiv, we use step scheduler with step size 20 and decay factor 0.5. We train our model
for 100 epochs and the batch size is 64. For ogbg-molpcba, we use step scheduler with step size 10
and decay factor 0.8. We train our model for 150 epochs and the batch size is 256.

F Additional experiments

In Appendix F, we present

• Experiments that answer Q4 in Section 6 of the main paper;

• Ablation studies on the substructure counting power of 2-DRFWL(2) GNNs;
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• Additional experiments that study the performance of d-DRFWL(2) GNNs on molecular
datasets;

• Experiments that study the ability of d-DRFWL(2) GNNs to capture long-range interactions;

• Additional experiments that study the cycle counting power and empirical efficiency of
2-DRFWL(2) GNNs on larger graphs.

F.1 Discriminative power

Datasets. To answer Q4, we evaluate the discriminative power on three synthetic datasets: (1)
EXP [1], containing 600 pairs of non-isomorphic graphs that cannot be distinguished by the WL(1)
test; (2) SR25 [6], containing 15 non-isomorphic strongly regular graphs that the FWL(2) test fails to
distinguish; (3) BREC [51], containing 400 pairs of non-isomorphic graphs generated from a variety
of sources.

For EXP, we follow the evaluation process in [59], use 10-fold cross validation, and report the average
binary classification accuracy; for SR25, we follow [60], treat the task as a 15-way classification, and
report the accuracy. Raw data for both EXP and SR25 datasets are provided by open-source code of
GNNAK on github.

For BREC, we use Reliable Paired Comparison (RPC) as the evaluation method, following [51]. For
every graph pair (G,H), the RPC procedure consists of two stages: major procedure and reliability
check.

• In the major procedure, we generate q = 32 copies (Gi, Hi) of (G,H), i = 1, . . . , q. The
copies Gi and Hi (i = 1, . . . , q) are obtained by randomly relabeling nodes in G and H ,
respectively. We then apply a Hotelling’s T 2 test to check whether we should reject the null
hypothesis H0 : Erelabel[f(G)− f(H)] = 0, meaning that the model f cannot distinguish
between G and H .

• In the reliability check, we replace Hi in each copy (Gi, Hi) with Gπ
i , which is obtained by

randomly relabeling nodes in Gi, for i = 1, . . . , q. We then apply a second T 2 test to check
whether we should reject the null hypothesis H ′

0 : Erelabel[f(G)−f(Gπ)] = 0, meaning that
the representations of two isomorphic graphs will not deviate too much from one another
due to numerical errors.

Finally, G and H are considered separable by f iff we should reject H0 but should not reject H ′
0.

The detailed description of the RPC procedure is provided in [51].

Table 5: Accuracy on EXP/SR25.

Method EXP SR25
GIN 50% 6.67%
Nested GIN 99.9% 6.67%
GIN-AK+ 100% 6.67%
PPGN 100% 6.67%
3-GCN 99.7% 6.67%
I2-GNN 100% 100%
2-DRFWL(2) GNN 99.8% 6.67%
3-DRFWL(2) GNN 100% 6.67%

Baselines. For EXP and SR25, baseline methods are
chosen from: (1) Basic MPNNs. These methods have
discriminative power upper-bounded by the WL(1) test,
and we choose GIN [55], which can achieve WL(1)
expressive power theoretically. (2) Subgraph MPNNs.
These methods are strictly more powerful than WL(1)
but strictly upper-bounded by the FWL(2) test [58]. We
choose Nested GIN [59] and GIN-AK+ [60]. (3) Higher-
order GNNs with expressive power equal to FWL(2). We
choose PPGN [42] and 3-GCN [1]. (4) Methods with
discriminative power partially stronger than FWL(2), e.g.
I2-GNN [33].
For BREC, the complete list of baseline results is given
in Table 2 of [51]. We select 3-WL, NGNN, NGNN with
distance encoding (DE), SUN [24], SSWL_P [58], GNN-
AK, I2-GNN and PPGN as our baselines.

Models. We evaluate both 2-DRFWL(2) GNN and 3-DRFWL(2) GNN on the three datasets. On
all three datasets, we adopt a d-DRFWL(2) GNN with 5 d-DRFWL(2) GNN layers (d = 2 or 3). In
each layer (numbered by t = 1, . . . , 5), MLP

(t)
k is a 2-layer MLP, for k = 0, . . . , d. The embedding

size is 64 for EXP/SR25, and 32 for BREC.
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Training settings. For both EXP and SR25 datasets, we use Adam optimizer with learning rate
0.001. We train our model for 10 epochs on EXP and 100 epochs on SR25. The batch size is 20 on
EXP and 64 on SR25. For BREC, we use Adam optimizer with learning rate 0.0001. We train for 10
epochs and the batch size is 32.

Results. We can see from Table 5 that 2-DRFWL(2) GNN already achieves 99.8% accuracy
on the EXP dataset, while 3-DRFWL(2) GNN achieves 100% accuracy. This complies with our
theoretical result (Theorem 3.1) that d-DRFWL(2) GNNs are strictly more powerful than WL(1);
moreover, 3-DRFWL(2) GNN achieves higher accuracy than 2-DRFWL(2) GNN, verifying the
expressiveness hierarchy we obtain in Theorem 3.2. Table 5 also shows that both 2-DRFWL(2)
GNN and 3-DRFWL(2) GNN fail on SR25 with a 1/15 accuracy. This verifies our assertion that
d-DRFWL(2) GNNs are strictly less powerful than FWL(2).

Table 6: Numbers of distinguishable graph pairs on BREC.
Method Basic (60) Regular (140) Extension (100) CFI (100) Total (400)
3-WL 60 50 100 60 270
NGNN 59 48 59 0 166
NGNN+DE 60 50 100 21 231
SUN 60 50 100 13 223
SSWL_P 60 50 100 38 248
GNN-AK 60 50 97 15 222
I2-GNN 60 100 100 21 281
PPGN 60 50 100 23 233
2-DRFWL(2) GNN 60 50 99 0 209
3-DRFWL(2) GNN 60 50 100 13 223

The experimental results on BREC are shown in Table 6. Since the 400 graph pairs in BREC are
categorized into four classes—basic graphs (60 pairs), regular graphs (140 pairs), extension graphs
(100 pairs) and CFI graphs (100 pairs), we report the number of distinguishable graph pairs in each
class, and also the total number. From Table 6, it is easy to observe the expressiveness gap between
d-DRFWL(2) and 3-WL (which has equal discriminative power to FWL(2)), and the gap between
2-DRFWL(2) and 3-DRFWL(2). This again verifies Theorem 3.2.

F.2 Ablation studies on substructure counting

We study the impact of different kinds of message passing in 2-DRFWL(2) GNNs on their substructure
(especially, cycle) counting power, by comparing the full 2-DRFWL(2) GNN with modified versions
in which some kinds of message passing are forbidden. The dataset, model hyperparameters and
training settings are the same as those in Appendix E.2.1.

Table 7: Ablation studies of node-level counting substructures on synthetic dataset. The colored cell
means an error less than 0.01.

Method
Synthetic (norm. MAE)

3-Cyc. 4-Cyc. 5-Cyc. 6-Cyc. Tail. Tri. Chor. Cyc. Tri.-Rect.
2-DRFWL(2) GNN 0.0004 0.0015 0.0034 0.0087 0.0030 0.0026 0.0070
2-DRFWL(2) GNN
(w/o distance-0 tuples) 0.0006 0.0017 0.0035 0.0092 0.0030 0.0030 0.0070

2-DRFWL(2) GNN
(w/o a222uv ) 0.0006 0.0013 0.0033 0.0448 0.0029 0.0029 0.0067

2-DRFWL(2) GNN
(w/o a222uv , a122uv ,a212uv , a221uv ) 0.0004 0.0009 0.0852 0.0735 0.0020 0.0020 0.0051

1-DRFWL(2) GNN 0.0002 0.0379 0.1078 0.0948 0.0037 0.0013 0.0650
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Results. From Table 7, we see that by removing the term a222uv in (11) (i.e., by forbidding a distance-
2 tuple (u, v) to receive messages from other two distance-2 tuples (u,w) and (w, v)), we make
2-DRFWL(2) GNN unable to node-level count 6-cycles. This complies with our intuitive discussion
at the end of Section 4 that such kind of message passing is essential for identifying closed 6-walks,
and thus for counting 6-cycles.

Similarly, if we further remove a122uv , a212uv and a221uv , then 2-DRFWL(2) GNN will be unable to count
5-cycles. If a121uv , a211uv and a112uv are also removed, the 2-DRFWL(2) GNN actually degenerates into
1-DRFWL(2) GNN, and becomes unable to count 4-cycles and triangle-rectangles (the latter also
containing a 4-cycle as its subgraph). Finally, we can see from Table 7 that even 1-DRFWL(2) GNN
can count 3-cycles, tailed triangles and chordal cycles, since the numbers of these substructures only
depend on the number of closed 3-walks.

We also study the effect of distance-0 tuples in 2-DRFWL(2) GNN. Removing embeddings for those
tuples does not affect the theoretical counting power of 2-DRFWL(2) GNN, but we observe that the
empirical performance on counting tasks slightly drops, possibly due to optimization issues.

F.3 Additional experiments on molecular datasets

In the following, we present the results on ZINC, ogbg-molhiv and ogbg-molpcba datasets.

Table 8: Ten-runs MAE results on ZINC-12K (smaller the better), four-runs MAE results on ZINC-
250K (smaller the better), ten-runs ROC-AUC results on ogbg-molhiv (larger the better), and four-
runs AP results on ogbg-molpcba (larger the better). The * indicates the model uses virtual node on
ogbg-molhiv and ogbg-molpcba.

Method ZINC-12K (MAE) ZINC-250K (MAE) ogbg-molhiv (AUC) ogbg-molpcba (AP)
GIN* 0.163±0.004 0.088±0.002 77.07±1.49 27.03±0.23
PNA 0.188±0.004 – 79.05±1.32 28.38±0.35
DGN 0.168±0.003 – 79.70±0.97 28.85±0.30
HIMP 0.151±0.006 0.036±0.002 78.80±0.82 –
GSN 0.115±0.012 – 80.39±0.90 –
Deep LRP – – 77.19±1.40 –
CIN-small 0.094±0.004 0.044±0.003 80.05±1.04 –
CIN 0.079±0.006 0.0220.0220.022±0.002 80.9480.9480.94±0.57 –
Nested GIN* 0.111±0.003 0.029±0.001 78.34±1.86 28.32±0.41
GNNAK+ 0.080±0.001 – 79.61±1.19 29.3029.3029.30±0.44
SUN (EGO) 0.083±0.003 – 80.03±0.55 –
I2-GNN 0.083±0.001 0.023±0.001 78.68±0.93 –
d-DRFWL(2) GNN 0.0770.0770.077±0.002 0.025±0.003 78.18±2.19 25.38±0.19

F.4 Long-range interactions

In 6.2 of the main paper, we mention that 2-DRFWL(2) GNN greatly outperforms subgraph GNNs
like NGNN or I2-GNN on the targets U0, U,H and G of the QM9 dataset, a phenomenon we ascribe
to the stronger ability of 2-DRFWL(2) GNN to capture long-range interactions. Actually, a bit
knowledge from physical chemistry tells us that the targets U0, U,H and G not only depend on the
chemical bonds between atoms, but also the intermolecular forces (such as hydrogen bonds). Such
intermolecular forces can exist between atoms that are distant from each other on the molecular graph
(since the two atoms belong to different molecules). However, most subgraph GNNs process the
input graphs by extracting k-hop subgraphs around each node, usually with a small k. This operation
thus prevents information from propagating between nodes that are more than k-hop away from
one another, and makes subgraph GNNs fail to learn the long-range interactions that are vital for
achieving good performance on the targets U0, U,H and G. In contrast, 2-DRFWL(2) GNN directly
performs message passing between distance-restricted 2-tuples on the raw graph, resulting in its
capability to capture such long-range interactions.

So far, it remains an interesting question whether 2-DRFWL(2) GNNs’ ability to capture long-range
interactions is comparable with that of globally expressive models, such as k-GNNs [44] or GNNs
based on SSWL, LFWL(2) or SLFWL(2) [58]. Those models keep embeddings for all possible
k-tuples v ∈ Vk

G (instead of only distance-restricted ones). In this sense, they treat the input graphs
as fully-connected ones, and presumably have stronger capability to learn long-range dependencies
than 2-DRFWL(2) GNNs. We verify this assertion by comparing the performance of 2-DRFWL(2)
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Table 9: MAE results on QM9 (smaller the better).
Target 1-GNN 1-2-GNN 1-2-3-GNN SSWL+ LFWL(2) SLFWL(2) 2-DRFWL(2) GNN
µ 0.493 0.493 0.476 0.418 0.439 0.435 0.346
α 0.78 0.27 0.27 0.271 0.315 0.289 0.222
εhomo 0.00321 0.00331 0.00337 0.00298 0.00332 0.00308 0.00226
εlumo 0.00355 0.00350 0.00351 0.00291 0.00332 0.00322 0.00225
∆ε 0.0049 0.0047 0.0048 0.00414 0.00455 0.00447 0.00324
R2 34.1 21.5 22.9 18.36 19.10 18.80 15.04
ZPVE 0.00124 0.00018 0.00019 0.00020 0.00022 0.00020 0.00017
U0 2.32 0.0357 0.0427 0.110 0.144 0.083 0.156
U 2.08 0.107 0.111 0.106 0.143 0.121 0.153
H 2.23 0.070 0.0419 0.120 0.164 0.124 0.145
G 1.94 0.140 0.0469 0.115 0.164 0.103 0.156
Cv 0.27 0.0989 0.0944 0.1083 0.1192 0.1167 0.0901

Table 10: Four-runs results on Long Range Graph Benchmark. Methods are categorized into: MPNNs,
Transformer-based methods, our method.

Method Peptides-func (AP ↑) Peptides-struct (MAE ↓)
GCN 0.5930 ± 0.0023 0.3496 ± 0.0013
GCNII 0.5543 ± 0.0078 0.3471 ± 0.0010
GINE 0.5498 ± 0.0079 0.3547 ± 0.0045
GatedGCN 0.5864 ± 0.0077 0.3420 ± 0.0013
GatedGCN+RWSE 0.6069 ± 0.0035 0.3357 ± 0.0006
Transformer+LapPE 0.6326 ± 0.0126 0.2529 ± 0.0016
SAN+LapPE 0.6384 ± 0.0121 0.2683 ± 0.0043
SAN+RWSE 0.6439 ± 0.0075 0.2545 ± 0.0012
2-DRFWL(2) GNN 0.5953 ± 0.0048 0.2594 ± 0.0038

GNN on QM9 with that of 1-2-GNN, 1-2-3-GNN, SSWL+ GNN, LFWL(2) GNN and SLFWL(2)
GNN, among which the first two are proposed by Morris et al. [44], and the others by Zhang et al.
[58]. We also include the result of 1-GNN for reference.

We present the results in Table 9. The baseline results for 1-GNN, 1-2-GNN and 1-2-3-GNN are
from [44]. For experiments on SSWL+ GNN, LFWL(2) GNN and SLFWL(2) GNN, we implement
the three models following the style of PPGN [42]; namely, we use a B × d× nmax × nmax matrix
to store the embeddings of all 2-tuples within a batch, with B being the batch size, d being the size of
the embedding dimension, and nmax being the maximal number of nodes among all graphs in the
batch.

For each of SSWL+, LFWL(2) and SLFWL(2), we use 5 layers with embedding size 64, and apply
layer normalization after each layer. We train for 400 epochs using Adam optimizer with initial
learning rate searched from {0.001, 0.002}, and plateau scheduler with patience 10, decay factor 0.9
and minimum learning rate 10−5. The batch size is 64. We report the best MAE (mean absolute
error) for each target. The experimental details for 2-DRFWL(2) GNN follow Appendix E.2.2.

From Table 9, we see that although 2-DRFWL(2) GNN outperforms all baseline methods on 8 out of
the 12 targets, its performance is inferior to globally expressive models on the targets U0, U,H and
G. This result implies that the ability of 2-DRFWL(2) GNN to capture long-range interactions is
weaker than globally expressive models.

We also evaluate the performance of 2-DRFWL(2) GNN on the Long Range Graph Benchmark
(LRGB) [21]. LRGB is a collection of graph datasets suitable for testing GNN models’ power to
learn from long-range interactions. We select the two graph-level property prediction datasets,
Peptides-func and Peptides-struct, from LRGB. The task of Peptides-func is multi-
label binary classification, and the average precision (AP) is adopted as the metric. The task
of Peptides-struct is multi-label regression, and the mean absolute error (MAE) is adopted as
the metric.
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For experiments on both datasets, we use 5 2-DRFWL(2) GNN layers with hidden size 120. We
train 200 epochs using Adam optimizer with initial learning rate 0.001, and plateau scheduler with
patience 10, decay factor 0.5, and minimal learning rate 10−5. The batch size is 64. We also list
all baseline results given in [21], including MPNNs like GCN [36], GCNII [13], GINE [30, 55] and
GatedGCN [11], as well as Transformer-based models like fully connected Transformer [49] with
Laplacian PE (LapPE) [19, 20] and SAN [38]. The results are shown in Table 10.

From Table 10, we see that 2-DRFWL(2) GNN outperforms almost all MPNNs. Surprisingly, on
Peptides-struct the performance of 2-DRFWL(2) GNN is even comparable to Transformer-based
methods (which inherently capture long-range information by treating the graph as fully connected).
Therefore, we conclude that although designed to capture local structural information, our model still
possesses the ability to learn long-range dependencies.

F.5 Additional experiments on cycle counting power and scalability

Datasets. To further compare the cycle counting power and scalability of d-DRFWL(2) GNNs
(especially for the case of d = 2) with other powerful GNNs, we perform node-level cycle counting
tasks on two protein datasets, ProteinsDB and HomologyTAPE, collected from [29]. We evaluate
the performance and empirical efficiency of 2-DRFWL(2) GNN as well as baseline models such as
MPNN, NGNN, I2-GNN and PPGN, on both datasets.

The official code of [29] provides raw data for three protein datasets—“Enzymes vs Non-Enzymes”,
“Scope 1.75” and “Protein Function”. All three datasets contain graphs that represent protein
molecules, in which nodes represent amino acids, and edges represent the peptide bonds or hy-
drogen bonds between amino acids. Each of the three datasets contains a number of directed graphs,
in which only a small portion of edges are directed.

We collect the first two datasets from the three and convert all graphs to undirected graphs by adding
inverse edges for the directed edges. Since we are only interested in cycle counting tasks, we remove
node features (e.g., amino acid types, spatial positions of amino acids) and edge features (e.g., whether
the bond is a peptide bond or a hydrogen bond). The node-level cycle counts are generated by the
same method as the one described in Appendix E.2.1. We then rename the two processed datasets as
ProteinsDB and HomologyTAPE respectively. (The new names of the datasets correspond to their
original .zip file names.)

Some statistics of the two processed datasets are shown in Table 11. We also show the statistics of
some other datasets we use in Table 12. From Table 11 and Table 12 we can see that the graphs in
ProteinsDB and HomologyTAPE datasets are much larger than those in QM9, ZINC, ogbg-molhiv,
ogbg-molpcba or the synthetic dataset, thus suitable for evaluating the scalability of GNN models.

Table 11: Statistics of two protein datasets.

Dataset Number of graphs Average number of nodes Average number of edges
ProteinsDB 1,178 475.9 714.8
HomologyTAPE 16,292 167.3 256.7

Table 12: Statistics of other datasets we use.

Dataset Number of graphs Average number of nodes Average number of edges
Synthetic 5,000 18.8 31.3
QM9 130,831 18.0 18.7
ZINC-12K 12,000 23.2 24.9
ZINC-250K 249,456 23.2 24.9
ogbg-molhiv 41,127 25.5 27.5
ogbg-molpcba 437,929 26.0 28.1
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Table 13: Average normalized MAE results of node-level counting cycles on ProteinsDB and
HomologyTAPE datasets. The colored cell means an error less than 0.002 (for ProteinsDB) or 0.0002
(for HomologyTAPE). “Out of GPU Memory” means the method takes an amount of GPU memory
more than 24 GB.

Method
ProteinsDB HomologyTAPE

3-Cycle 4-Cycle 5-Cycle 6-Cycle 3-Cycle 4-Cycle 5-Cycle 6-Cycle
MPNN 0.422208 0.223064 0.254188 0.203454 0.185634 0.162396 0.211261 0.158633
NGNN 0.000070 0.000189 0.003395 0.009955 0.000003 0.000016 0.003706 0.002541
I2-GNN Out of GPU Memory 0.000002 0.000010 0.000069 0.000177
PPGN Out of GPU Memory Out of GPU Memory
2-DRFWL(2) GNN 0.000077 0.000192 0.000317 0.001875 0.000001 0.000007 0.000021 0.000178

Table 14: Empirical efficiency on ProteinsDB and HomologyTAPE datasets. “OOM” means the
method takes an amount of GPU memory more than 24 GB.

Method
ProteinsDB HomologyTAPE

Memory (GB) Pre. (s) Train (s/epoch) Memory (GB) Pre. (s) Train (s/epoch)
MPNN 2.60 235.7 0.597 1.99 243.8 5.599
NGNN 16.94 941.8 2.763 8.44 1480.7 15.249
I2-GNN OOM 1293.4 OOM 21.97 3173.6 38.201
PPGN OOM 235.7 OOM OOM 243.8 OOM
2-DRFWL(2) GNN 8.11 1843.7 3.809 3.82 2909.3 30.687

For ProteinsDB, we use 10-fold cross validation and report the average normalized MAE for each
counting task. We use the splitting provided in the raw data.

For HomologyTAPE, there are three test splits in the raw data, called “test_fold”, “test_family”
and “test_superfamily” respectively. The training/validation/test_fold/test_family/test_superfamily
splitting is 12,312/736/718/1,272/1,254. We report the weighted average normalized MAE on the
three test splits for each counting task.

Models. We adopt MPNN, NGNN, I2-GNN and PPGN as our baselines. The implementation
details of 2-DRFWL(2) GNN as well as all baseline methods follow Appendix E.2.1, except that
(i) for NGNN and I2-GNN, the subgraph height is 3 for all tasks, and (ii) for PPGN, the number of
PPGN layers is 5 and the embedding size is 64.

Training settings. We use Adam optimizer with initial learning rate 0.001, and use plateau scheduler
with patience 10, decay factor 0.9 and minimum learning rate 10−5. We train all models for 1,500
epochs on ProteinsDB and 2,000 epochs on HomologyTAPE. The batch size is 32.

Results. From Table 13, we see that 2-DRFWL(2) GNN achieves relatively low errors (average
normalized MAE < 0.002 for ProteinsDB, and < 0.0002 for HomologyTAPE) for counting all 3, 4,
5 and 6-cycles on both datasets. This again verifies our theoretical result (Theorem 4.5). Although
I2-GNN and PPGN are also provably capable of counting up to 6-cycles, PPGN fails to scale to
either ProteinsDB or HomologyTAPE dataset, while I2-GNN fails to scale to ProteinsDB. Therefore,
2-DRFWL(2) GNN maintains good scalability compared with other existing GNNs that can count up
to 6-cycles.

We also measure (i) the maximal GPU memory usage during training, (ii) the preprocessing time,
and (iii) the training time per epoch, for all models on both datasets. The result is shown in Table 14.
We again see that 2-DRFWL(2) GNN uses much less GPU memory while training, compared with
subgraph GNNs. Besides, the training time of 2-DRFWL(2) GNN is shorter than that of I2-GNN,
while the preprocessing time is comparable.

From Table 14, we also see one limitation of our implementation of 2-DRFWL(2) GNN, which we
have mentioned in Section 7—the preprocessing of 2-DRFWL(2) GNN is not efficient enough on
larger graphs or graphs with a larger average degree. We believe this limitation can be addressed by
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developing more efficient, parallelized operators for the preprocessing of 2-DRFWL(2) GNN, and
we leave the exploration of such implementations to future work.
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