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Abstract

Spatial down-sampling techniques, such as strided convolution, Gaussian, and
Nearest down-sampling, are essential in deep neural networks. In this paper, we
revisit the working mechanism of the spatial down-sampling family and analyze
the biased effects caused by the static weighting strategy employed in previous
approaches. To overcome the bias limitation, we propose a novel down-sampling
paradigm in the Fourier domain, abbreviated as FouriDown, which unifies existing
down-sampling techniques. Drawing inspiration from the signal sampling theorem,
we parameterize the non-parameter static weighting down-sampling operator as a
learnable and context-adaptive operator within a unified Fourier function. Specif-
ically, we organize the corresponding frequency positions of the 2D plane in a
physically-closed manner within a single channel dimension. We then perform
point-wise channel shuffling based on an indicator that determines whether a chan-
nel’s signal frequency bin is susceptible to aliasing, ensuring the consistency of the
weighting parameter learning. FouriDown, as a general operator, comprises four
key components: 2D discrete Fourier transform, context shuffling rules, Fourier
weighting-adaptively superposing rules, and 2D inverse Fourier transform. These
components can be easily integrated into existing image restoration networks. To
demonstrate the efficacy of FouriDown, we conduct extensive experiments on
image de-blurring and low-light image enhancement. The results consistently show
that FouriDown can provide significant performance improvements. The code is
publicly available to facilitate further exploration and application of FouriDown at
https://github.com/zqcrafts/FouriDown.

1 Introduction

Down-sampling technique [1, 2, 3] plays a vital role in deep neural networks because of its benefits in
enlarging the receptive field, extracting hierarchical features, improving computational efficiency, and
handling scale and translation variations. However, based on the signal sampling theorem, existing
down-sampling techniques such as strided convolution, Gaussian, and Nearest down-sampling
[1, 4, 5, 6] unavoidably reduce the sampling frequency of discrete signals, leading to unexpected
frequency aliasing where high frequencies are folded into low frequencies.

To address the aliasing problem, several strategies [7, 8, 9, 10, 11, 12, 13] have been developed.
They pre-process the signals applying the low-pass filtering mechanism, which aims to filter out high-
frequency information by employing different types of low-pass designs. There are two commonly
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Figure 1: Comparison on the flowcharts of different down-sampling techniques in 2× scale. The
previous spatial down-sampling community stands on the static weighting templates and is not relevant
with the image context. By contrast, inspired by the signal sampling theorem, we parameterize the
static weighting down-sampling operator as a learnable and context-adaptive operator in a unified
Fourier function.

used types including the ideal low-pass filter that truncates high frequencies in the Fourier domain
and the Gaussian low-pass filter that gradually attenuates frequency components near the boundary.
However, the ideal low-pass filter may introduce ring artifacts due to spectrum leakage, while the
Gaussian low-pass filter may result in a significant loss of edge information that is crucial for visual
recognition tasks.

The prevailing approaches in the down-sampling family rely on a static weighting strategy, which
may lead to unintended biases (See Section 4.4 for details.). As described in Figure 1, strided
convolution and strided pooling variants rely on the static template wi = [0.25, 0.25, 0.25, 0.25] over
the corresponding cornered positions while the ideal low-pass one exploits the wi = [0.25, 0, 0, 0]
weighting template. (See Appendix B for proofs.) All of them are shared over all the coordinated
positions and uninvolved with the feature context. It is widely acknowledged that the static sampling
approach, which lacks contextual relevance, is sub-optimal for visual tasks. Therefore, both bridging
different down-sampling approaches and achieving an optimal approach are desirable, as shown
in Figure 1 where we focus on unifying the down-sampling modeling rules in a learnable and
context-adaptive parameterized function in Fourier domain.

In this study, we delve into the working mechanism of the spatial down-sampling family and ana-
lyze the biased effects resulting from the static weighting strategy used in existing down-sampling
approaches. To solve the bias problem, we propose a novel down-sampling paradigm called Fouri-
Down, which operates in the Fourier domain and adapts the feature sampling based on the image
context. Inspired by the signal sampling theorem, we parameterize the non-parameter static weighting
down-sampling operator as a learnable and context-adaptive operator in a unified Fourier function.
Furthermore, drawing from this insight, we organize the corresponding frequency positions of the 2D
plane, ensuring that they are physically closed in a single channel dimension. We then perform point-
wise channel shuffling based on an indicator that determines whether a channel’s signal frequency bin
is prone to aliasing, thereby maintaining the consistency of the weighting parameter learning. Fouri-
Down, as a generic operator, comprises four key components: 2D discrete Fourier transform, context
shuffling rules, Fourier weighting-adaptively superposing rules, and 2D inverse Fourier transform.
These components can be readily integrated into existing image restoration networks, allowing for a
plug-and-play approach. To verify its efficacy, we conduct extensive experiments across multiple
computer vision tasks, including image de-blurring and low-light image enhancement. The results
demonstrate that FouriDown consistently outperforms the baselines, showcasing its capability of
performance improvement.
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In conclusion, this work propose a novel and unified framework for the research of down-sampling,
which have the following contributions.

1) We provide the first exploration of the aliasing problem in deep neural networks, analyzing it from
a spectrum perspective.

2) To achieve dynamic frequency aliasing, we introduce a unified approach to down-sampling
strategies within the Fourier function. Additionally, we propose a learnable and context-adaptive
down-sampling operator based on the Nyquist signal sampling theorem.

3) Our proposed down-sampling approach serves as a plug-and-play operator, consistently enhancing
the performance of image restoration tasks, such as low-light enhancement and image deblurring.

2 Related Work

2.1 Traditional Down-Sampling

Downsampling is an important and common operator in computer vision [14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25], which benefits from enlarging the receptive field and reducing computational
costs. So many models incorporate downsampling to allow the primary reconstruction components
conducting at a lower resolution. Moreover, with the emergence of increasingly compute-intensive
large models, downsampling becomes especially crucial, particularly for high-resolution input images.

Previous downsampling methods often utilized local spatial neighborhood computations (e.g., Bilin-
ear, Bicubic and MaxPooling), which show decent performances across various tasks. However, these
computations are relatively fixed, making it challenging to maintain consistent performance across
different tasks. To address this, some methods made specific designs to make the downsampling more
efficient in specific tasks. For instance, some works [12, 11, 10, 7]introduce the Gaussian blur kernel
before the downsampling convolution to combat aliasing for better shift-invariance in classification
tasks. Grabinski et al. [26, 27] equip the ideal low-pass filter or the hamming filter into downsampling
to enhance model robustness and avoid overfitting.

2.2 Dynamic Down-Sampling

Due to the development of data-driven deep learning, in addition to traditional down-sampling, some
other works [28, 29, 30, 31, 32, 33] introduce dynamic downsampling to adaptively adjust for different
tasks, thereby achieving better generalizability. For instance, Pixel-Shuffle [28] enables dynamic
spatial neighborhood computation through the interaction between feature channels and spaces,
restoring finer details more effectively. Kim et al. [29] proposes a task-aware image downsampling to
support upsampling for more efficient restoration.

In addition to dynamic neighborhood computation, dynamic strides have also gained widespread
attention in recent years. For instance, Riad et al. [30] posits that the commonly adopted integer
stride of 2 for downsampling might not be optimal. Consequently, they introduce learnable strides
to explore a better trade-off between computation costs and performances. However, the stride is
still spatially uniformly distributed, which might not be the best fit for images with uneven texture
density distributions. To address this issue, dynamic non-uniform sampling garners significant
attention [31, 32, 33]. For example, Thavamani et al. [31] proposed a saliency-guided non-uniform
sampling method aimed at reducing computation while retaining task-relevant image information.

In conclusion, most of recent researches focus on dynamic neighborhood computation or dynamic
stride for down-sampling, where the paradigm can be represented as Down(s), where s denotes the
stride. However, in this work, we observe that the methods based on this downsampling paradigm
employ static frequency aliasing, which may potentially hinder further development towards effective
downsampling. However, learning dynamic frequency aliasing upon the existing paradigm poses
challenges. To address this issue, we revisit downsampling from a spectral perspective and propose
a novel paradigm for it, denoted as FouriDown(s, w). This paradigm, while retaining the stride
parameter, introduces a new parameter, w, which represents the weight of frequency aliasing during
downsampling and is related to strides. Further, based on this framework, we present an elegant and
effective approach to achieve downsampling with dynamic frequency aliasing, demonstrating notable
performance improvements across multiple tasks and network architectures.
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Figure 2: The visualization of the shuffling and superposing theory in the 1-D and 2-D signals.

3 Method

Definitions. f(x, y) ∈ RH×W×C is the 2-D discrete spatial signal and the sampling rates in x and
y axis are Ωx and Ωy, respectively. F (u, v) ∈ RH×W×C is the Fourier transform of f(x, y), where
the maximum frequencies in u and v axis are respectively denoted as umax and vmax. Moreover,
f ′(x, y) ∈ RH

2 ×W
2 ×C is 2-strided down-sampled f(x,y) and its Fourier transform F ′(u, v).

Theorem-1. Shuffling and Superposing. The spatial down-sampling typically results in a shrinkage
of the tolerance for the maximum frequency of the signal. Specifically, high frequencies will fold
back into new low frequencies and superpose onto the original low frequencies. To illustrate with 1-
dimensional signal, the high and low frequency superposition in the down-sampling can be formulated
as

F ′(u) = S(F (u), F (u+
Ωx

2
)) when u ∈ (0,

Ωx

2
), (1)

where S is a superposing operator. Note that the high frequency is F (u+ Ωx

2 ) considering positive
directions, while the low frequency is F (u) considering positive directions instead.

Theorem-2. Static Averaging Superposing. For an image, the spatial down-sampling operator with
2 strides can be equivalent to dividing the Fourier spectrum into 2× 2 equal parts and superposing
them averagely by 1

4 factor

F (u, v) =

[
F(0,0)(u, v) F(0,1)(u, v)
F(1,0)(u, v) F(1,1)(u, v)

]
, (2)

where F(i,j)(u, v) is a sub-matrix of F (u, v) by equally dividing F (u, v) into 2× 2 partitions and
i, j ∈ {0, 1}. Given that Down2 is 2-strided down-sampling operator and IDFT is inverse discrete
Fourier transform, we have

Down2(f(x, y)) = IDFT

1

4

1∑
i=0

1∑
j=0

F(i,j)(u, v)

 . (3)

The proof of the above theorem can be found in the Appendix, and examples of 1-D and 2-D signals
can also be referred in Figure 2(a) and (b).
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Figure 3: Overview of the proposed spectral shuffle.

Algorithm 1 Pseudo-code of FouriDown.
Data: Input: x ∈ RN×C×H×W . Set of real numbers: R. Set of complex numbers: C.
Result: y ∈ RN×C×H

2 ×W
2

xfft ←− FFT (x) ∈ CN×C×H×W // Fast Fourier transform
xshuffle ←− Shuffle(xfft) ∈ CN×4×C×H

2 ×W
2

xweight ←− Softmax(Convs1x1(xshuffle, groups = C)) ∈ CN×4×C×H
2 ×W

2

xsuperposed ←− Sum(xweight ∗ xshuffle, dim = 1) ∈ CN×C×H
2 ×W

2

y ←− iFFT (xsuperposed) // Inverse Fourier transform

3.1 Architecture Design

In this work, we argue that the the static superposing strategy like the stride-based down-sampling in
Theorem-2 might lead to biased effects. Motivated by adaptively learning ability of CNNs, we aim to
parameterize the non-parameter static superposing step as a learnable and context-adaptive operator
in the Fourier domain.

Definition-2 (Shuffle-Invariance) Given an operator z(.) that is shuffle-invariant and o1, o2, o3, o4 as
different components, the shuffle-invariant is defined as z(o1, o2, o3, o4) = z (shuffle(o1, o2, o3, o4)),
where shuffle(.) is shuffling the order of input components arbitrarily.

Note that the average operator in Theorem-2 is shuffle-invariant. For example, Aver(a, b, c, d) =
Aver (b, a, c, d)). However, different from averaging, the convolution operator, which is sensitive to
the input order, does not have this property.

To alleviate this problem, we design a spectral-shuffle strategy that first performs shuffling according
to Theorem-1 and then aligns across different frequency bands, as shown in Figure 3. Specifically, we
initially spilt the original spectrum F (u, v) into 16 patches equally. Then, according to Theorem-1,
we classify these patches into 4 group, where each group is pixel-wise matched frequency bin for
superposing. However, the energy distribution in each group is different. Considering the shuffle-
variance of convolution operators, we reorder the intra-group sequence for inter-group alignment.
The alignment is motivated by wavelet theory, where intra-group frequencies are reordered according
to low-frequency and high-frequency in horizontal direction, high-frequency in vertical direction, and
high-frequency in diagonal direction. Then, the aligned groups are sorted orderly on channels for
pixel-wise matching in the channel dimension. Finally, we perform adaptively weighted superposition
on channels by learned weights for the down-sampling results. The main implementation is depicted
in Algorithm 1. Code will be public.
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4 Experiments and Discussion

To validate the efficacy of our proposed FouriDown, we execute comprehensive experiments across
several computer vision tasks and conduct exhaustive ablation studies to evaluate its resilience.

4.1 Experimental Settings

Image enhancement. For image enhancement, we assess our FouriDown model using the LOL [34]
and Huawei [35] benchmarks. The LOL dataset contains 500 image pairs (485 for training, 15 for
testing), and the Huawei dataset contains 2480 paired images (2200 for training, 280 for testing). We
compare our results with two established baselines, SID [36] and DRBN [37].

Image deblurring. For image deblurring, we utilize DeepDeblur [38] and MPRNet [39] on the
DVD dataset [40], which includes 2103 training and 1111 test pairs. We further validate our model’s
generalizability using the HIDE dataset [41].

Image denoising. In the context of image de-noising, our training involves the SIDD dataset [42].
Subsequent performance assessments are carried out on the remaining validation samples from the
SIDD dataset and on the DND benchmark dataset [43]. For comparative analysis, we choose baselines
such as MIRNet [44], and Restormer [45].

Image dehazing. For image dehazing, we employ RESIDE dataset for evaluations. We also use two
different network designs MSBDN [46] and GridNet [47] with our proposed operator for validation.

4.2 Implementation Details

Regarding the above competitive baselines, we perform the comparison over the following configu-
rations by replacing the down-sampling operator, such as strided convolution and strided pooling),
with the proposed FouriDown operator. Additionally, we also perform comparisons with previous
anti-aliasing down-sampling methods, including Gaussian filter [7] and “ideal" Low-Pass Filter
(LPF) [13], which conduct the static modulation on the spectrum.

1) Original: The original down-sampling in the baseline;
2) Gaussian: Following [7], equipping the Gaussian filter in all channels before the original

down-sampling for anti-aliasing;
3) LPF: Following [13], equipping the "ideal" Low-Pass Filter in all channels before the

original down-sampling operator for anti-aliasing;
4) Ours: Replacing our proposed FouriDown with the original down-sampling operator;

Table 1: Image enhancement comparison.

Method Config
LOL Huawei

PSNR SSIM PSNR SSIM

DRBN

Original 19.92 0.7712 20.21 0.6742
Gaussian 20.21 0.8146 20.66 0.6955

LPF 18.91 0.7441 20.34 0.6812
Ours 21.64 0.8513 21.46 0.7213

SID

Original 21.46 0.8584 20.38 0.6931
Gaussian 21.78 0.8612 20.52 0.6926

LPF 20.74 0.8124 20.54 0.6841
Ours 23.28 0.8708 20.90 0.7002

Table 2: Image deblurring comparison.

Method Config
DVD HIDE

PSNR SSIM PSNR SSIM

DeepDeblur

Original 29.32 0.8817 29.60 0.8849
Gaussian 29.36 0.8823 29.62 0.8892

LPF 29.19 0.8751 29.51 0.8851
Ours 29.44 0.8856 29.70 0.8904

MPRNet

Original 30.12 0.8958 30.04 0.8945
Gaussian 30.23 0.8922 30.06 0.8966

LPF 30.00 0.8918 29.95 0.8937
Ours 30.31 0.8996 30.25 0.9102

Table 3: Image de-noising comparison.

Method Config
SIDD DND

PSNR SSIM PSNR SSIM

Restormer

Original 39.41 0.9171 39.67 0.9173
Gaussian 39.43 0.9169 39.69 0.9177

LPF 39.35 0.9162 39.64 0.9167
Ours 39.47 0.9174 39.73 0.9180

MIRNet

Original 39.52 0.9182 39.41 0.9146
Gaussian 39.55 0.9184 39.45 0.9148

LPF 39.49 0.9179 39.35 0.9141
Ours 39.64 0.9186 39.56 0.9251

Table 4: Image dehazing comparison.

Method Config
Indoor Outdoor

PSNR SSIM PSNR SSIM

MSBDN

Original 29.77 0.9591 28.88 0.9581
Gaussian 30.09 0.9607 28.91 0.9583

LPF 29.92 0.9598 29.03 0.9591
Ours 30.19 0.9612 29.21 0.9604

GridNet

Original 30.16 0.9616 29.54 0.9605
Gaussian 30.21 0.9617 29.62 0.9622

LPF 30.18 0.9611 29.58 0.9615
Ours 30.42 0.9654 29.71 0.9641
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Figure 4: Visual comparison of SID on the LOL dataset. FouriDown enhances the global color
perception ability of the original model, thereby improving the model’s performance without adding
extra parameters or computational overhead.

Figure 5: Visual comparison of DRBN on the LOL dataset. The more flexible frequency interaction
mechanism in FouriDown reduces artifacts compared to the original methods.

4.3 Comparison and Analysis

Quantitative Comparison. To demonstrate the effectiveness of our proposed FouriDown, we
conduct extensive experiments as shown in Tables 1-4. The best results are in bold. Above and
below the baseline are highlighted in red and blue, respectively. From these tables, although previous
anti-aliasing methods may be useful for some image restoration tasks, their static weights limit their
universality in other tasks. For instance, while the LPF approach performs well in dehazing, it fails to
deliver effective in deblurring and low-light enhancement. In contrast, our method is proved to be
effective across the majority of image restoration tasks. Specifically, we achieved an improvement of
1.82dB in low-light enhancement and 0.42dB in dehazing on LOL and Reside dataset respectively.

Further, we compare the computing costs with other methods shown in Table 5. We include results
from traditional down-sampling techniques like bicubic, bilinear, pixel-unshuffle, 2x2 learnable CNN
(with stride=2), max-pooling, average-pooling, LPF, Gaussian and Ours. Noting that the “Original”
down-sampling of the method is pointed by asterisk (‘*’). This will allow a clearer contrast and
showcase the advantages of our method not only against anti-aliasing approaches but also against
these conventional down-sampling methods.

Qualitative Comparison. Due to space constraints, we only present a qualitative comparison on the
low-light enhancement task. As illustrated in Figure 4 and Figure 5, our FouriDown reduces original
artifacts presented in the SID due to the more flexible frequency interactions. Then, we compare the
visualizations of the feature maps and their corresponding spectra between FouriDown and other
down-sampling methods (see Figure 6 and Figure 7). It can be observed that the model equipped
with FouriDown generates much stronger responses to degradation-aware regions, i.e. global low-
illumination in the low-light enhancement task. In contrast, the model with other down-sampling
method responds weakly to these regions. The results demonstrates the effectiveness of FouriDown in
capturing degradation-aware information by adaptive frequency superposition in down-sampling. For
the Gaussian method, its response to degradation is relatively large (second only to FouriDown), thus
achieving performance that is also second only to FouriDown. Similarly, as the LFP method has the
poorest performance, its feature response of the low-light areas is also the lowest. The performance of
other methods is roughly similar, so their feature responses are also quite similar, indicating a similar
capability to capture image degradation areas. Additionally, from the spectral comparison in Figure 7,
it can be observed that the Gaussian method loses a lot of high-frequency information compared
to FouriDown. This leads to challenges in recovering textures in dark areas. Hence, although the
Gaussian method exhibits good responses, FouriDown achieves better performances compared to it.
More qualitative comparisons can be found in the following supplementary material.
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Figure 6: Feature comparison between our FouriDown and other down-sampling methods in low-light
enhancement task. Due to the unique global modeling mechanism in the frequency domain, the
features extracted by our method significantly achieve a larger response than others.

Figure 7: Spectrum comparison of the feature maps in Figure 6. The spectrum following FouriDown
obtains the outstanding smooth response in both high and low frequencies.

4.4 Discussions

Bias Effects by Static Superposing. As shown in Figure 8, we compare different down-sampling
methods with static superposing manner, and find they have various bias effects.

Frequency Aliasing Visualization. To delve deeper into the high-low frequency interactions in
down-sampling, we examine the spectrum of images down-sampled by factors of 4x, 2x, and 1x.
Following Theorem 1, some regions of spectrums are overlaid on the same frequency band, with
smaller scales overlaying larger ones, as shown in Figure 9. This alignment of same bandwidth
reveals a rectangular contour at the intersections, where high-frequencies not obeying the Nyquist
theory fold into low frequencies during down-sampling, as pointed by the yellow arrow. This suggests
that it is significant for down-sampling to modulate frequencies, otherwise it might degrade the
original signal undesirably.

Other Discussions. Because of space constraints, for more discussions, including extensions to
Theorem-2 and revisiting of previous anti-aliasing methods in the proposed FouriDown framework,
could be referred to the supplementary material.

5 Limitations

In this work, we explore spatial down-sampling from a frequency-domain perspective and optimize
the static weighting of previous down-sampling with a stride of 2 in the frequency domain. Our
modeling of down-sampling is based on using uniformly distributed impulse sequences as the
sampling function, hence exploring the characteristics of the sampling function in the frequency
domain. However, for non-uniform down-sampling, where the sampling rate varies according to the
content, our method might become limited. We hope to overcome this limitation in the future work
by exploring the frequency domain response of non-uniform sampling functions.
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Figure 8: The comparison of results by different down-sampling manner in 2x scale. In (b), which is
the nearest down-sampling of (a), some unnatural stripes in the edge of windows and walls, called
aliasing effects. To relieve the occurrence of aliasing, (c) and (d) employ the "ideal low-pass filter"
and the Gaussian filter before down-sampling respectively. However, these manners usually lead to
ringring effects or heavy high-frequency loss inevitably.

Config LOL FLOPs(G) Para(M)
PSNR SSIM

Bicubic 21.35 0.8497 13.764 7.84
Bilinear 21.26 0.8464 13.764 7.84

Pixle-shuffle 21.41 0.8552 13.954 8.11
Stride Conv 21.36 0.8534 13.954 8.11

Max pooling * 21.46 0.8584 13.753 7.84
Average pooling 21.34 0.8481 13.754 7.84

Gaussian 21.79 0.8612 16.102 8.54
LPF 20.74 0.8124 16.102 8.54
Ours 23.28 0.8708 13.827 7.87

Table 5: The effectiveness and efficiency comparison be-
tween our FouriDown and other down-sampling methods in
low-light enhancement task.

Figure 9: The spectrums of different-
scale images placed under the same
frequency coordinate system.

6 Conclusion

In our study, we revisit the spatial down-sampling techniques and anti-aliasing strategies from a
Fourier domain perspective, recognizing their reliance on static high and low frequency superposing.
As a result, we propose a novel approach (FouriDown) to learn a learnable frequency-context interplay
among high and low frequencies during down-sampling. Moreover, this work is the first exploration
of dynamic frequency interaction in down-sampling. The FouriDown is designed based on the signal
sampling theory, so it is convenient to replace most of current down-sampling and anti-aliasing
techniques. Extensive experiments demonstrate the performance improvements across a variety of
vision tasks.

Ultimately, we believe that down-sampling is a crucial research direction in the future. It allows for
network design at a lower resolution, significantly reducing the computational overhead and enabling
light-weighting models.

Broader Impact

This work further exploits the potential of down-sampling in the Fourier domain and offers a new
perspective that frequency band shuffling and superposing for future research of down-sampling.
Down-sampling techniques can potentially make the future model development more efficient and
effective, beneficial for various machine learning and AI applications. Nonetheless, the efficacy of
our method could be a source of concern if not properly utilized, especially in terms of the safety of
real-world applications. To alleviate such concerns, we plan to rigorously investigate the robustness
and effectiveness of our approach across a more diverse spectrum of real-world scenarios.
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Appendix A: Proofs of Theorem-1 and Theorem-2

Proof of Theorem-1: Shuffling and Superposing

To model the relationship between f ′(x) and f(x), we stand on their derived continuous signal g(x)
by a specific sampling function. Note that the sampling functions s∆T (x) is defined as the sum of
infinitely impulses units separated by ∆T intervals:

s(x,∆T ) =

∞∑
n=−∞

δ(x− n∆T ). (4)

Based on the Eq. (4), f(x) and its down-sampling f ′(x) can be represented as

f(x) = g(x)s(x,∆T ), f ′(x) = g(x)s(x, 2∆T ). (5)

According to the Fourier transform and convolution theorem, the aforementioned spatial sampling
can be expressed in the Fourier domain as:

F (u) = G(u) ⋆ S(u,∆T ) =

∫ ∞

−∞
G(τ)S(u− τ,∆T )dτ

=
1

∆T

∞∑
n

∫ ∞

−∞
G(τ)δ

(
u− τ − n

∆T

)
dτ =

1

∆T

∞∑
n

G
(
u− n

∆T

)
,

(6)

where G(u) and S(u,∆T ) are the Fourier transform of g(x) and s(x,∆T ). From Eq. (6), it can be
observed that the spatial sampling introduces the periodicity to the spectrum and the period is 1

∆T .

Note that the sampling rates of f(x) and f ′(x) are Ωx and Ω′
x, the relationship between them can be

written as
Ωx =

1

∆T
, Ω′

x =
1

2∆T
=

1

2
Ωx. (7)

Before down-sampling, to focus on the following down-sampling operation, we assume that f(x)
adheres to the Nyquist sampling theorem, which implies that umax > 1

Ωx
.

After down-sampling, according to Nyquist sampling theorem, a whole sub-frequency band is limited
in (0, Ωx

2 ). Moreover, the resulted band is the superposition of two original bands, which denoted as

F ′(u) = S(F (u), F (û)), (8)

where û, u are the high frequency above the sampling rate and the low frequency below the sampling
rate, respectively, and S is superposition operator.

(1) In the positive sub-band, where u ∈ (0, Ωx

4 ), û and ũ should satisfy

u ∈ (0,
Ωx

4
) and û ∈ (

Ωx

4
, umax). (9)

According to the aliasing theorem, the high frequency û is folded back to the low frequency:

ũ =

∣∣∣∣∣û− (k + 1)Ω
′

x

2

∣∣∣∣∣ , kΩ
′

x

2
≤ û ≤ (k + 2)Ω

′

x

2
(10)

where k = 1, 3, 5 . . . and ũ is folded results by û.

According to Eq. (9) and Eq. (10), we have

ũ =
Ωx

2
− û, and ũ ∈ (

Ωx

2
− umax,

Ωx

4
). (11)

Then, according to Eq. (8) and Eq. (11), we attain

F ′(u) =

{
F (u) if u ∈ (0, Ωx

2 − umax),

S
(
F (u), F (Ωx

2 − u)
)

if u ∈ (Ωx

2 − umax,
Ωx

4 ).
(12)
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According to Eq. (6), F (u) is symmetric with respect to u = Ωx

2 ,

F (
Ωx

2
− u) = F (u+

Ωx

2
). (13)

Further, F (u+ Ωx

2 ) = 0 when u ∈ (0, Ωx

2 − umax). Upon Eq. (13), we can uniform Eq. (12) as

F ′(u) = S(F (u), F (u+
Ωx

2
)) when u ∈ (0,

Ωx

4
) (14)

The visualization of the aforementioned proof process is depicted in Figure 2(a).

(2) In the negative sub-band, where u ∈ (Ωx

4 , Ωx

2 ), different from (1), û and ũ should satisfy

u ∈ (
Ωx

4
,
Ωx

2
) and û ∈ (

Ωx

2
− umax,

Ωx

4
). (15)

Similarly, we can proof F (u) in the negative sub-band as well.

F ′(u) = S(F (u), F (u+
Ωx

2
)) when u ∈ (

Ωx

4
,
Ωx

2
) (16)

Combined with Eq. (14) and Eq. (16), we obtain

F ′(u) = S(F (u), F (u+
Ωx

2
)), when u ∈ (0,

Ωx

2
). (17)

Proof of Theorem-2: Static Superposing.

According to Eq. (7) and Eq. (6), we can deduce that the amplitude of F ′ is half that of F .

Therefore, we can write F ′(u) in the x axis as,

F ′(u) =
1

2
F (u) +

1

2
F (u+

Ωx

2
), when u ∈ (0,

Ωx

2
). (18)

Upon the dual principle, we can prove F ′(v) in the whole sub-band

F ′(u, v) = F ′(F ′(u, y), v) =
1

4

(
F (u, v) + F (u+

Ωx

2
, v) + F (u, v +

Ωy

2
) + F (u+

Ωx

2
, v +

Ωy

2
)

)
,

(19)
where u ∈ (0, Ωx

2 ),v ∈ (0,
Ωy

2 ).

Appendix B: Revisiting previous down-sampling manners in the FouriDown

In the main body, we introduce the FouriDown framework which can simultaneously adjust the stride
of down-sampling and the characteristics of frequency interaction. Moreover, in the manuscript,
we prove that the operator with a stride of 2 can be simplified to a fixed frequency weighting, i.e.
averaging. However, this kind of weighting brings aliasing, hence the need for anti-aliasing methods
such as ideal low-pass filters and Gaussian filters, which put focused weighting on frequencies. In
this section, we revisit these anti-aliasing methods within the FouriDown framework and discover
that their weighting methods remain fixed. In other words, within our framework, it’s possible to
realize the aforementioned anti-aliasing methods by simply changing specific parameters as shown in
Figure 10 and 11.

Appendix C: Stride Extension of Theorem-1 and Theorem-2

In the manuscript, we propose FouriDown which primarily focuses on analyzing frequency interac-
tions in the case of stride=2. In this section, we extend the Theorem-2 to arbitrary integer strides s,
resulting in the following theorem. The proof for these theorems follow similar logic to that detailed
in the main body, and is therefore omitted for brevity.
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Figure 10: The achievements of different down-sampling manners in the FouriDown by simply
changing specific parameters.

Figure 11: Revisiting different down-sampling methods from the perspective of spectrum.

Stride Extension of Theorem-1. In the condition of s strides, to illustrate with 1-dimensional
signal, the high and low frequency superposition in the down-sampling can be formulated as

F ′(u) = S(F (u), F (u+
kiΩx

s
)) when u ∈ (0,

Ωx

2
), (20)

where S is a superposing operator and ki = 1, ..., s− 1.

Stride Extension of Theorem-2. For an image, the spatial down-sampling operator with s strides
can be equivalent to dividing the Fourier spectrum into s × s equal parts and superposing them
averagely by 1

s2 factor

Given that Downs is s-strided down-sampling operator and IDFT is inverse discrete Fourier trans-
form, we have
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Figure 12: Illustration of theorem extension from strides=2 to strides=s. Due to visualization space
limitation, s is taken as 3 in the figure. The background region has no meaning, just to show more
clearly.

Downs(f(x, y)) = IDFT

 1

s2

s−1∑
i=0

s−1∑
j=0

F(i,j)(u, v)

 . (21)

Based on above extension, the down-sampling of 3 strides could be presented as in Figure 12.

Appendix D: More Qualitative comparison.

Due to the limited space, we only report the visual results of the low-light enhancement task in main
manuscript. We report more visual results in the supplementary materials. As shown, integrating
the FouriDown with the original baseline [36, 37, 48, 49, 39, 45, 44, 46, 47] achieves more visually
pleasing results as shown in Figure 13 14 15 16 17.
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Figure 13: Visual comparison on the low-light enhancement task.

Figure 14: Visual comparison on the dehazing task.
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Figure 15: Visual comparison on the UHD-enhancement task.

Figure 16: Visual comparison on the denoising task.
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Figure 17: Visual comparison on the deblurring task.
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