
Optimizing Solution-Samplers for Combinatorial
Problems: The Landscape of Policy-Gradient Methods

Constantine Caramanis
UT Austin & Archimedes / Athena RC

constantine@utexas.edu

Dimitris Fotakis
NTUA & Archimedes / Athena RC

fotakis@cs.ntua.gr

Alkis Kalavasis
Yale University

alvertos.kalavasis@yale.edu

Vasilis Kontonis
UT Austin

vkonton@gmail.com

Christos Tzamos
UOA & Archimedes / Athena RC

tzamos@wisc.edu

Abstract

Deep Neural Networks and Reinforcement Learning methods have empirically
shown great promise in tackling challenging combinatorial problems. In those
methods a deep neural network is used as a solution generator which is then trained
by gradient-based methods (e.g., policy gradient) to successively obtain better
solution distributions. In this work we introduce a novel theoretical framework for
analyzing the effectiveness of such methods. We ask whether there exist generative
models that (i) are expressive enough to generate approximately optimal solutions;
(ii) have a tractable, i.e, polynomial in the size of the input, number of parameters;
(iii) their optimization landscape is benign in the sense that it does not contain
sub-optimal stationary points. Our main contribution is a positive answer to this
question. Our result holds for a broad class of combinatorial problems including
Max- and Min-Cut, Max-𝑘-CSP, Maximum-Weight-Bipartite-Matching, and the
Traveling Salesman Problem. As a byproduct of our analysis we introduce a novel
regularization process over vanilla gradient descent and provide theoretical and
experimental evidence that it helps address vanishing-gradient issues and escape
bad stationary points.

1 Introduction

Gradient descent has proven remarkably effective for diverse optimization problems in neural net-
works. From the early days of neural networks, this has motivated their use for combinatorial
optimization [HT85, Smi99, VFJ15, BPL+16]. More recently, an approach by [BPL+16], where a
neural network is used to generate (sample) solutions for the combinatorial problem. The parameters
of the neural network thus parameterize the space of distributions. This allows one to perform gradient
steps in this distribution space. In several interesting settings, including the Traveling Salesman Prob-
lem, they have shown that this approach works remarkably well. Given the widespread application but
also the notorious difficulty of combinatorial optimization [GLS12, PS98, S+03, Sch05, CLS+95],
approaches that provide a more general solution framework are appealing.

This is the point of departure of this paper. We investigate whether gradient descent can succeed in a
general setting that encompasses the problems studied in [BPL+16]. This requires a parameterization

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

of distributions over solutions with a “nice” optimization landscape (intuitively, that gradient descent
does not get stuck in local minima or points of vanishing gradient) and that has a polynomial
number of parameters. Satisfying both requirements simultaneously is non-trivial. As we show
precisely below, a simple lifting to the exponential-size probability simplex on all solutions guarantees
convexity; and, on the other hand, compressed parameterizations with “bad” optimization landscapes
are also easy to come by (we give a natural example for Max-Cut in Remark 1). Hence, we seek to
understand the parametric complexity of gradient-based methods, i.e., how many parameters suffice
for a benign optimization landscape in the sense that it does not contain “bad” stationary points.

We thus theoretically investigate whether there exist solution generators with a tractable number
of parameters that are also efficiently optimizable, i.e., gradient descent requires a small number
of steps to reach a near-optimal solution. We provide a positive answer under general assumptions
and specialize our results for several classes of hard and easy combinatorial optimization problems,
including Max-Cut and Min-Cut, Max-𝑘-CSP, Maximum-Weighted-Bipartite-Matching and Traveling
Salesman. We remark that a key difference between (computationally) easy and hard problems is not
the ability to find a compressed and efficiently optimizable generative model but rather the ability to
efficiently draw samples from the parameterized distributions.

1.1 Our Framework

We introduce a theoretical framework for analyzing the effectiveness of gradient-based methods on
the optimization of solution generators in combinatorial optimization, inspired by [BPL+16].

Let ℐ be a collection of instances of a combinatorial problem with common solution space 𝑆 and
𝐿(·; 𝐼) : 𝑆 → R be the cost function associated with an instance 𝐼 ∈ ℐ, i.e., 𝐿(𝑠; 𝐼) is the cost of
solution 𝑠 given the instance 𝐼 . For example, for the Max-Cut problem the collection of instances ℐ
corresponds to all graphs with 𝑛 nodes, the solution space 𝑆 consists of all subsets of nodes, and the
loss 𝐿(𝑠; 𝐼) is equal to (minus) the weight of the cut (𝑠, [𝑛] ∖ 𝑠) corresponding to the subset of nodes
𝑠 ∈ 𝑆 (our goal is to minimize 𝐿).
Definition 1 (Solution Cost Oracle). For a given instance 𝐼 we assume that we have access to an
oracle 𝒪(·; 𝐼) to the cost of any given solution 𝑠 ∈ 𝑆, i.e., 𝒪(𝑠; 𝐼) = 𝐿(𝑠; 𝐼).

The above oracle is standard in combinatorial optimization and query-efficient algorithms are provided
for various problems [RSW17, GPRW19, LSZ21, AEG+22, PRW22]. We remark that the goal of
this work is not to design algorithms that solve combinatorial problems using access to the solution
cost oracle (as the aforementioned works do). This paper focuses on landscape design: the algorithm
is fixed, namely (stochastic) gradient descent; the question is how to design a generative model that
has a small number of parameters and the induced optimization landscape allows gradient-based
methods to converge to the optimal solution without getting trapped at local minima or vanishing
gradient points.

Letℛ be some prior distribution over the instance space ℐ and𝒲 be the space of parameters of the
model. We now define the class of solution generators. The solution generator 𝑝(𝑤) with parameter
𝑤 ∈ 𝒲 takes as input an instance 𝐼 and generates a random solution 𝑠 in 𝑆. To distinguish between
the output, the input, and the parameter of the solution generator, we use the notation 𝑝(·; 𝐼;𝑤) to
denote the distribution over solutions and 𝑝(𝑠; 𝐼;𝑤) to denote the probability of an individual solution
𝑠 ∈ 𝑆. We denote by 𝒫 = {𝑝(𝑤) : 𝑤 ∈ 𝒲} the above parametric class of solution generators. For
some parameter 𝑤, the loss corresponding to the solutions sampled by 𝑝(·; 𝐼;𝑤) is equal to

ℒ(𝑤) = E
𝐼∼ℛ

[ℒ𝐼(𝑤)] , ℒ𝐼(𝑤) = E
𝑠∼𝑝(·;𝐼;𝑤)

[𝐿(𝑠; 𝐼)] . (1)

Our goal is to optimize the parameter 𝑤 ∈ 𝒲 in order to find a sampler 𝑝(·; 𝐼;𝑤) whose loss ℒ(𝑤)
is close to the expected optimal value opt:

opt = E
𝐼∼ℛ

[︂
min
𝑠∈𝑆

𝐿(𝑠; 𝐼)

]︂
. (2)

The policy gradient method [Kak01] expresses the gradient of ℒ as follows

∇𝑤ℒ(𝑤) = E
𝐼∼ℛ

E
𝑠∼𝑝(·;𝐼;𝑤)

[𝐿(𝑠; 𝐼)∇𝑤 log 𝑝(𝑠; 𝐼;𝑤)] ,

and updates the parameter 𝑤 using the gradient descent update. Observe that a (stochastic) policy
gradient update can be implemented using only access to a solution cost oracle of Definition 1.

2

Solution Generators. In [BPL+16] the authors used neural networks as parametric solution gen-
erators for the TSP problem. They provided empirical evidence that optimizing the parameters of
the neural network using the policy gradient method results to samplers that generate very good
solutions for (Euclidean) TSP instances. Parameterizing the solution generators using neural networks
essentially compresses the description of distributions over solutions (the full parameterization would
require assigning a parameter to every solution-instance pair (𝑠, 𝐼)). Since for most combinatorial
problems the size of the solution space is exponentially large (compared to the description of the
instance), it is crucial that for such methods to succeed the parameterization must be compressed in
the sense that the description of the parameter space𝒲 is polynomial in the size of the description
of the instance family ℐ. Apart from having a tractable number of parameters, it is important that
the optimization objective corresponding to the parametric class 𝒫 can provably be optimized using
some first-order method in polynomial (in the size of the input) iterations.

We collect these desiderata in the following definition. We denote by [ℐ] the description size of ℐ , i.e.,
the number of bits required to identify any element of ℐ . For instance, if ℐ is the space of unweighted
graphs with at most 𝑛 nodes, [ℐ] = 𝑂(𝑛2).
Definition 2 (Complete, Compressed and Efficiently Optimizable Solution Generator). Fix a prior
ℛ over ℐ, a family of solution generators 𝒫 = {𝑝(𝑤) : 𝑤 ∈ 𝒲}, a loss function ℒ as in Equation
(1) and some 𝜖 > 0.

1. We say that 𝒫 is complete if there exists some 𝑤 ∈ 𝒲 such that ℒ(𝑤) ≤ opt + 𝜀, where
opt is defined in (2).

2. We say that 𝒫 is compressed if the description size of the parameter space𝒲 is polynomial
in [ℐ] and in log(1/𝜀).

3. We say that 𝒫 is efficiently optimizable if there exists a first-order method applied on the
objective ℒ such that after 𝑇 = poly([𝒲], 1/𝜀) many updates on the parameter vectors,
finds an (at most) 𝜖-sub-optimal vector ̂︀𝑤, i.e., ℒ(̂︀𝑤) ≤ ℒ(𝑤) + 𝜖 .

Remark 1. We remark that constructing parametric families that are complete and compressed,
complete and efficiently optimizable, or compressed and efficiently optimizable (i.e., satisfying any
pair of assumptions of Question 1 but not all 3) is usually a much easier task. Consider, for example,
the Max-Cut problem on a fixed (unweighted) graph with 𝑛 nodes. Note that ℐ has description size
𝑂(𝑛2). Solutions of the Max-Cut for a graph with 𝑛 nodes are represented by vertices on the binary
hypercube {±1}𝑛 (coordinate 𝑖 dictates the side of the cut that we put node 𝑖). One may consider
the full parameterization of all distributions over the hypercube. It is not hard to see that this is a
complete and efficiently optimizable family (the optimization landscape corresponds to optimizing
a linear objective). However, it is not compressed, since it requires 2𝑛 parameters. On the other
extreme, considering a product distribution over coordinates, i.e., we set the value of node 𝑖 to be +1
with probability 𝑝𝑖 and−1 with 1−𝑝𝑖 gives a complete and compressed family. However, as we show
in Appendix B, the landscape of this compressed parameterization suffers from highly sub-optimal
local minima and therefore, it is not efficiently optimizable.

Therefore, in this work we investigate whether it is possible to have all 3 desiderata of Definition 2 at
the same time.
Question 1. Are there complete, compressed, and efficiently optimizable solution generators (i.e.,
satisfying Definition 2) for challenging combinatorial tasks?

1.2 Our Results

Our Contributions. Before we present our results formally, we summarize the contributions of
this work.

• Our main contribution is a positive answer (Theorem 1) to Question 1 under general
assumptions that capture many combinatorial tasks. We identify a set of conditions (see
Assumption 1) that allow us to design a family of solution generators that are complete,
compressed and efficiently optimizable.

• The conditions are motivated by obstacles that are important for any approach of this nature.
This includes solutions that escape to infinity, and also parts of the landscape with vanishing
gradient. See the discussion in Section 3 and Figure 1.

3

• We specialize our framework to several important combinatorial problems, some of which
are NP-hard, and others tractable: Max-Cut, Min-Cut, Max-𝑘-CSP, Maximum-Weight-
Bipartite-Matching, and the Traveling Salesman Problem.

• Finally, we investigate experimentally the effect of the entropy regularizer and the fast/slow
mixture scheme that we introduced (see Section 3) and provide evidence that it leads to
better solution generators.

We begin with the formal presentation of our assumptions on the feature mappings of the instances
and solutions and on the structure of cost function of the combinatorial problem.
Assumption 1 (Structured Feature Mappings). Let 𝑆 be the solution space and ℐ be the instance
space. There exist feature mappings 𝜓𝑆 : 𝑆 → 𝑋 , for the solutions, and, 𝜓ℐ : ℐ → 𝑍, for the
instances, where 𝑋,𝑍 are Euclidean vector spaces of dimension 𝑛𝑋 and 𝑛𝑍 , such that

1. (Bounded Feature Spaces) The feature and instance mappings are bounded, i.e., there exist
𝐷𝑆 , 𝐷ℐ > 0 such that ‖𝜓𝑆(𝑠)‖2 ≤ 𝐷𝑆 , for all 𝑠 ∈ 𝑆 and ‖𝜓ℐ(𝐼)‖2 ≤ 𝐷ℐ , for all 𝐼 ∈ ℐ.

2. (Bilinear Cost Oracle) The cost of a solution 𝑠 under instance 𝐼 can be expressed as a
bilinear function of the corresponding feature vector 𝜓𝑆(𝑠) and instance vector 𝜓ℐ(𝐼), i.e.,
the solution oracle can be expressed as 𝒪(𝑠, 𝐼) = 𝜓ℐ(𝐼)

⊤𝑀𝜓𝑆(𝑠) for any 𝑠 ∈ 𝑆, 𝐼 ∈ ℐ,
for some matrix 𝑀 with ‖𝑀‖F ≤ 𝐶.

3. (Variance Preserving Features) There exists 𝛼 > 0 such that Var𝑠∼𝑈(𝑆)[𝑣 ·𝜓𝑆(𝑠)] ≥ 𝛼‖𝑣‖22
for any 𝑣 ∈ 𝑋 , where 𝑈(𝑆) is the uniform distribution over the solution space 𝑆.

4. (Bounded Dimensions/Diameters) The feature dimensions 𝑛𝑋 , 𝑛𝑍 , and the diameter bounds
𝐷𝑆 , 𝐷ℐ , 𝐶 are bounded above by a polynomial of the description size of the instance space
ℐ. The variance lower bound 𝛼 is bounded below by 1/poly([ℐ]).

Remark 2 (Boundedness and Bilinear Cost Assumptions). We remark that Items 1, 4 are simply
boundedness assumptions for the corresponding feauture mappings and usually follow easily assum-
ing that we consider reasonable feature mappings. At a high-level, the assumption that the solution
is a bilinear function of the solution and instance features (Item 2) prescribes that “good” feature
mappings should enable a simple (i.e., bilinear) expression for the cost function. In the sequel we see
that this is satisfied by natural feature mappings for important classes of combinatorial problems.
Remark 3 (Variance Preservation Assumption). In Item 3 (variance preservation) we require that the
solution feature mapping has variance along every direction, i.e., the feature vectors corresponding to
the solutions must be “spread-out” when the underlying solution generator is the uniform distribution.
As we show, this assumption is crucial so that the gradients of the resulting optimization objective are
not-vanishing, allowing for its efficient optimization.

We mention that various important combinatorial problems satisfy Assumption 1. For instance,
Assumption 1 is satisfied by Max-Cut, Min-Cut, Max-𝑘-CSP, Maximum-Weight-Bipartite-Matching
and Traveling Salesman. We refer the reader to the upcoming Section 2 for an explicit description of
the structured feature mappings for these problems. Having discussed Assumption 1, we are ready to
state our main abstract result which resolves Question 1.
Theorem 1. Consider a combinatorial problem with instance space ℐ that satisfies Assumption 1.
For any priorℛ over ℐ and 𝜖 > 0, there exists a family of solution generators 𝒫 = {𝑝(𝑤) : 𝑤 ∈ 𝒲}
with parameter space𝒲 that is complete, compressed and, efficiently optimizable.

A sketch behind the design of the family 𝒫 can be found in Section 3 and Section 4.
Remark 4 (Computational Barriers in Sampling). We note that the families of generative models
(a.k.a., solution generators) that we provide have polynomial parameter complexity and are opti-
mizable in a small number of steps using gradient-based methods. Hence, in a small number of
iterations, gradient-based methods converge to distributions whose mass is concentrated on nearly
optimal solutions. This holds, as we show, even for challenging (NP-hard) combinatorial problems.
Our results do not, however, prove P = NP, as it may be computationally hard to sample from our
generative models. We remark that while such approaches are in theory hard, such models seem to
perform remarkably well experimentally where sampling is based on Langevin dynamics techniques
[SE20, SSDK+20]. Though as our theory predicts, and simulations support, landscape problems
seem to be a direct impediment even to obtain good approximate solutions.

4

Remark 5 (Neural Networks as Solution Samplers). A natural question would be whether our results
can be extended to the case where neural networks are (efficient) solution samplers, as in [BPL+16].
Unfortunately, a benign landscape result for neural network solution generators most likely cannot
exist. It is well-known that end-to-end theoretical guarantees for training neural networks are out of
reach since the corresponding optimization tasks are provably computationally intractable, see, e.g.,
[CGKM22] and the references therein.

Finally, we would like to mention an interesting aspect of Assumption 1. Given a combinatorial
problem, Assumption 1 essentially asks for the design of feature mappings for the solutions and the
instances that satisfy desiderata such as boundedness and variance preservation. Max-Cut, Min-Cut,
TSP and Max-𝑘-CSP and other problems satisfy Assumption 1 because we managed to design
appropriate (problem-specific) feature mappings that satisfy the requirements of Assumption 1. There
are interesting combinatorial problems for which we do not know how to design such good feature
mappings. For instance, the "natural" feature mapping for the Satisfiability problem (SAT) (similar
to the one we used for Max-𝑘-CSPs) would require feature dimension exponential in the size of the
instance (we need all possible monomials of 𝑛 variables and degree at most 𝑛) and therefore, would
violate Item 4 of Assumption 1.

1.3 Related Work

Neural Combinatorial Optimization. Tackling combinatorial optimization problems constitutes
one of the most fundamental tasks of theoretical computer science [GLS12, PS98, S+03, Sch05,
CLS+95] and various approaches have been studied for these problems such as local search methods,
branch-and-bound algorithms and meta-heuristics such as genetic algorithms and simulated annealing.
Starting from the seminal work of [HT85], researchers apply neural networks [Smi99, VFJ15,
BPL+16] to solve combinatorial optimization tasks. In particular, researchers have explored the power
of machine learning, reinforcement learning and deep learning methods for solving combinatorial
optimization problems [BPL+16, YW20, LZ09, DCL+18, BLP21, MSIB21, NOST18, SHM+16,
MKS+13, SSS+17, ER18, KVHW18, ZCH+20, CCK+21, MGH+19, GCF+19, KLMS19].

The use of neural networks in combinatorial problems is extensive [SLB+18, JLB19, GCF+19,
YGS20, MSIB21, BPL+16, KDZ+17, YP19, CT19, YBV19, KCK+20, KCY+21, DAT20, NJS+20,
TRWG21, AMW18, KL20, Jeg22, SBK22, ART23] and various papers aim to understand the the-
oretical ability of neural networks to solve such problems [HS23b, HS23a, Gam23]. Our paper
builds on the framework of the influential experimental work of [BPL+16] to tackle combinatorial
optimization problems such as TSP using neural networks and reinforcement learning. [KP+21]
uses an entropy maximization scheme in order to generate diversified candidate solutions. This
experimental heuristic is quite close to our theoretical idea for entropy regularization. In our work,
entropy regularization allows us to design quasar-convex landscapes and the fast/slow mixing scheme
to obtain diversification of solutions. Among other related applied works, [KCK+20, KPP22] study
the use of Transformer architectures combined with the Reinforce algorithm employing symmetries
(i.e., the existence of multiple optimal solutions of a CO problem) improving the generalization
capability of Deep RL NCO and [MLC+21] studies Transformer architectures and aims to learn
improvement heuristics for routing problems using RL.

Gradient Descent Dynamics. Our work provides theoretical understanding on the gradient-descent
landscape arising in NCO problems. Similar questions regarding the dynamics of gradient descent
have been studied in prior work concerning neural networks; for instance, [AS20] and [AKM+21]
fix the algorithm (SGD on neural networks) and aim to understand the power of this approach (which
function classes can be learned). Various other works study gradient descent dynamics in neural
networks. We refer to [AS18, AS20, ABAB+21, MYSSS21, BEG+22, DLS22, ABA22, AAM22,
BBSS22, ABAM23, AKM+21, EGK+23] (and the references therein) for a small sample of this line
of research.

2 Combinatorial Applications

We now consider concrete combinatorial problems and show that there exist appropriate and natural
feature mappings for the solutions and instances that satisfy Assumption 1; so Theorem 1 is applicable
for any such combinatorial task. For a more detailed treatment, we refer to Appendix G.

5

Min-Cut and Max-Cut. Min-Cut (resp. Max-Cut) are central graph combinatorial problems where
the task is to split the nodes of the graph in two subsets so that the number of edges from one subset
to the other (edges of the cut) is minimized (resp. maximized). Given a graph 𝐺 with 𝑛 nodes
represented by its Laplacian matrix 𝐿𝐺 = 𝐷 − 𝐴, where 𝐷 is the diagonal degree matrix and 𝐴
is the adjacency matrix of the graph, the goal in the Min-Cut (resp. Max-Cut) problem is to find a
solution vector 𝑠 ∈ {±1}𝑛 so that 𝑠⊤𝐿𝐺𝑠/4 is minimized (resp. maximized).

We first show that there exist natural feature mappings so that the cost of every solution 𝑠 under
any instance/graph 𝐺 is a bilinear function of the feature vectors, see Item 2 of Assumption 1.
We consider the correlation-based feature mapping 𝜓𝑆(𝑠) = (𝑠𝑠⊤)♭ ∈ R𝑛2

, where by (·)♭ we
denote the vectorization/flattening operation and the Laplacian for the instance (graph), 𝜓ℐ(𝐺) =

(𝐿𝐺)
♭ ∈ R𝑛2

. Then simply setting the matrix 𝑀 to be the identity 𝐼 ∈ R𝑛2×𝑛2

the cost of any
solution 𝑠 can be expressed as the bilinear function 𝜓ℐ(𝐺)

⊤𝑀𝜓𝑆(𝑠) = (𝐿♭𝐺)
⊤(𝑠𝑠⊤)♭ = 𝑠⊤𝐿𝐺𝑠.

We observe that for (unweighted) graphs with 𝑛 nodes the description size of the family of all
instances ℐ is roughly 𝑂(𝑛2), and therefore the dimensions of the feature mappings 𝜓𝑆 , 𝜓ℐ are
clearly polynomial in the description size of ℐ. Moreover, considering unweighted graphs, it holds
that ‖𝜓ℐ(𝐺)‖2, ‖𝜓𝑆(𝑠)‖2, ‖𝑀‖F ≤ poly(𝑛). Therefore, the constants 𝐷𝑆 , 𝐷ℐ , 𝐶 are polynomial in
the description size of the instance family.

It remains to show that our solution feature mapping satisfies the variance preservation assumption,
i.e., Item 3 in Assumption 1. A uniformly random solution vector 𝑠 ∈ {±1}𝑛 is sampled by setting
each 𝑠𝑖 = 1 with probability 1/2 independently. In that case, we have E[𝑣 · 𝑥] = 0 and therefore
Var(𝑣 · 𝑥) = E[(𝑣 · 𝑥)2] =

∑︀
𝑖 ̸=𝑗 𝑣𝑖𝑣𝑗 E[𝑥𝑖𝑥𝑗] =

∑︀
𝑖 𝑣

2
𝑖 = ‖𝑣‖22, since, by the independence of

𝑥𝑖, 𝑥𝑗 , the cross-terms of the sum vanish. We observe that the same hold true for the Max-Cut problem
and therefore, structured feature mappings exist for Max-Cut as well (where 𝐿(𝑠;𝐺) = −𝑠⊤𝐿𝐺𝑠).
We shortly mention that there also exist structured feature mappings for Max-𝑘-CSP. We refer to
Theorem 4 for further details.
Remark 6 (Partial Instance Information/Instance Context). We remark that Assumption 1 allows for
the “instance” 𝐼 to only contain partial information about the actual cost function. For example,
consider the setting where each sampled instance is an unweighted graph 𝐺 but the cost oracle takes
the form 𝒪(𝐺, 𝑠) = (𝐿𝐺)

♭𝑀(𝑠𝑠⊤)♭ for a matrix 𝑀𝑖𝑗 = 𝑎𝑖 when 𝑖 = 𝑗 and 𝑀𝑖𝑗 = 0 otherwise.
This cost function models having a unknown weight function, i.e., the weight of edge 𝑖 of 𝐺 is 𝑎𝑖 if
edge 𝑖 exists in the observed instance 𝐺, on the edges of the observed unweighted graph 𝐺, that the
algorithm has to learn in order to be able to find the minimum or maximum cut. For simplicity, in
what follows, we will continue referring to 𝐼 as the instance even though it may only contain partial
information about the cost function of the underlying combinatorial problem.

Maximum-Weight-Bipartite-Matching and TSP. The Maximum-Weight-Bipartite-Matching
(MWBP) problem is another graph problem that, given a bipartite graph 𝐺 with 𝑛 nodes and
𝑚 edges, asks for the maximum-weight matching. The feature vector corresponding to a matching
can be represented as a binary matrix 𝑅 ∈ {0, 1}𝑛×𝑛 with

∑︀
𝑗 𝑅𝑖𝑗 = 1 for all 𝑖 and

∑︀
𝑖𝑅𝑖𝑗 = 1

for all 𝑗, i.e., 𝑅 is a permutation matrix. Therefore, for a candidate matching 𝑠, we set 𝜓𝑆(𝑠) to be
the matrix 𝑅 defined above. Moreover, the feature vector of the graph is the (negative flattened)
adjacency matrix 𝐸♭. The cost oracle is then 𝐿(𝑅;𝐸) =

∑︀
𝑖𝑗 𝐸𝑖𝑗𝑀𝑖𝑗𝑅𝑖𝑗 perhaps for an unknown

weight matrix 𝑀𝑖𝑗 (see Remark 6). For the Traveling Salesman Problem (TSP) the feature vector is
again a matrix 𝑅 with the additional constraint that 𝑅 has to represent a single cycle (a tour over all
cities). The cost function for TSP is again 𝐿(𝑅;𝐸) =

∑︀
𝑖𝑗 𝐸𝑖𝑗𝑀𝑖𝑗𝑅𝑖𝑗 . One can check that those

representations of the instance and solution satisfy the assumptions of Items 1 and 4. Showing that
the variance of those representations has a polynomial lower bound is more subtle and we refer the
reader to the Supplementary Material.

We shortly mention that the solution generators for Min-Cut and Maximum-Weight-Bipartite-
Matching are also efficiently samplable.

3 Optimization Landscape

Exponential Families as Solution Generators. A natural candidate to construct our family of
solution generators is to consider the distribution that assigns to each solution 𝑠 ∈ 𝑆 and instance 𝐼 ∈
ℐ mass proportional to its score exp(−𝜏𝐿(𝑠; 𝐼)) = exp(−𝜏𝜓ℐ(𝐼)

⊤𝑀𝜓𝑆(𝑠)) = exp(−𝜏𝑧⊤𝑀𝑥)

6

Figure 1: In the left plot, we show the landscape of the “vanilla” objective of Eq.(1) for the feature domain
𝑋 = {(1, 0), (2, 2), (0, 2)} and linear cost oracle 𝑐 · 𝑥 for 𝑐 = (−3,−3). We see that the “vanilla” objective
is minimized at the direction of −𝑐, i.e., along the direction 𝜏(1, 1) for 𝜏 → +∞. We observe the two issues
described in Section 3, i.e., that the true minimizer is a point at infinity, and that gradients vanish so gradient
descent may get trapped in sub-optimal solutions, (e.g., in the upper-right corner if initialized in the top corner).
In the middle plot, we show the landscape of the entropy-regularized objective of Eq.(3) that makes the minimizer
finite and brings it closer to the origin. Observe that even if a gradient iteration is initialized in the top corner it
will eventually converge to the minimizer; however the rate of convergence may be very slow. The right plot
corresponds to the loss objective where we combine a mixture of exponential families as solution generator, as in
Eq.(5), and the entropy regularization approach. We observe that we are able to obtain a benign (quasar-convex)
landscape via the entropy regularization while the mixture-generator guarantees non-vanishing gradients.

for some “temperature” parameter 𝜏 , where 𝜓ℐ and 𝜓𝑆 are the feature mappings promised to exist
due to Assumption 1, 𝑧 = 𝜓ℐ(𝐼), and, 𝑥 = 𝜓𝑆(𝑠). Note that as long as 𝜏 → +∞, this distribution
tends to concentrate on solutions that achieve small loss.
Remark 7. To construct the above solution sampler one could artificially query specific solutions to
the cost oracle of Definition 1 and try to learn the cost matrix 𝑀 . However, we remark that our goal
(see Definition 2) is to show that we can train a parametric family via gradient-based methods so that
it generates (approximately) optimal solutions and not to simply learn the cost matrix 𝑀 via some
other method and then use it to generate good solutions.

Obstacle I: Minimizers at Infinity. One could naturally consider the parametric family
𝜑(𝑥; 𝑧;𝑊) ∝ exp(𝑧⊤𝑊𝑥) (note that with 𝑊 = −𝜏𝑀 , we recover the distribution of the previous
paragraph) and try to perform gradient-based methods on the loss (recall that 𝐿(𝑥; 𝑧) = 𝑧⊤𝑀𝑥)1

ℒ(𝑊) = E
𝑧∼ℛ

E
𝑥∼𝜑(·;𝑧;𝑊)

[𝑧⊤𝑀𝑥] . (1)

The question is whether gradient updates on the parameter 𝑊 eventually converge to a matrix 𝑊
whose associated distribution 𝜑(𝑊) generates near-optimal solutions (note that the matrix −𝜏𝑀
with 𝜏 → +∞ is such a solution). After computing the gradient of ℒ, we observe that

∇𝑊ℒ(𝑊) ·𝑀 = Var𝑧∼ℛ,𝑥∼𝜑(·;𝑧;𝑊)[𝑧
⊤𝑀𝑥] ≥ 0 ,

where the inner product between two matrices 𝐴 · 𝐵 is the trace Tr(𝐴⊤𝐵) =
∑︀
𝑖,𝑗 𝐴𝑖𝑗𝐵𝑖𝑗 . This

means that the gradient field of ℒ always has a contribution to the direction of 𝑀 . Nevertheless the
actual minimizer is at infinity, i.e., it corresponds to the point 𝑊 = −𝜏𝑀 when 𝜏 → +∞. While
the correlation with the optimal point is positive (which is encouraging), having such contribution
to this direction is not a sufficient condition for actually reaching 𝑊 . The objective has vanishing
gradients at infinity and gradient descent may get trapped in sub-optimal stationary points, see the
left plot in Figure 1.

Solution I: Quasar Convexity via Entropy Regularization. Our plan is to try and make the
objective landscape more benign by adding an entropy-regularizer. Instead of trying to make the
objective convex (which may be too much to ask in the first place) we are able obtain a much better
landscape with a finite global minimizer and a gradient field that guides gradient descent to the
minimizer. Those properties are described by the so-called class of “quasar-convex” functions. Quasar
convexity (or weak quasi-convexity [HMR16]) is a well-studied notion in optimization [HMR16,
HSS20, LV16, ZMB+17, HLSS15] and can be considered as a high-dimensional generalization of
unimodality.

1We note that we overload the notation and assume that our distributions generate directly the featurizations
𝑧 (resp. 𝑥) of 𝐼 (resp. 𝑠).

7

Definition 3 (Quasar Convexity [HMR16, HSS20]). Let 𝛾 ∈ (0, 1] and let 𝑥 be a minimizer of the
differentiable function 𝑓 : R𝑛 → R. The function 𝑓 is 𝛾-quasar-convex with respect to 𝑥 on a
domain 𝐷 ⊆ R𝑛 if for all 𝑥 ∈ 𝐷, ∇𝑓(𝑥) · (𝑥− 𝑥) ≥ 𝛾(𝑓(𝑥)− 𝑓(𝑥)).

In the above definition, notice that the main property that we need to establish is that the gradient
field of our objective correlates positively with the direction 𝑊 −𝑊 , where 𝑊 is its minimizer. We
denote by 𝐻 :𝒲 → R the negative entropy of 𝜑(𝑊), i.e.,

𝐻(𝑊) = E
𝑧∼ℛ

E
𝑥∼𝜑(·;𝑧;𝑊)

[log 𝜑(𝑥; 𝑧;𝑊)] , (2)

and consider the regularized objective
ℒ𝜆(𝑊) = ℒ(𝑊) + 𝜆𝐻(𝑊) , (3)

for some 𝜆 > 0. We show (follows from Lemma 4) that the gradient-field of the regularized objective
indeed “points” towards a finite minimizer (the matrix 𝑊 = −𝑀/𝜆):

∇𝑊ℒ𝜆(𝑊) · (𝑊 +𝑀/𝜆) =

Var[𝑧⊤(𝑊 +𝑀/𝜆)𝑥] ≥ 0 , (4)
where the randomness is over 𝑧 ∼ ℛ, 𝑥 ∼ 𝜑(·; 𝑧;𝑊). Observe that now the minimizer of ℒ𝜆
is the point −𝑀/𝜆, which for 𝜆 = poly(𝜖, 𝛼, 1/𝐶, 1/𝐷𝑆 , 1/𝐷ℐ) (these are the parameters of
Assumption 1) is promised to yield a solution sampler that generates 𝜖-sub-optimal solutions (see
also Proposition 2 and Appendix C). Having the property of Equation (4) suffices for showing that
a gradient descent iteration (with an appropriately small step-size) will eventually converge to the
minimizer.

Obstacle II: Vanishing Gradients. While we have established that the gradient field of the
regularized objective “points” towards the right direction, the regularized objective still suffers from
vanishing gradients, see the middle plot in Figure 1. In other words, 𝛾 in the definition of quasar
convexity (Definition 3) may be exponentially small, as it is proportional to the variance of the random
variable 𝑧⊤(𝑊 +𝑀/𝜆)𝑥, see Equation (4). As we see in the middle plot of Figure 1, the main issue
is the vanishing gradient when 𝑊 gets closer to the minimizer −𝑀/𝜆 (towards the front-corner).
For simplicity, consider the variance along the direction of 𝑊 , i.e., Var[𝑧⊤𝑊𝑥] and recall that 𝑥 is
generated by the density exp(𝑧⊤𝑊𝑥)/(

∑︀
𝑥∈𝑋 exp(𝑧⊤𝑊𝑥)). When ‖𝑊‖2 → +∞ we observe that

the value 𝑧⊤𝑊𝑥 concentrates exponentially fast to max𝑥∈𝑋 𝑧
⊤𝑊𝑥 (think of the convergence of the

soft-max to the max function). Therefore, the variance Var[𝑧⊤𝑊𝑥] may vanish exponentially fast
making the convergence of gradient descent slow.

Solution II: Non-Vanishing Gradients via Fast/Slow Mixture Generators. We propose a fix to
the vanishing gradients issue by using a mixture of exponential families as a solution generator. We
define the family of solution generators 𝒫 = {𝑝(𝑊) :𝑊 ∈ 𝒲} to be

𝒫 = {(1− 𝛽⋆)𝜑(𝑊) + 𝛽⋆𝜑(𝜌⋆𝑊) :𝑊 ∈ 𝒲} , (5)
for a (fixed) mixing parameter 𝛽⋆ and a (fixed) temperature parameter 𝜌⋆. The main idea is to have the
first component of the mixture to converge fast to the optimal solution (to −𝑀/𝜆) while the second
“slow” component that has parameter 𝜌⋆𝑊 stays closer to the uniform distribution over solutions that
guarantees non-trivial variance (and therefore non-vanishing gradients).

More precisely, taking 𝜌⋆ to be sufficiently small, the distribution 𝜑(𝜌⋆𝑊) is almost uniform over
the solution space 𝜓𝑆(𝑆). Therefore, in Equation (4), the almost uniform distribution component
of the mixture will add to the variance and allow us to show a lower bound. This is where Item 3
of Assumption 1 comes into play and gives us the desired non-trivial variance lower bound under
the uniform distribution. We view this fast/slow mixture technique as an interesting insight of our
work: we use the “fast” component (the one with parameter 𝑊) to actually reach the optimal solution
−𝑀/𝜆 and and we use the “slow” component (the one with parameter 𝜌⋆𝑊 that essentially generates
random solutions) to preserve a non-trivial variance lower bound during optimization.

4 Complete, Compressed and Efficiently Optimizable Solution Generators

In this section, we discuss the main results that imply Theorem 1: the family 𝒫 of Equation (5) is
complete, compressed and efficiently optimizable (for some choice of 𝛽⋆, 𝜌⋆ and𝒲).

8

Completeness. First, we show that the family of solution generators of Equation (5) is complete. For
the proof, we refer to Proposition 2 in Appendix C. At a high-level, we to pick 𝛽⋆, 𝜌⋆ to be of order
poly(𝜖, 𝛼, 1/𝐶, 1/𝐷𝑆 , 1/𝐷ℐ). This yields that the matrix𝑊 = −𝑀/𝜆 is such that ℒ(𝑊) ≤ opt+𝜖,
where 𝑀 is the matrix of Item 2 in Assumption 1 and 𝜆 is poly(𝜖/[ℐ]). To give some intuition about
this choice of matrix, let us see how ℒ(𝑊) behaves. By definition, we have that

ℒ(𝑊) = E
𝑧∼ℛ

E
𝑥∼𝑝(·;𝑧;𝑊)

[︀
𝑧⊤𝑀𝑥

]︀
,

where the distribution 𝑝 belongs to the family of Equation (5), i.e., 𝑝(𝑊) = (1 − 𝛽⋆)𝜑(𝑊) +
𝛽⋆𝜑(𝜌⋆𝑊). Since the mixing weight 𝛽⋆ is small, we have that 𝑝(𝑊) is approximately equal to
𝜑(𝑊). This means that our solution generator draws samples from the distribution whose mass at 𝑥
given instance 𝑧 is proportional to exp(−𝑧⊤𝑀𝑥/𝜆) and, since 𝜆 > 0 is very small, the distribution
concentrates to solutions 𝑥 that tend to minimize the objective 𝑧⊤𝑀𝑥. This is the reason why
𝑊 = −𝑀/𝜆 is close to opt in the sense that ℒ(𝑊) ≤ opt + 𝜖.
Compression. As a second step, we show (in Proposition 3, see Appendix D) that 𝒫 is a compressed
family of solution generators. This result follows immediately from the structure of Equation (5)
(observe that 𝑊 has 𝑛𝑋 𝑛𝑍 parameters) and the boundedness of 𝑊 = −𝑀/𝜆.
Efficiently Optimizable. The proof of this result essentially corresponds to the discussion provided
in Section 3. Our main structural result shows that the landscape of the regularized objective with the
fast/slow mixture solution-generator is quasar convex. More precisely, we consider the following
objective:

ℒ𝜆(𝑊) = E
𝑧∼ℛ

E
𝑥∼𝑝(·;𝑧;𝑊)

[𝑧⊤𝑀𝑥] + 𝜆𝑅(𝑊) , (1)

where 𝑝(𝑊) belongs in the family 𝒫 of Equation (5) and𝑅 is a weighted sum of two negative entropy
regularizers (to be in accordance with the mixture structure of 𝒫), i.e., 𝑅(𝑊) = (1− 𝛽⋆)𝐻(𝑊) +
𝛽⋆/𝜌⋆𝐻(𝜌⋆𝑊). Our main structural results follows (for the proof, see Appendix E.1).

Proposition 1 (Quasar Convexity). Consider 𝜖 > 0 and a priorℛ over ℐ . Assume that Assumption 1
holds. The function ℒ𝜆 of Equation (1) with domain 𝒲 is poly(𝜖, 𝛼, 1/𝐶, 1/𝐷𝑆 , 1/𝐷ℐ)-quasar
convex with respect to −𝑀/𝜆 on the domain𝒲 .

Since 𝜌⋆ is small (by Proposition 2),𝐻(𝜌⋆𝑊) is essentially constant and close in value to the negative
entropy of the uniform distribution. Hence, the effect of 𝑅(𝑊) during optimization is essentially the
same as that of 𝐻(𝑊) (since 𝛽⋆ is close to 0). We show that ℒ𝜆 is quasar convex with a non-trivial
parameter 𝛾 (see Proposition 1). We can then apply (in a black-box manner) the convergence results
from [HMR16] to optimize it using projected SGD. We show that SGD finds a weight matrix ̂︁𝑊 such
that the solution generator 𝑝(̂︁𝑊) generates solutions achieving actual loss ℒ close to that of the near
optimal matrix 𝑊 = −𝑀/𝜆, i.e., ℒ(̂︁𝑊) ≤ ℒ(𝑊) + 𝜖. For further details, see Appendix E.3.

5 Experimental Evaluation

In this section, we investigate experimentally the effect of our main theoretical contributions, the
entropy regularizer (see Equation (2)) and the fast/slow mixture scheme (see Equation (5)). We try to
find the Max-Cut of a fixed graph 𝐺, i.e., the support of the priorℛ is a single graph. Similarly to our
theoretical results, our sampler is of the form 𝑒score(𝑠;𝑤), where 𝑠 ∈ {−1, 1}𝑛 (here 𝑛 is the number
of nodes in the graph) is a candidate solution of the Max-Cut problem. For the score function we
used a simple linear layer (left plot of Figure 2) and a 3-layer ReLU network (right plot of Figure 2).

Small Graph Instances. Focusing on instances where the number of nodes 𝑛 is small (say 𝑛 = 15),
we can explicitly compute the density function and work with an exact sampler. We generate 100
random 𝐺(𝑛, 𝑝) graphs with 𝑛 = 15 nodes and 𝑝 = 0.5 and train solution generators using both the
”vanilla” loss ℒ and the entropy-regularized loss ℒ𝜆 with the fast/slow mixture scheme. We perform
600 iterations and, for the entropy regularization, we progressively decrease the regularization weight,
starting from 10, and dividing it by 2 every 60 iterations. Out of the 100 trials we found that our
proposed objective was always able to find the optimal cut while the model trained with the vanilla
loss was able to find it for approximately 65% of the graphs (for 65 out of 100 using the linear
network and for 66 using the ReLU network).

9

Hence, our experiments demonstrate that while the unregularized objective is often “stuck” at sub-
optimal solutions – and this happens even for very small instances (𝑛 =15 nodes) – of the Max-Cut
problem, the objective motivated by our theoretical results is able to find the optimal solutions. For
further details, see Appendix I.

Figure 2: Plot of the Max-Cut value trajectory of the “vanilla” objective and entropy-regularized
objective with the slow/fast mixture scheme. We remark that we plot the value of the cut of each
iteration (and not the value of the regularized-loss). On the horizontal axis we plot the number of
iterations and on the vertical axis we plot the achieved value of the cut. Both graphs used were
random 𝐺(𝑛, 𝑝) graphs generated with 𝑛 = 15 nodes and edge probabilitdy 𝑝 = 0.5. For the left
plot we used a linear network (the same exponential family as the one used in our theoretical results).
For the right plot we used a simple 3-Layer ReLU network to generate the scores. We observe that
the ”vanilla” loss gets stuck on sub-optimal solutions.

Large Graph Instances. A natural question is whether this improvement is also apparent in
larger graphs. We focus on the case of random 𝑑-regular graphs with 𝑛 nodes. It is well-known
that for this family of graphs, with high probability as 𝑛 → ∞, the size of the maximum cut
satisfies MaxCut(𝐺(𝑛, 𝑑)) = 𝑛(𝑑/4 + 𝑃⋆

√︀
𝑑/4 + 𝑜𝑑(

√
𝑑)) + 𝑜(𝑛), where 𝑃⋆ ≈ 0.7632 is a

universal constant [DMS17]. We aim to find a good approximation for the normalized cut-value,
defined as (cut_value/𝑛 − 𝑑/4)/

√︀
𝑑/4, which (roughly speaking) takes values in [0, 𝑃⋆]. We

obtain approximate random samples from the density 𝑒𝑓 using the Metropolis-Adjusted Langevin
Algorithm (MALA). In particular, an approximate sample from this density is obtained by the
Euler–Maruyama method for simulating the Langevin diffusion: 𝑥𝑘+1 = 𝑥𝑘 + 𝜏∇𝑓(𝑥𝑘) +

√
2𝜏𝜉𝑘,

where 𝜉𝑘 is an independent Gaussian vector 𝒩 (0, 𝐼). MALA incorporates an additional step based
on the Metropolis-Hastings algorithm (see [Bes94, SK21]). In our case, the score function 𝑓 is a
simple 3-layer ReLU network. In our experiments for 3 larger random regular graphs (600 nodes)
using the fast/slow mixing technique along entropy regularization we see that our method leads to
improvements over the vanilla objective. Plots of the trajectories of the vanilla and our method can
be found in Figure 3. In the horizontal axis we plot the iterations and in the vertical axis we plot the
normalized cut score of each method (higher is better) – we stop the plot of the vanilla trajectory after
200 iterations because we observed that its output has fully converged and is stuck.

Figure 3: Plot of the Max-Cut value trajectory of the “vanilla” objective and entropy-regularized
objective with the slow/fast mixture scheme on large instances. On the horizontal axis we plot the
number of iterations and on the vertical axis we plot the achieved value of the normalized cut-value.
The 3 graphs used were random 𝐺(𝑛, 𝑝) graphs generated with 𝑛 = 600 nodes and edge probability
𝑝 = 0.5. We stop the plot of the vanilla trajectory after 200 iterations because we observed that its
output has fully converged and is stuck.

10

Acknowledgements

This work has been partially supported by project MIS 5154714 of the National Recovery and
Resilience Plan Greece 2.0 funded by the European Union under the NextGenerationEU Program.

Constantine Caramanis was partially supported by the NSF IFML Institute (NSF 2019844), and the
NSF AI-EDGE Institute (NSF 2112471).

Dimitris Fotakis has been partially supported by the Hellenic Foundation for Research and Innovation
(H.F.R.I.) under the “First Call for H.F.R.I. Research Projects to support Faculty members and
Researchers and the procurement of high-cost research equipment grant”, project BALSAM, HFRI-
FM17-1424.

Christos Tzamos was partially supported by the NSF IFML Institute (NSF 2144298).

References
[AAM22] Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. The merged-staircase

property: a necessary and nearly sufficient condition for sgd learning of sparse functions
on two-layer neural networks. In Conference on Learning Theory, pages 4782–4887.
PMLR, 2022. 5

[ABA22] Emmanuel Abbe and Enric Boix-Adsera. On the non-universality of deep learning:
quantifying the cost of symmetry. arXiv preprint arXiv:2208.03113, 2022. 5

[ABAB+21] Emmanuel Abbe, Enric Boix-Adsera, Matthew S Brennan, Guy Bresler, and Dheeraj
Nagaraj. The staircase property: How hierarchical structure can guide deep learning.
Advances in Neural Information Processing Systems, 34:26989–27002, 2021. 5

[ABAM23] Emmanuel Abbe, Enric Boix-Adsera, and Theodor Misiakiewicz. Sgd learning on
neural networks: leap complexity and saddle-to-saddle dynamics. arXiv preprint
arXiv:2302.11055, 2023. 5

[AEG+22] Simon Apers, Yuval Efron, Pawel Gawrychowski, Troy Lee, Sagnik Mukhopadhyay,
and Danupon Nanongkai. Cut query algorithms with star contraction. arXiv preprint
arXiv:2201.05674, 2022. 2

[AKM+21] Emmanuel Abbe, Pritish Kamath, Eran Malach, Colin Sandon, and Nathan Srebro. On
the power of differentiable learning versus pac and sq learning. Advances in Neural
Information Processing Systems, 34:24340–24351, 2021. 5

[AMW18] Saeed Amizadeh, Sergiy Matusevych, and Markus Weimer. Learning to solve circuit-
sat: An unsupervised differentiable approach. In International Conference on Learning
Representations, 2018. 5

[ART23] Maria Chiara Angelini and Federico Ricci-Tersenghi. Modern graph neural networks do
worse than classical greedy algorithms in solving combinatorial optimization problems
like maximum independent set. Nature Machine Intelligence, 5(1):29–31, 2023. 5

[AS18] Emmanuel Abbe and Colin Sandon. Provable limitations of deep learning. arXiv
preprint arXiv:1812.06369, 2018. 5

[AS20] Emmanuel Abbe and Colin Sandon. On the universality of deep learning. Advances in
Neural Information Processing Systems, 33:20061–20072, 2020. 5

[BBSS22] Alberto Bietti, Joan Bruna, Clayton Sanford, and Min Jae Song. Learning single-index
models with shallow neural networks. Advances in Neural Information Processing
Systems, 35:9768–9783, 2022. 5

[BEG+22] Boaz Barak, Benjamin L Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril
Zhang. Hidden progress in deep learning: Sgd learns parities near the computational
limit. arXiv preprint arXiv:2207.08799, 2022. 5

11

[Bes94] Julian Besag. Comments on “representations of knowledge in complex systems” by u.
grenander and mi miller. J. Roy. Statist. Soc. Ser. B, 56(591-592):4, 1994. 10

[BLP21] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinato-
rial optimization: a methodological tour d’horizon. European Journal of Operational
Research, 290(2):405–421, 2021. 5

[BPL+16] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio.
Neural combinatorial optimization with reinforcement learning. arXiv preprint
arXiv:1611.09940, 2016. 1, 2, 3, 5

[CCK+21] Quentin Cappart, Didier Chételat, Elias Khalil, Andrea Lodi, Christopher Morris,
and Petar Veličković. Combinatorial optimization and reasoning with graph neural
networks. arXiv preprint arXiv:2102.09544, 2021. 5

[CGG+19] Zongchen Chen, Andreas Galanis, Leslie Ann Goldberg, Will Perkins, James Stewart,
and Eric Vigoda. Fast algorithms at low temperatures via markov chains. arXiv preprint
arXiv:1901.06653, 2019. 27

[CGKM22] Sitan Chen, Aravind Gollakota, Adam Klivans, and Raghu Meka. Hardness of noise-
free learning for two-hidden-layer neural networks. Advances in Neural Information
Processing Systems, 35:10709–10724, 2022. 5

[CLS+95] William Cook, László Lovász, Paul D Seymour, et al. Combinatorial optimization:
papers from the DIMACS Special Year, volume 20. American Mathematical Soc., 1995.
1, 5

[CLV22] Zongchen Chen, Kuikui Liu, and Eric Vigoda. Spectral independence via stability
and applications to holant-type problems. In 2021 IEEE 62nd Annual Symposium on
Foundations of Computer Science (FOCS), pages 149–160. IEEE, 2022. 27

[COLMS22] Amin Coja-Oghlan, Philipp Loick, Balázs F Mezei, and Gregory B Sorkin. The ising
antiferromagnet and max cut on random regular graphs. SIAM Journal on Discrete
Mathematics, 36(2):1306–1342, 2022. 27

[CT19] Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial
optimization. Advances in Neural Information Processing Systems, 32, 2019. 5

[CZ22] Xiaoyu Chen and Xinyuan Zhang. A near-linear time sampler for the ising model.
arXiv preprint arXiv:2207.09391, 2022. 27

[d’A08] Alexandre d’Aspremont. Smooth optimization with approximate gradient. SIAM
Journal on Optimization, 19(3):1171–1183, 2008. 28

[DAT20] Arthur Delarue, Ross Anderson, and Christian Tjandraatmadja. Reinforcement learning
with combinatorial actions: An application to vehicle routing. Advances in Neural
Information Processing Systems, 33:609–620, 2020. 5

[DCL+18] Michel Deudon, Pierre Cournut, Alexandre Lacoste, Yossiri Adulyasak, and Louis-
Martin Rousseau. Learning heuristics for the tsp by policy gradient. In International
conference on the integration of constraint programming, artificial intelligence, and
operations research, pages 170–181. Springer, 2018. 5

[DLS22] Alexandru Damian, Jason Lee, and Mahdi Soltanolkotabi. Neural networks can learn
representations with gradient descent. In Conference on Learning Theory, pages
5413–5452. PMLR, 2022. 5

[DMS17] Amir Dembo, Andrea Montanari, and Subhabrata Sen. Extremal cuts of sparse random
graphs. The Annals of Probability, 45(2):1190–1217, 2017. 10

[dPS97] JC Anglès d’Auriac, M Preissmann, and A Sebö. Optimal cuts in graphs and statistical
mechanics. Mathematical and Computer Modelling, 26(8-10):1–11, 1997. 27

[Edm65] Jack Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. Journal of
research of the National Bureau of Standards B, 69(125-130):55–56, 1965. 29

12

[EGK+23] Benjamin L Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang.
Pareto frontiers in neural feature learning: Data, compute, width, and luck. arXiv
preprint arXiv:2309.03800, 2023. 5

[ER18] Patrick Emami and Sanjay Ranka. Learning permutations with sinkhorn policy gradient.
arXiv preprint arXiv:1805.07010, 2018. 5

[Gam23] David Gamarnik. Barriers for the performance of graph neural networks (gnn) in
discrete random structures. a comment on ∖cite {schuetz2022combinatorial},∖cite
{angelini2023modern},∖cite {schuetz2023reply}. arXiv preprint arXiv:2306.02555,
2023. 5

[GCF+19] Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi.
Exact combinatorial optimization with graph convolutional neural networks. Advances
in Neural Information Processing Systems, 32, 2019. 5

[GLS12] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and
combinatorial optimization, volume 2. Springer Science & Business Media, 2012. 1, 5

[GPRW19] Andrei Graur, Tristan Pollner, Vidhya Ramaswamy, and S Matthew Weinberg.
New query lower bounds for submodular function minimization. arXiv preprint
arXiv:1911.06889, 2019. 2

[HLSS15] Elad Hazan, Kfir Levy, and Shai Shalev-Shwartz. Beyond convexity: Stochastic quasi-
convex optimization. Advances in neural information processing systems, 28, 2015.
7

[HMR16] Moritz Hardt, Tengyu Ma, and Benjamin Recht. Gradient descent learns linear dynami-
cal systems. arXiv preprint arXiv:1609.05191, 2016. 7, 8, 9, 17, 23, 24

[HS23a] Christoph Hertrich and Leon Sering. Relu neural networks of polynomial size for exact
maximum flow computation. In International Conference on Integer Programming
and Combinatorial Optimization, pages 187–202. Springer, 2023. 5

[HS23b] Christoph Hertrich and Martin Skutella. Provably good solutions to the knapsack
problem via neural networks of bounded size. INFORMS Journal on Computing, 2023.
5

[HSS20] Oliver Hinder, Aaron Sidford, and Nimit Sohoni. Near-optimal methods for minimizing
star-convex functions and beyond. In Conference on learning theory, pages 1894–1938.
PMLR, 2020. 7, 8

[HT85] John J Hopfield and David W Tank. “neural” computation of decisions in optimization
problems. Biological cybernetics, 52(3):141–152, 1985. 1, 5

[Jeg22] Stefanie Jegelka. Theory of graph neural networks: Representation and learning. arXiv
preprint arXiv:2204.07697, 2022. 5

[Jer03] Mark Jerrum. Counting, sampling and integrating: algorithms and complexity. Springer
Science & Business Media, 2003. 30

[JLB19] Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph con-
volutional network technique for the travelling salesman problem. arXiv preprint
arXiv:1906.01227, 2019. 5

[JS93] Mark Jerrum and Alistair Sinclair. Polynomial-time approximation algorithms for the
ising model. SIAM Journal on computing, 22(5):1087–1116, 1993. 27

[JSV04] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A polynomial-time approximation
algorithm for the permanent of a matrix with nonnegative entries. Journal of the ACM
(JACM), 51(4):671–697, 2004. 30

[Kak01] Sham M Kakade. A natural policy gradient. Advances in neural information processing
systems, 14, 2001. 2

13

[KCK+20] Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and
Seungjai Min. Pomo: Policy optimization with multiple optima for reinforcement
learning. Advances in Neural Information Processing Systems, 33:21188–21198, 2020.
5

[KCY+21] Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune
Gwon. Matrix encoding networks for neural combinatorial optimization. Advances in
Neural Information Processing Systems, 34:5138–5149, 2021. 5

[KDZ+17] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combina-
torial optimization algorithms over graphs. Advances in neural information processing
systems, 30, 2017. 5

[KL20] Nikolaos Karalias and Andreas Loukas. Erdos goes neural: an unsupervised learning
framework for combinatorial optimization on graphs. Advances in Neural Information
Processing Systems, 33:6659–6672, 2020. 5

[KLMS19] Weiwei Kong, Christopher Liaw, Aranyak Mehta, and D Sivakumar. A new dog learns
old tricks: Rl finds classic optimization algorithms. In International conference on
learning representations, 2019. 5

[KP+21] Minsu Kim, Jinkyoo Park, et al. Learning collaborative policies to solve np-hard routing
problems. Advances in Neural Information Processing Systems, 34:10418–10430, 2021.
5

[KPP22] Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-nco: Leveraging symmetricity for
neural combinatorial optimization. arXiv preprint arXiv:2205.13209, 2022. 5

[KVHW18] Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing
problems! arXiv preprint arXiv:1803.08475, 2018. 5

[LSS19] Jingcheng Liu, Alistair Sinclair, and Piyush Srivastava. The ising partition function:
Zeros and deterministic approximation. Journal of Statistical Physics, 174(2):287–315,
2019. 27

[LSZ21] Troy Lee, Miklos Santha, and Shengyu Zhang. Quantum algorithms for graph problems
with cut queries. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 939–958. SIAM, 2021. 2

[LV16] Jasper CH Lee and Paul Valiant. Optimizing star-convex functions. In 2016 IEEE
57th Annual Symposium on Foundations of Computer Science (FOCS), pages 603–614.
IEEE, 2016. 7

[LZ09] Fei Liu and Guangzhou Zeng. Study of genetic algorithm with reinforcement learning
to solve the tsp. Expert Systems with Applications, 36(3):6995–7001, 2009. 5

[MGH+19] Qiang Ma, Suwen Ge, Danyang He, Darshan Thaker, and Iddo Drori. Combinatorial
optimization by graph pointer networks and hierarchical reinforcement learning. arXiv
preprint arXiv:1911.04936, 2019. 5

[MKS+13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013. 5

[MLC+21] Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and
Jing Tang. Learning to iteratively solve routing problems with dual-aspect collaborative
transformer. Advances in Neural Information Processing Systems, 34:11096–11107,
2021. 5

[MSIB21] Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement
learning for combinatorial optimization: A survey. Computers & Operations Research,
134:105400, 2021. 5

14

[MYSSS21] Eran Malach, Gilad Yehudai, Shai Shalev-Schwartz, and Ohad Shamir. The connection
between approximation, depth separation and learnability in neural networks. In
Conference on Learning Theory, pages 3265–3295. PMLR, 2021. 5

[NJS+20] Yatin Nandwani, Deepanshu Jindal, Parag Singla, et al. Neural learning of one-of-
many solutions for combinatorial problems in structured output spaces. arXiv preprint
arXiv:2008.11990, 2020. 5

[NOST18] Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Re-
inforcement learning for solving the vehicle routing problem. Advances in neural
information processing systems, 31, 2018. 5

[PRW22] Orestis Plevrakis, Seyoon Ragavan, and S Matthew Weinberg. On the cut-query
complexity of approximating max-cut. arXiv preprint arXiv:2211.04506, 2022. 2

[PS98] Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: algo-
rithms and complexity. Courier Corporation, 1998. 1, 5

[RSW17] Aviad Rubinstein, Tselil Schramm, and S Matthew Weinberg. Computing exact
minimum cuts without knowing the graph. arXiv preprint arXiv:1711.03165, 2017. 2

[S+03] Alexander Schrijver et al. Combinatorial optimization: polyhedra and efficiency,
volume 24. Springer, 2003. 1, 5

[SBK22] Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber. Combinatorial opti-
mization with physics-inspired graph neural networks. Nature Machine Intelligence,
4(4):367–377, 2022. 5

[Sch05] Alexander Schrijver. On the history of combinatorial optimization (till 1960). Hand-
books in operations research and management science, 12:1–68, 2005. 1, 5

[SE20] Yang Song and Stefano Ermon. Improved techniques for training score-based generative
models. Advances in neural information processing systems, 33:12438–12448, 2020. 4

[SHM+16] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016. 5

[Sin12] Alistair Sinclair. Algorithms for random generation and counting: a Markov chain
approach. Springer Science & Business Media, 2012. 30, 33

[SK21] Yang Song and Diederik P Kingma. How to train your energy-based models. arXiv
preprint arXiv:2101.03288, 2021. 10

[SLB+18] Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura,
and David L Dill. Learning a sat solver from single-bit supervision. arXiv preprint
arXiv:1802.03685, 2018. 5

[Smi99] Kate A Smith. Neural networks for combinatorial optimization: a review of more than
a decade of research. Informs journal on Computing, 11(1):15–34, 1999. 1, 5

[SSDK+20] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano
Ermon, and Ben Poole. Score-based generative modeling through stochastic differential
equations. arXiv preprint arXiv:2011.13456, 2020. 4

[SSS+17] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mas-
tering the game of go without human knowledge. nature, 550(7676):354–359, 2017.
5

[TRWG21] Jan Toenshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Graph neural networks
for maximum constraint satisfaction. Frontiers in artificial intelligence, 3:580607, 2021.
5

15

[VFJ15] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in
neural information processing systems, 28, 2015. 1, 5

[YBV19] Weichi Yao, Afonso S Bandeira, and Soledad Villar. Experimental performance of
graph neural networks on random instances of max-cut. In Wavelets and Sparsity XVIII,
volume 11138, pages 242–251. SPIE, 2019. 5

[YGS20] Gal Yehuda, Moshe Gabel, and Assaf Schuster. It’s not what machines can learn,
it’s what we cannot teach. In International conference on machine learning, pages
10831–10841. PMLR, 2020. 5

[YP19] Emre Yolcu and Barnabás Póczos. Learning local search heuristics for boolean satisfia-
bility. Advances in Neural Information Processing Systems, 32, 2019. 5

[YW20] Yunhao Yang and Andrew Whinston. A survey on reinforcement learning for combina-
torial optimization. arXiv preprint arXiv:2008.12248, 2020. 5

[ZCH+20] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,
Lifeng Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of
methods and applications. AI Open, 1:57–81, 2020. 5

[ZMB+17] Zhengyuan Zhou, Panayotis Mertikopoulos, Nicholas Bambos, Stephen Boyd, and
Peter W Glynn. Stochastic mirror descent in variationally coherent optimization
problems. Advances in Neural Information Processing Systems, 30, 2017. 7

16

A Preliminaries and Notation

This lemma is a useful tool for quasar convex functions.

Lemma 1 ([HMR16]). Suppose that the functions 𝑓1, . . . , 𝑓𝑛 are individually 𝛾-quasar convex in 𝑋
with respect to a common global minimum 𝑥. Then for non-negative weights 𝑎1, . . . , 𝑎𝑛, the linear
combination 𝑓 =

∑︀
𝑖∈[𝑛] 𝑎𝑖𝑓𝑖 is also 𝛾-quasar convex with respect to 𝑥 in 𝑋 .

In the proofs, we use the following notation: for a matrix 𝑊 and vectors 𝑥, 𝑧, we let

𝜑(𝑥; 𝑧;𝑊) =
exp(𝑧⊤𝑊𝑧)∑︀
𝑦∈𝑋 exp(𝑧⊤𝑊𝑦)

, (1)

be a probability mass function over 𝑋 and we overload the notation as

𝜑(𝑥;𝑤) =
exp(𝑤 · 𝑥)∑︀
𝑦∈𝑋 exp(𝑤 · 𝑦)

. (2)

B The Proof of Remark 1

Proof. Let 𝑥1, . . . , 𝑥𝑛 be the variables of the Max-Cut problem of interest and 𝑆 = {−1, 1}𝑛 be
the solution space. Consider 𝒫 to be the collection of product distributions over 𝑆, i.e., for any

𝑝 ∈ 𝒫 , it holds that, for any 𝑠 ∈ 𝑆, Pr𝑥∼𝑝[𝑥 = 𝑠] =
∏︀
𝑖∈[𝑛] 𝑝

1+𝑠𝑖
2

𝑖 (1 − 𝑝𝑖)
1−𝑠𝑖

2 . Let us consider
the cube [𝜖, 1− 𝜖]𝑛. This family is complete since the 𝑂(𝜖)-sub-optimal solution of 𝐼 belongs to 𝒫
and is compressed since the description size is poly(𝑛, log(1/𝜖)). We show that in this setting there
exist bad stationary points. Let 𝐿𝐺 be the Laplacian matrix of the input graph. For some product
distribution 𝑝 ∈ 𝒫 , it holds that

ℒ(𝑝) = − E
𝑥∼𝑝(·)

[𝑥⊤𝐿𝐺𝑥] = −(2𝑝− 1)⊤𝐿𝐺(2𝑝− 1) , ∇𝑝ℒ(𝑝) = −4𝐿𝐺(2𝑝− 1) ,

where 𝐿𝐺 is zero in the diagonal and equal to the Laplacian otherwise. Let us consider a vertex of the
cube 𝑝 ∈ [𝜖, 1− 𝜖]𝑛 which is highly and strictly sub-optimal, i.e., any single change of a node would
strictly improve the number of edges in the cut and the score attained in 𝑝 is very large compared to
min𝑥∈𝑆 −𝑥⊤𝐿𝐺𝑥. For any 𝑖 ∈ [𝑛], we show that

(∇ℒ(𝑝) · 𝑒𝑖)((2𝑝− 1) · 𝑒𝑖) < 0 .

This means that if 𝑝𝑖 is large (i.e., 1− 𝜖), then the 𝑖-th coordinate of the gradient of ℒ(𝑝) should be
negative since this would imply that the negative gradient would preserve 𝑝𝑖 to the right boundary.
Similarly for the case where 𝑝𝑖 is small. This means that this point is a stationary point and is highly
sub-optimal by assumption.

Let 𝑃 (resp. 𝑁) be the set of indices in [𝑛] where 𝑝 takes the value 1− 𝜖 (resp. 𝜖). For any 𝑖 ∈ [𝑛],
let 𝒩 (𝑖) be its neighborhood in 𝐺. Let us consider 𝑖 ∈ 𝑃 . We have that (2𝑝− 1) · 𝑒𝑖 > 0 and so it
suffices to show that

(𝐿𝐺(2𝑝− 1)) · 𝑒𝑖 > 0 ,

which corresponds to showing that∑︁
𝑗∈𝒩 (𝑖)∩𝑃

𝐿𝐺(𝑖, 𝑗)(1− 2𝜖) +
∑︁

𝑗∈𝒩 (𝑖)∩𝑁

𝐿𝐺(𝑖, 𝑗)(2𝜖− 1) > 0 ,

and so we would like to have ∑︁
𝑗∈𝑃

𝐿𝐺(𝑖, 𝑗)−
∑︁
𝑗∈𝑁

𝐿𝐺(𝑖, 𝑗) > 0 .

Note that this is true for any 𝑖 ∈ [𝑛] since the current solution is a strict local optimum. The same
holds if 𝑖 ∈ 𝑁 .

17

C Completeness

Proposition 2 (Completeness). Consider 𝜖 > 0 and a prior ℛ over ℐ. Assume that Assumption 1
holds. There exist 𝛽⋆, 𝜌⋆ ∈ (0, 1) and𝒲 such that the family of solution generators 𝒫 of Equation (5)
is complete.

Proof. Assume that 𝒪(𝑠, 𝐼) = 𝜓ℐ(𝐼)
⊤𝑀𝜓𝑆(𝑠) and let 𝑧 = 𝜓ℐ(𝐼) and 𝑥 = 𝜓𝑆(𝑠). Moreover, let

𝛼,𝐶,𝐷𝑆 , 𝐷ℐ be the parameters promised by Assumption 1. Let us consider the family 𝒫 = {𝑝(𝑊) :
𝑊 ∈ 𝒲} with

𝑝(𝑥; 𝑧;𝑊) = (1− 𝛽⋆) 𝑒𝑧
⊤𝑊𝑥∑︀

𝑦∈𝑋 𝑒
𝑧⊤𝑊𝑦

+ 𝛽⋆
𝑒𝑧

⊤𝜌⋆𝑊𝑥∑︀
𝑦∈𝑋 𝑒

𝑧⊤𝜌⋆𝑊𝑦
,

where the mixing weight 𝛽⋆ ∈ (0, 1) and the inverse temperate 𝜌⋆ are to be decided. Recall that

ℒ(𝑊) = E
𝑧∼ℛ

E
𝑥∼𝑝(·;𝑧;𝑊)

[𝐿(𝑥; 𝑧)] = E
𝑧∼ℛ

E
𝑥∼𝑝(·;𝑧;𝑊)

[𝑧⊤𝑀𝑥] .

Let us pick the parameter matrix 𝑊 = −𝑀/𝜆. Let us now fix a 𝑧 ∈ 𝜓ℐ(ℐ). For the given matrix
𝑀 , we can consider the finite set of values 𝑉 obtained by the quadratic forms {𝑧⊤𝑀𝑥}𝑥∈𝜓𝑆(𝑆). We
further cluster these values so that they have distance at least 𝜖 between each other. We consider the
level sets 𝐶𝑖 where 𝐶1 is the subset of 𝑆 with minimum value 𝑣1(= 𝑣1(𝑧)) ∈ 𝑉 , 𝐶2 is the subset
with the second smallest 𝑣2(= 𝑣2(𝑧)) ∈ 𝑉 , etc. For fixed 𝑧 ∈ 𝜓ℐ(ℐ), we have that

E
𝑥∼𝑝(·;𝑧;−𝑀/𝜆)

[𝑧⊤𝑀𝑥] = (1− 𝛽⋆) E
𝑥∼𝜑(·;𝑧;−𝑀/𝜆)

[𝑧⊤𝑀𝑥] + 𝛽⋆ E
𝑥∼𝜑(·;𝑧;−𝜌⋆𝑀/𝜆)

[𝑧⊤𝑀𝑥] ,

where 𝜑 comes from (1). We note that

Pr
𝑥∼𝜑(·;𝑧;−𝑀/𝜆)

[𝑧⊤𝑀𝑥 ∈ 𝐶𝑖] =
|𝐶𝑖|𝑒−𝑣𝑖/𝜆∑︀
𝑗 |𝐶𝑗 |𝑒−𝑣𝑗/𝜆

.

We claim that, by letting 𝜆→ 0, the above measure concentrates uniformly on 𝐶1. The worst case
scenario is when |𝐶2| = |𝑆| − |𝐶1| and 𝑣2 = 𝑣1 + 𝜖. Then we have that

Pr
𝑥∼𝜑(·;𝑧;−𝑀/𝜆)

[𝑧⊤𝑀𝑥 ∈ 𝐶2] =
|𝐶2|/|𝐶1|𝑒(−𝑣2+𝑣1)/𝜆

1 + |𝐶2|/|𝐶1|𝑒(−𝑣2+𝑣1)/𝜆
≤ 𝛿 ,

when 1/𝜆 > log(|𝜓𝑆(𝑆)|/𝛿)/𝜖, since in the worst case |𝐶2|/|𝐶1| = Ω(|𝜓𝑆(𝑆)|). Using this choice
of 𝜆 and taking expectation over 𝑧, we get that

E
𝑧∼ℛ

E
𝑥∼𝑝(·;𝑧;−𝑀/𝜆)

[𝑧⊤𝑀𝑥] ≤ (1−𝛽⋆) E
𝑧∼ℛ

[︂
(1− 𝛿) min

𝑥∈𝜓𝑆(𝑆)
𝐿(𝑥; 𝑧) + 𝛿𝑣2(𝑧)

]︂
+𝛽⋆ E

𝑥∼𝜑(·;𝑧;−𝜌⋆𝑀/𝜆)
[𝑧⊤𝑀𝑥] .

First, we remark that by taking 𝜌⋆ = poly(𝛼, 1/𝐶, 1/𝐷𝑆 , 1/𝐷ℐ), the last term in the right-hand side
of the above expression can be replaced by the expected score of an almost-uniform solution (see
Lemma 3 and Proposition 8), which is at most poly(𝐷𝑆 , 𝐷ℐ , 𝐶)2

−|𝜓𝑆(𝑆)| (and which is essentially
negligible). Finally, one can pick 𝛽⋆, 𝛿 = poly(𝜖, 1/𝐶, 1/𝐷𝑆 , 1/𝐷ℐ) so that

ℒ(−𝑀/𝜆) = E
𝑧∼ℛ

E
𝑥∼𝑝(·;𝑧;−𝑀/𝜆)

[𝑧⊤𝑀𝑥] ≤ E
𝑧∼ℛ

[︂
min

𝑥∈𝜓𝑆(𝑆)
𝐿(𝑥; 𝑧)

]︂
+ 𝜖 .

This implies that 𝒫 is complete by letting 𝑊 = −𝑀/𝜆 ∈ 𝒲 . This means that one can take𝒲 be a
ball centered at 0 with radius (of 𝜖-sub-optimality) to be of order at least 𝐵 = ‖𝑀‖F/𝜆.

D Compression

Proposition 3 (Compression). Consider 𝜖 > 0 and a prior ℛ over ℐ. Assume that Assumption 1
holds. There exist 𝛽⋆, 𝜌⋆ ∈ (0, 1) and𝒲 such that the family of solution generators 𝒫 of Equation (5)
is compressed.

Proof. We have that the bit complexity to represent the mixing weight 𝛽⋆ is polylog(𝐷𝑆 , 𝐷ℐ , 𝐶, 1/𝜖)
and the description size of𝒲 is polynomial in [ℐ] and in log(1/𝜖). This follows from Assumption 1
since the feature dimensions 𝑛𝑋 and 𝑛𝑍 are poly([ℐ]) and 𝒲 is a ball centered at 0 with radius
𝑂(𝐵), where 𝐵 = ‖𝑀‖F/𝜆 ≤ 𝐶/𝜆, which are also poly([ℐ]/𝜖).

18

E Efficiently Optimizable

Proposition 4 (Efficiently Optimizable). Consider 𝜖 > 0 and a prior ℛ over ℐ. Assume that
Assumption 1 holds. There exist 𝛽⋆, 𝜌⋆ ∈ (0, 1) and𝒲 such that family of solution generators 𝒫 of
Equation (5) is efficiently optimizable using Projected SGD, where the projection set is𝒲 .

The proof of this proposition is essentially decomposed into two parts: first, we show that the
entropy-reularized loss of Equation (2) is quasar convex and then apply the projected SGD algorithm
to ℒ𝜆.

Recall that 𝐻(𝑊) = E𝑧∼ℛ E𝑥∼𝜑(·;𝑧;𝑊)[log 𝜑(𝑥; 𝑧;𝑊)]. Let 𝑅 be a weighted sum (to be in
accordance with the mixture structure of 𝒫) of negative entropy regularizers

𝑅(𝑊) = (1− 𝛽⋆)𝐻(𝑊) +
𝛽⋆

𝜌⋆
𝐻(𝜌⋆𝑊) , (1)

where 𝛽⋆, 𝜌⋆ are the fixed parameters of 𝒫 (recall Equation (5)). We define the regularized loss

ℒ𝜆(𝑊) = ℒ(𝑊) + 𝜆𝑅(𝑊) , (2)

where
ℒ(𝑊) = E

𝑧∼ℛ
E

𝑥∼𝑝(·;𝑧;𝑊)
[𝐿(𝑧;𝑥)] , 𝑝(𝑊) ∈ 𝒫 .

E.1 Quasar Convexity of the Regularized Loss

In this section, we show that ℒ𝜆 of Equation (2) is quasar convex. We restate Proposition 1.
Proposition 5 (Quasar Convexity). Consider 𝜖 > 0 and a priorℛ over ℐ . Assume that Assumption 1
holds. The function ℒ𝜆 of Equation (2) with domain𝒲 is poly(𝐶,𝐷𝑆 , 𝐷ℐ , 1/𝜖, 1/𝛼)-quasar convex
with respect to −𝑀/𝜆 on the domain𝒲 .

Proof. We can write the loss ℒ𝜆 as

ℒ𝜆(𝑊) = E
𝑧∼ℛ

[ℒ𝜆,𝑧(𝑊)] = E
𝑧∼ℛ

[ℒ𝑧(𝑊) + 𝜆𝑅𝑧(𝑊)] ,

where the mappings ℒ𝑧 and 𝑅𝑧 are instance-specific (i.e., we have fixed 𝑧). We can make use of
Lemma 1, which states that linear combinations of quasar convex (with the same minimizer) remain
quasar convex. Hence, since the functions ℒ𝜆,𝑧 have the same minimizer −𝑀/𝜆, it suffices to show
quasar convexity for a particular fixed instance mapping, i.e., it sufffices to show that the function

ℒ𝜆,𝑧(𝑊) = ℒ𝑧(𝑊) + 𝜆𝑅𝑧(𝑊)

is quasar convex. Recall that 𝑊 is a matrix of dimension 𝑛𝑍 × 𝑛𝑋 . To deal with the function ℒ𝜆,𝑧 ,
we consider the simpler function that maps vectors instead of matrices to real numbers. For some
vector 𝑐, let ℒvec

𝜆 : R𝑛𝑋 → R be

ℒvec
𝜆 (𝑤) = E

𝑥∼𝑝(·;𝑤)
[𝑐 · 𝑥] + 𝜆𝑅vec(𝑤) , (3)

where for any vector 𝑤 ∈ R𝑛𝑋 , we define the probability distribution 𝜑(·;𝑤) over the solution space
𝑋 = 𝜓𝑆(𝑆) with probability mass function

𝜑(𝑥;𝑤) =
𝑒𝑤·𝑥∑︀
𝑦∈𝑋 𝑒

𝑤·𝑦 .

We then define
𝑝(·;𝑤) = (1− 𝛽⋆)𝜑(·;𝑤) + 𝛽⋆𝜑(·; 𝜌⋆𝑤) ,

and 𝑅vec(𝑤) = (1 − 𝛽⋆)𝐻(𝑤) + 𝛽⋆

𝜌⋆𝐻(𝜌⋆𝑤) (this is a essentially a weighted sum of regularizers,
needed to simplify the proof) with 𝐻(𝑤) = E𝑥∼𝜑(·;𝑤) log 𝜑(𝑥,𝑤). These quantities are essentially
the fixed-instance analogues of Equations (5) and (2). The crucial observation is that by taking
𝑐 = 𝑧⊤𝑀 and applying the chain rule we have that

∇𝑊ℒ𝜆,𝑧(𝑊) = 𝑧 ·
[︀
∇𝑤ℒvec

𝜆 (𝑧⊤𝑊)
]︀⊤

. (4)

19

This means that the gradient of the fixed-instance objective ℒ𝜆,𝑧 is a matrix of dimension 𝑛𝑍 × 𝑛𝑋
that is equal to the outer product of the instance featurization 𝑧 and the gradient of the simpler
function ℒvec

𝑤 evaluated at 𝑧⊤𝑊 . Let us now return on showing that ℒ𝜆,𝑧 is quasar convex. To this
end, we observe that

∇𝑊ℒ𝜆,𝑧(𝑊) ·
(︂
𝑊 +

𝑀

𝜆

)︂
= ∇𝑤ℒvec

𝜆 (𝑧⊤𝑊) ·
(︂
𝑧⊤𝑊 + 𝑧⊤

𝑀

𝜆

)︂
.

This means that, since 𝑧 is fixed, it suffices to show that the function ℒvec
𝜆 is quasar convex. We

provide the next key proposition that deals with issue. This result is one the main technical aspects of
this work and its proof can be found in Appendix E.2.

In the following, intuitively 𝒳 is the post-featurization instance space and 𝒵 is the parameter space.

Proposition 6. Consider 𝜖, 𝜆 > 0. Let ‖𝑐‖2 ≤ 𝐶1. Let 𝒵 be an open ball centered at 0 with
diameter 2𝐶1/𝜆. Let 𝒳 be a space of diameter 𝐷 and let Var𝑥∼𝑈(𝒳)[𝑣 · 𝑥] ≥ 𝛼‖𝑣‖22 for any 𝑣 ∈ 𝒵 .
The function ℒvec

𝜆 (𝑤) = E𝑥∼𝑝(·;𝑤)[𝑐 · 𝑥] + 𝜆𝑅vec(𝑤) is poly(1/𝐶1, 1/𝐷, 𝜖, 𝛼)-quasar convex with
respect to −𝑐/𝜆 on 𝒵 .

We can apply the above result with 𝑐 = 𝑧⊤𝑀,𝑤 = 𝑧⊤𝑊,𝐷 = 𝐷𝑆 and 𝐶1 = 𝐷ℐ𝐶. These give that
the quasar convexity parameter 𝛾 is of order 𝛾 = poly(𝜖, 𝛼, 1/𝐶, 1/𝐷𝑆 , 1/𝐷ℐ). Since we have that
ℒvec
𝜆 (𝑧⊤𝑊) = ℒ𝜆,𝑧(𝑊), we get that

∇𝑊ℒ𝜆,𝑧(𝑊) · (𝑊 +𝑀/𝜆) ≥ 𝛾(ℒ𝜆,𝑧(𝑊)− ℒ𝜆,𝑧(−𝑀/𝜆)) .

This implies that ℒ𝜆,𝑧 is 𝛾-quasar convex with respect to the minimizer −𝑀/𝜆 and completes the
proof using Lemma 1.

E.2 The Proof of Proposition 6

Let us consider ℒvec
𝜆 to be a real-valued differentiable function defined on 𝒵 . Let 𝑤,−𝑐/𝜆 ∈ 𝒵 and

let 𝐿 be the line segment between them with 𝐿 ∈ 𝒵 . The mean value theorem implies that there
exists 𝑤′ ∈ 𝐿 such that

ℒvec
𝜆 (𝑤)− ℒvec

𝜆 (−𝑐/𝜆) = ∇𝑤ℒvec
𝜆 (𝑤′) · (𝑤 + 𝑐/𝜆) ≤ ‖∇ℒvec

𝜆 (𝑤′)‖2‖𝑤 + 𝑐/𝜆‖2 .

Now we have that ℒvec
𝜆 has bounded gradient (see Lemma 2) and so we get that

‖∇𝑤ℒvec
𝜆 (𝑤′)‖2 ≤ 𝐷2‖𝑐+ 𝜆𝑤′‖2 = 𝐷2𝜆‖𝑤′ + 𝑐/𝜆‖2 ≤ 𝐷2𝜆‖𝑤 + 𝑐/𝜆‖2 ,

since 𝑤′ ∈ 𝐿. This implies that

ℒvec
𝜆 (𝑤)− ℒvec

𝜆 (−𝑐/𝜆) ≤ 𝐷2𝜆‖𝑤 + 𝑐/𝜆‖22 ≤
1

𝛾
∇ℒvec

𝜆 (𝑤) · (𝑤 + 𝑐/𝜆) ,

where 1/𝛾 = poly(𝐶1,𝐷)
𝜖3𝛼2 . The last inequality is an application of the correlation lower bound (see

Lemma 3).

In the above proof, we used two key lemmas: a bound for the norm of the gradient and a lower bound
for the correlation. In the upcoming subsections, we prove these two results.

E.2.1 Bounded Gradient Lemma and Proof

Lemma 2 (Bounded Gradient Norm of ℒvec
𝜆). Consider 𝜖, 𝜆 > 0. Let 𝒵 be the domain of ℒvec

𝜆 of
(3). Let 𝒳 be a space of diameter 𝐷. For any 𝑤 ∈ 𝒵 , it holds that

‖∇𝑤ℒvec
𝜆 (𝑤)‖2 ≤ 𝑂(𝐷2)‖𝑐+ 𝜆𝑤‖2 .

Proof. We have that
∇𝑤ℒvec

𝜆 (𝑤) = (1− 𝛽⋆)𝐺𝑤 + 𝛽⋆𝜌⋆𝐺𝜌⋆𝑤 ,

where
𝐺𝑤 = E

𝑥∼𝜑(·;𝑤)
[((𝑐+ 𝜆𝑤) · 𝑥)𝑥]− E

𝑥∼𝜑(·;𝑤)
[(𝑐+ 𝜆𝑤) · 𝑥] E

𝑥∼𝜑(·;𝑤)
[𝑥] ,

20

and
𝐺𝜌⋆𝑤 = E

𝑥∼𝜑(·;𝜌⋆𝑤)
[((𝑐+ 𝜆𝑤) · 𝑥)𝑥]− E

𝑥∼𝜑(·;𝜌⋆𝑤)
[(𝑐+ 𝜆𝑤) · 𝑥] E

𝑥∼𝜑(·;𝜌⋆𝑤)
[𝑥] .

Note that since 𝑥 ∈ 𝒳 , it holds that ‖𝑥‖2 ≤ 𝐷. Hence

‖𝐺𝑤‖2 = sup
𝑣:‖𝑣‖2=1

|𝑣 ·𝐺𝑤| ≤ 2𝐷2‖𝑐+ 𝜆𝑤‖2 .

Moreover, we have that
‖𝐺𝜌⋆𝑤‖2 ≤ 2𝐷2‖𝑐+ 𝜆𝑤‖2 .

This means that

‖∇𝑤ℒvec
𝜆 (𝑤)‖2 ≤ 2(1− 𝛽⋆)‖𝑐+ 𝜆𝑤‖2𝐷2 + 2𝛽⋆𝜌⋆‖𝑐+ 𝜆𝑤‖2𝐷2 = 𝑂(𝐷2)‖𝑐+ 𝜆𝑤‖2 .

E.2.2 Correlation Lower Bound Lemma and Proof

The following lemma is the second ingredient in order to show Proposition 6.
Lemma 3 (Correlation Lower Bound for ℒvec

𝜆). Let 𝜆 > 0. Let ‖𝑐‖2 ≤ 𝐶1. Let 𝒵 be an open ball
centered at 0 with diameter 𝐵 = 2𝐶1/𝜆. Let 𝒳 be a space of diameter 𝐷. Assume that 𝑤 ∈ 𝒵 and
Var𝑥∼𝑈(𝒳)[(𝑐 + 𝜆𝑤) · 𝑥] ≥ 𝛼‖𝑐 + 𝜆𝑤‖22 for some 𝛼 > 0. Then, for any 𝛽⋆ ∈ (0, 1), there exists
𝜌⋆ > 0 such that it holds that

∇𝑤ℒvec
𝜆 (𝑤) · (𝑐+ 𝜆𝑤) = Ω

(︀
𝛽⋆𝛼2/(𝐵𝐷3)‖𝑐+ 𝜆𝑤‖22

)︀
,

where ℒvec
𝜆 is the regularized loss of Proposition 6, 𝜌⋆ is the scale in the second component of the

mixture of (5) and 𝛽⋆ ∈ (0, 1) is the mixture weight.

First, in Lemma 4 and Lemma 5, we give a formula for the desired correlation∇𝑤ℒvec
𝜆 (𝑤) · (𝑐+𝜆𝑤)

and, then we can provide a proof for Lemma 3 by lower bounding this formula.
Lemma 4 (Correlation with Regularization). Consider the function 𝑔(𝑤) = E𝑥∼𝜑(·;𝑤)[𝑐·𝑥]+𝜆𝐻(𝑤),
where 𝐻 is the negative entropy regularizer. Then it holds that

∇𝑤𝑔(𝑤) · (𝑐+ 𝜆𝑤) = Var𝑥∼𝜑(·;𝑤)[(𝑐+ 𝜆𝑤) · 𝑥] .

Proof. Let us consider the following objective function:

𝑔(𝑤) = E
𝑥∼𝜑(·;𝑤)

[𝑐 · 𝑥] + 𝜆𝐻(𝑤) , 𝜑(𝑥;𝑤) =
exp(𝑤 · 𝑥)∑︀
𝑦∈𝒳 exp(𝑤 · 𝑦)

,

where 𝐻 is the negative entropy regularizer, i.e.,

𝐻(𝑤) = E
𝑥∼𝜑(·;𝑤)

[log 𝜑(𝑥;𝑤)] = E
𝑥∼𝜑(·;𝑤)

[𝑤 · 𝑥]− log

⎛⎝∑︁
𝑦∈𝒳

𝑒𝑤·𝑦

⎞⎠ .

The gradient of 𝑔 with respect to 𝑤 ∈ 𝒲 is equal to

∇𝑤𝑔(𝑤) = E
𝑥∼𝜑(·;𝑤)

[(𝑐 · 𝑥)∇𝑤 log 𝜑(𝑥;𝑤)] + 𝜆∇𝑤𝐻(𝑤) .

It holds that

∇𝑤 log 𝜑(𝑥;𝑤) = ∇𝑤

⎛⎝𝑤 · 𝑥− log
∑︁
𝑦∈𝒳

𝑒𝑤·𝑦

⎞⎠ = 𝑥− E
𝑥∼𝜑(·;𝑤)

[𝑥] ,

and

∇𝐻(𝑤) = E
𝑥∼𝜑(·;𝑤)

[𝑥]+ E
𝑥∼𝜑(·;𝑤)

[(𝑤·𝑥)∇𝑤 log 𝜑(𝑥;𝑤)]− E
𝑥∼𝜑(·;𝑤)

[𝑥] = E
𝑥∼𝜑(·;𝑤)

[(𝑤·𝑥)∇𝑤 log 𝜑(𝑥;𝑤)] .

So, we get that

∇𝑤𝑔(𝑤) = E
𝑥∼𝜑(·;𝑤)

[((𝑐+ 𝜆𝑤) · 𝑥)𝑥]− E
𝑥∼𝜑(·;𝑤)

[(𝑐+ 𝜆𝑤) · 𝑥] E
𝑥∼𝜑(·;𝑤)

[𝑥] .

Note that
∇𝑤𝑔(𝑤) · (𝑐+ 𝜆𝑤) = Var𝑥∼𝜑(·;𝑤)[(𝑐+ 𝜆𝑤) · 𝑥] .

21

Lemma 5 (Gradient with Regularization and Mixing). For any 𝜖 > 0, for the family of solution
generators 𝒫 = {𝑝(·;𝑤) = (1 − 𝛽⋆)𝜑(·;𝑤) + 𝛽⋆𝜑(·; 𝜌⋆𝑤) : 𝑤 ∈ 𝒲} and the objective ℒvec

𝜆 of
Equation (3), it holds that

∇𝑤ℒvec
𝜆 (𝑤) · (𝑐+𝜆𝑤) = (1− 𝛽⋆)Var𝑥∼𝜑(·;𝑤)[(𝑐+𝜆𝑤) · 𝑥] + 𝛽⋆𝜌⋆Var𝑥∼𝜑(·;𝜌⋆𝑤)[(𝑐+𝜆𝑤) · 𝑥] ,

for any 𝜆 > 0.

Proof. Let us first consider the scaled parameter 𝜌𝑤 ∈ 𝒲 for some 𝜌 > 0. Then it holds that

∇𝑤 E
𝑥∼𝜑(·;𝜌𝑤)

[𝑐·𝑥] = E
𝑥∼𝜑(·;𝜌𝑤)

[︂
(𝑐 · 𝑥)

(︂
𝜌𝑥− E

𝑥∼𝜑(·;𝜌𝑤)
[𝜌𝑥]

)︂]︂
= 𝜌 E

𝑥∼𝜑(·;𝜌𝑤)

[︂
(𝑐 · 𝑥)

(︂
𝑥− E

𝑥∼𝜑(·;𝜌𝑤)
[𝑥]

)︂]︂
.

Moreover, the negative entropy regularizer at 𝜌𝑤 is

𝐻(𝜌𝑤) = E
𝑥∼𝜑(·;𝜌𝑤)

[(𝜌𝑤) · 𝑥]− log
∑︁
𝑦∈𝒳

𝑒(𝜌𝑤)·𝑦 .

It holds that

∇𝑤𝐻(𝜌𝑤) = E
𝑥∼𝜑(·;𝜌𝑤)

[(𝜌𝑤·𝑥)∇𝑤 log 𝜑(𝑥; 𝜌𝑤)] = 𝜌2
(︂

E
𝑥∼𝜑(·;𝜌𝑤)

[(𝑤 · 𝑥)𝑥]− E
𝑥∼𝜑(·;𝜌𝑤)

[𝑤 · 𝑥] E
𝑥∼𝜑(·;𝜌𝑤)

[𝑥]

)︂
.

We consider the objective function ℒvec
𝜆 to be defined as follows: first, we take

𝑝(·;𝑤) = (1− 𝛽⋆)𝜑(·;𝑤) + 𝛽⋆𝜑(·; 𝜌⋆𝑤) ,

i.e., 𝑝(·;𝑤) is the mixture of the probability measures 𝜑(·;𝑤) and 𝜑(·; 𝜌⋆𝑤) with weights 1− 𝛽⋆ and
𝛽⋆ respectively for some scale 𝜌⋆ > 0. Moreover, we take 𝑅vec(𝑤) = (1− 𝛽⋆)𝐻(𝑤) + 𝛽⋆

𝜌⋆𝐻(𝜌⋆𝑤).
Then we define our regularized loss ℒvec

𝜆 to be

ℒvec
𝜆 (𝑤) = E

𝑥∼𝑝(·;𝑤)
[𝑐 · 𝑥] + 𝜆𝑅vec(𝑤) .

Using Lemma 4 and the above calculations, we have that

∇𝑤ℒvec
𝜆 (𝑤) = (1− 𝛽⋆)∇𝑤 E

𝑥∼𝜑(·;𝑤)
[𝑐 · 𝑥] + 𝜆(1− 𝛽⋆)∇𝑤𝐻(𝑤) + 𝛽⋆∇ E

𝑥∼𝜑(·;𝜌⋆𝑥)
[𝑐 · 𝑥] + 𝜆

𝛽⋆

𝜌⋆
∇𝑤𝐻(𝜌⋆𝑤)

= (1− 𝛽⋆)
(︂

E
𝑥∼𝜑(·;𝑤)

[((𝑐+ 𝜆𝑤) · 𝑥)𝑥]− E
𝑥∼𝜑(·;𝑤)

[(𝑐+ 𝜆𝑤) · 𝑥] E
𝑥∼𝜑(·;𝑤)

[𝑥]

)︂
+

+ 𝛽⋆𝜌⋆
(︂

E
𝑥∼𝜑(·;𝜌⋆𝑤)

[((𝑐+ 𝜆𝑤) · 𝑥)𝑥]− E
𝑥∼𝜑(·;𝜌⋆𝑤)

[(𝑐+ 𝜆𝑤) · 𝑥] E
𝑥∼𝜑(·;𝜌⋆𝑤)

[𝑥]

)︂
.

The above calculations yield

∇𝑤ℒvec
𝜆 (𝑤) · (𝑐+ 𝜆𝑤) = (1− 𝛽⋆)Var𝑥∼𝜑(·;𝑤)[(𝑐+ 𝜆𝑤) · 𝑥] + 𝛽⋆𝜌⋆Var𝑥∼𝜑(·;𝜌⋆𝑤)[(𝑐+ 𝜆𝑤) · 𝑥] ,

and this concludes the proof.

The above correlation being positive intuitively means that performing gradient descent to ℒvec
𝜆 gives

that the parameter 𝑤 converges to −𝑐/𝜆, the point that achieves completeness for that objective.

However, to obtain fast convergence, we need to show that the above correlation is non-trivial.
This means that our goal in order to prove Lemma 3 is to provide a lower bound for the above
quantity, i.e., it suffices to give a non-trivial lower bound for the variance of the random variable
(𝑐 + 𝜆𝑤) · 𝑥 with respect to the probability measure 𝜑(·; 𝜌⋆𝑤). It is important to note that in the
above statement we did not fix the value of 𝜌⋆. We can now make use of Proposition 8. Intuitively,
by taking the scale parameter appearing in the mixture 𝜌⋆ to be sufficiently small, we can manage
to provide a lower bound for the variance of (𝑐 + 𝜆𝑤) · 𝑥 with respect to the almost uniform
measure, i.e, the second summand of the above right-hand side expression has significant contribution.
We remark that 𝜌 corresponds to the inverse temperature parameter. Hence, our previous analysis
essentially implies that policy gradient on combinatorial optimization potentially works if the variance
Var𝑥∼𝜑(·;𝜌𝑤)[(𝑐+ 𝜆𝑤) · 𝑥] is non-vanishing at high temperatures 1/𝜌.

22

The proof of Lemma 3. Recall that

𝜑(𝑥;𝑤) =
𝑒𝑤·𝑥∑︀
𝑦∈𝒳 𝑒

𝑤·𝑦 .

Let also 𝐷 be the diameter of 𝒳 and 𝐵 the diameter of 𝒵 . Recall from Lemma 5 that we have that

∇𝑤ℒvec
𝜆 (𝑤) · (𝑐+ 𝜆𝑤) = (1− 𝛽⋆)Var𝑥∼𝑝(·;𝑤)[(𝑐+ 𝜆𝑤) · 𝑥] + 𝛽⋆𝜌⋆Var𝑥∼𝑝(·;𝜌⋆𝑤)[(𝑐+ 𝜆𝑤) · 𝑥] ,

where the scale parameter 𝜌⋆ > 0 is to be decided. This means that

∇𝑤ℒvec
𝜆 (𝑤) · (𝑐+ 𝜆𝑤) ≥ 𝛽⋆𝜌⋆Var𝑥∼𝜑(·;𝜌⋆𝑤)[(𝑐+ 𝜆𝑤) · 𝑥] .

Our goal is now to apply Proposition 8 in order to lower bound the above variance. Applying
Proposition 8 for 𝜇← 𝜑(·; 𝜌⋆𝑤), 𝑐← 𝑐+ 𝜆𝑤 ∈ 𝒵 and, so for some absolute constant 𝐶0, we can
pick

𝜌⋆ = 𝐶0
𝛼

𝐵𝐷3
.

Thus, we have that
Var𝑥∼𝜑(·;𝜌⋆𝑤)[(𝑐+ 𝜆𝑤) · 𝑥] ≥ Ω(𝛼‖𝑐+ 𝜆𝑤‖22) .

This implies the desired result since

∇𝑤ℒvec
𝜆 (𝑤) · (𝑐+ 𝜆𝑤) ≥ 𝐶0𝛽

⋆𝛼2/(𝐵𝐷3)‖𝑐+ 𝜆𝑤‖22 .

E.3 Convergence for Quasar Convex Functions

The fact that ℒ𝜆 is quasar convex with respect to −𝑀/𝜆 implies that projected SGD converges to
that point in a small number if steps and hence the family 𝒫 is efficiently optimizable. The analysis
is standard (see e.g., [HMR16]). For completeness a proof can be found in Appendix E.3.
Proposition 7 (Convergence). Consider 𝜖 > 0 and a prior ℛ over ℐ. Assume that Assumption 1
holds with parameters 𝐶,𝐷𝑆 , 𝐷ℐ , 𝛼. Let 𝑊1, . . . ,𝑊𝑇 be the updates of the SGD algorithm with
projection set𝒲 performed on ℒ𝜆 of Equation (2) with appropriate step size and parameter 𝜆. Then,
for the non-regularized objective ℒ, it holds that

E
𝑡∼𝑈([𝑇])

[ℒ(𝑊𝑡)] ≤ ℒ(−𝑀/𝜆) + 𝜖 ,

when 𝑇 ≥ poly(1/𝜖, 1/𝛼,𝐶,𝐷𝑆 , 𝐷ℐ , ‖𝑊0 +𝑀/𝜆‖F).

Our next goal is to use Proposition 1 and show that standard projected SGD on the objective ℒ𝜆
converges in a polynomial number of steps. The intuition behind this result is that since the correlation
between∇ℒ𝜆(𝑊) and the direction 𝑀 + 𝜆𝑊 is positive and non-trivial, the gradient field drives the
optimization method towards the point −𝑀/𝜆.

Proof. Consider the sequence of matrices 𝑊1, . . . ,𝑊𝑡, . . . ,𝑊𝑇 generated by applying PSGD on ℒ𝜆
with step size 𝜂 (to be decided) and initial parameter vector 𝑊0 ∈ 𝒲 . We have that ℒ𝜆 is 𝛾-quasar
convex and is also 𝑂(Γ)-weakly smooth2 since we now show that it is Γ-smooth.

Lemma 6. ℒ𝜆 is poly(𝐷𝑆 , 𝐷ℐ , 𝐶)-smooth.

Proof. We have that

‖∇ℒ𝜆(𝑊)‖2F = ‖ E
𝑧∼ℛ

[∇ℒ𝜆,𝑧(𝑊)]‖2F ≤ E
𝑧∼ℛ
‖𝑧‖22‖∇𝑤ℒvec

𝜆 (𝑧⊤𝑊)‖2F .

It suffices to show that ℒvec
𝜆 is smooth. Recall that

∇𝑤ℒvec
𝜆 (𝑤) = (1− 𝛽⋆)

(︂
E

𝑥∼𝜑(·;𝑤)
[((𝑐+ 𝜆𝑤) · 𝑥)𝑥]− E

𝑥∼𝜑(·;𝑤)
[(𝑐+ 𝜆𝑤) · 𝑥] E

𝑥∼𝜑(·;𝑤)
[𝑥]

)︂
+

+ 𝛽⋆𝜌⋆
(︂

E
𝑥∼𝜑(·;𝜌⋆𝑤)

[((𝑐+ 𝜆𝑤) · 𝑥)𝑥]− E
𝑥∼𝜑(·;𝜌⋆𝑤)

[(𝑐+ 𝜆𝑤) · 𝑥] E
𝑥∼𝜑(·;𝜌⋆𝑤)

[𝑥]

)︂
.

2As mentioned in [HMR16], a function 𝑓 is Γ-weakly smooth if for any point 𝜃, ‖∇𝑓(𝜃)‖2 ≤ Γ(𝑓(𝜃) −
𝑓(𝜃⋆)). Moreover, a function 𝑓 that is Γ-smooth (in the sense ‖∇2𝑓‖ ≤ Γ), is also 𝑂(Γ)-weakly smooth.

23

This means that

‖∇2
𝑤ℒvec

𝜆 (𝑤)‖2F ≤ (1− 𝛽⋆)(𝐴1 +𝐴2) + 𝛽⋆𝜌⋆(𝐴3 +𝐴4) ,

where

𝐴1 =

⃦⃦⃦⃦
∇𝑤 E

𝑥∼𝜑(·;𝑤)
[((𝑐+ 𝜆𝑤) · 𝑥)𝑥]

⃦⃦⃦⃦2
F

, 𝐴2 =

⃦⃦⃦⃦
∇𝑤 E

𝑥∼𝜑(·;𝑤)
[(𝑐+ 𝜆𝑤) · 𝑥] E

𝑥∼𝜑(·;𝑤)
[𝑥]

⃦⃦⃦⃦2
F

,

𝐴3 =

⃦⃦⃦⃦
∇𝑤 E

𝑥∼𝜑(·;𝜌⋆𝑤)
[((𝑐+ 𝜆𝑤) · 𝑥)𝑥]

⃦⃦⃦⃦2
F

, 𝐴4 =

⃦⃦⃦⃦
∇𝑤 E

𝑥∼𝜑(·;𝜌⋆𝑤)
[(𝑐+ 𝜆𝑤) · 𝑥] E

𝑥∼𝜑(·;𝜌⋆𝑤)
[𝑥]

⃦⃦⃦⃦2
F

.

Standard computation of these values yields that, since𝐷𝑆 and𝐷ℐ are bounds to 𝑥 and 𝑧 respectively,
we have that ℒ𝜆 is smooth with parameter poly(𝐷𝑆 , 𝐷ℐ , 𝐶).

Let 𝑉 be the variance of the unbiased estimator used for∇𝑊ℒ𝜆(𝑊). We can apply the next result of
[HMR16].

Lemma 7 ([HMR16]). Suppose the objective function 𝑓 is 𝛾-weakly quasi convex and Γ-weakly
smooth, and let 𝑟(·) be an unbiased estimator for ∇𝑓(𝜃) with variance 𝑉 . Moreover, suppose the
global minimum 𝜃 belongs to𝒲 , and the initial point 𝜃0 satisfies ‖𝜃0 − 𝜃‖2 ≤ 𝑅. Then projected
stochastic gradient descent with a proper learning rate returns 𝜃𝑇 in 𝑇 iterations with expected error

E
𝑡∼𝑈([𝑇])

𝑓(𝜃𝑡)− 𝑓(𝜃) ≤ max

{︃
Γ𝑅2

𝛾2𝑇
,
𝑅
√
𝑉

𝛾
√
𝑇

}︃
.

We apply the above result toℒ𝜆 in order to find matrices𝑊1, ...,𝑊𝑇 that achieve good loss on average
compared to −𝑀/𝜆. Moreover, using a batch SGD update, we can take 𝑉 to be also polynomial
in the crucial parameters of the problem. We note that one can adapt the above convergence proof
and show that the actual loss ℒ (and not the loss ℒ𝜆) are close after sufficiently many iterations (as
indicated by the above lemma). We know that the Frobenius norm of the gradient of ℒ(𝑊) is at most
of order 𝑂(𝐷2

ℐ𝐶𝐷
2
𝑆). We can apply the mean value theorem in high dimensions (by taking𝒲 to

be an open ball of radius 𝑂(𝐵)) and this yields that the difference between the values of ℒ(𝑊𝑇)
and ℒ(−𝑀/𝜆) is at most 𝐷2

ℐ𝐶𝐷
2
𝑆‖𝑊𝑡 +𝑀/𝜆‖2F. However, the right-hand side is upper bounded

by the correlation between∇ℒ𝜆(𝑊𝑡) and 𝑊𝑡 +𝑀/𝜆. Hence, we can still use this correlation as a
potential in order to minimize ℒ. This implies that the desired convergence guarantee holds as long
as 𝑇 ≥ poly(1/𝜖, 1/𝛼,𝐶,𝐷𝑆 , 𝐷ℐ , ‖𝑊0 +𝑀/𝜆‖F) .

F Deferred Proofs: Variance under Almost Uniform Distributions

This section is a technical section that states some properties of exponential families. We use some
standard notation, such as 𝑤 and 𝑥, for the statements and the proofs but we underline that these
symbols do not correspond to the notation in the main body of the paper.

We consider the parameter space Θ and for any parameter 𝑤 ∈ Θ, we define the probability
distribution 𝜑(·;𝑤) over a space 𝒳 with density

𝜑(𝑥;𝑤) =
𝑒𝑤·𝑥∑︀
𝑦∈𝒳 𝑒

𝑤·𝑦 .

In this section, our goal is to relate the variance of 𝑐 · 𝑥 under the measure 𝜑(·; 0) (uniform case) and
𝜑(·; 𝜌⋆𝑤) for some 𝑤 ∈ 𝒲 and some sufficiently small 𝜌⋆ (almost uniform case). The main result of
this section follows.
Proposition 8 (Variance Lower Bound Under Almost Uniform Distributions). Assume that the
variance of 𝑐 · 𝑥 under the uniform distribution over 𝒳 , whose diameter is 𝐷, is lower bounded by
𝛼‖𝑐‖22. Moreover assume that 𝑤 ∈ Θ with ‖𝑤‖2 ≤ 𝐵. Then, setting 𝜌⋆ = 𝑂(𝛼/(𝐵𝐷3)), it holds
that Var𝑥∼𝜑(·;𝜌⋆𝑤)[𝑐 · 𝑥] = Ω(𝛼‖𝑐‖22).

We first provide a general abstract lemma that relates the variance of the uniform distribution 𝑈 over
𝒳 to the variance of an almost uniform probability measure 𝜇. For simplicity, we denote the uniform
distribution over 𝒳 with 𝑈 = 𝑈(𝒳).

24

Lemma 8. Let 𝑤 ∈ Θ and 𝑥 ∈ 𝒳 with ‖𝑥‖2 ≤ 𝐷. Consider the uniform probability measure 𝑈
over 𝒳 and let 𝜇 over 𝒳 be such that there exist 𝜖1, 𝜖2 > 0 with:

• ‖E𝑥∼𝑈 [𝑥]−E𝑥∼𝜇[𝑥]‖2 ≤ 𝜖1, and,

• 𝑤⊤ E𝑥∼𝜇[𝑥𝑥
⊤]𝑤 ≥ 𝑤⊤ E𝑥∼𝑈 [𝑥𝑥

⊤]𝑤 − 𝜖2‖𝑤‖22.

Then it holds that Var𝑥∼𝜇[𝑤 · 𝑥] ≥ Var𝑥∼𝑈 [𝑤 · 𝑥]− 3max{𝜖21, 𝜖1𝐷, 𝜖2}‖𝑤‖22.

Proof. We have that

Var𝑥∼𝜇[𝑤 · 𝑥] = E
𝑥∼𝜇

[︀
(𝑤 · 𝑥)2

]︀
−

(︂
E
𝑥∼𝜇

[𝑤 · 𝑥]
)︂2

.

We first deal with upper-bounding the square of the first moment. Note that

𝑤 ·
(︂

E
𝑥∼𝜇

[𝑥]− E
𝑥∼𝑈

[𝑥]

)︂
≤ ‖𝑤‖2

⃦⃦⃦⃦
E
𝑥∼𝜇

[𝑥]− E
𝑥∼𝑈

[𝑥]

⃦⃦⃦⃦
2

≤ 𝜖1‖𝑤‖2 .

Let us take 𝜖 > 0 (with 𝜖 < 𝜖1) for simplicity to be such that (E𝑥∼𝜇[𝑤 · 𝑥])2 =

(E𝑥∼𝑈 [𝑤 · 𝑥] + 𝜖‖𝑤‖2)2. This means that(︂
E
𝑥∼𝜇

[𝑤 · 𝑥]
)︂2

≤
(︁

E
𝑥∼𝑈

[𝑤 · 𝑥]
)︁2

+ 2𝜖‖𝑤‖2
⃒⃒⃒
E
𝑥∼𝑈

[𝑤 · 𝑥]
⃒⃒⃒
+ 𝜖2‖𝑤‖22

≤
(︁

E
𝑥∼𝑈

[𝑤 · 𝑥]
)︁2

+ 2𝜖𝐷‖𝑤‖22 + 𝜖2‖𝑤‖22 .

Next we lower-bound the second moment. It holds that

E
𝑥∼𝜇

[︀
(𝑤 · 𝑥)2

]︀
= 𝑤⊤ E

𝑥∼𝜇

[︀
𝑥𝑥⊤

]︀
𝑤 ≥ E

𝑥∼𝑈
[(𝑤 · 𝑥)2]− 𝜖2‖𝑤‖22 ,

for some 𝜖2 > 0. This means that

Var𝑥∼𝜇(𝑤 · 𝑥) ≥ E
𝑥∼𝑈

[︀
(𝑤 · 𝑥)2

]︀
− 𝜖2‖𝑤‖22 −

(︁
E
𝑥∼𝑈

[𝑤 · 𝑥]
)︁2

− 2𝜖𝐷‖𝑤‖22 − 𝜖2‖𝑤‖22 .

Hence,
Var𝑥∼𝜇[𝑤 · 𝑥] ≥ Var𝑥∼𝑈 [𝑤 · 𝑥]− 3max{𝜖2, 𝜖21, 𝜖1𝐷}‖𝑤‖22 .

Our next goal is to relate 𝜑(·; 𝜌⋆𝑤) with the uniform measure 𝜑(·; 0). According to the above general
lemma, we have to relate the first and second moments of 𝜑(·; 𝜌⋆𝑤) with the ones of the uniform
distribution 𝑈 = 𝜑(·; 0).

The Proof of Proposition 8. Our goal is to apply Lemma 8. First, let us set

𝑓𝑣(𝜌) = E
𝑥∼𝜑(·;𝜌𝑤)

[𝑣 · 𝑥] ,

for any unit vector 𝑣 ∈ Θ. Then it holds that⃦⃦⃦⃦
E

𝑥∼𝜑(·;0)
[𝑥]− E

𝑥∼𝜑(·;𝜌⋆𝑤)
[𝑥]

⃦⃦⃦⃦
2

= sup
𝑣:‖𝑣‖2=1

|𝑓𝑣(0)− 𝑓𝑣(𝜌⋆)| .

Using the mean value theorem in [0, 𝜌⋆] for any unit vector 𝑣, we have that there exists a 𝜉 = 𝜉𝑣 ∈
(0, 𝜌⋆) such that

|𝑓𝑣(0)− 𝑓𝑣(𝜌⋆)| = 𝜌⋆ |𝑓 ′𝑣(𝜉)| .
It suffices to upper bound 𝑓 ′𝑣(𝜉) for any unit vector 𝑣 and 𝜉 ∈ (0, 𝜌⋆). Let us compute 𝑓 ′𝑣. We have
that

𝑑𝑓𝑣
𝑑𝜌

=

∫︁
𝑆

(𝑣 · 𝑥) 𝑑
𝑑𝜌

𝑒𝜌(𝑤𝑥)∫︀
𝑆
𝑒𝜌(𝑤𝑦)𝑑𝑦

𝑑𝑥 = E
𝑥∼𝜑(·;𝜌𝑤)

[(𝑣 · 𝑥)(𝑤 · 𝑥)]− E
𝑥∼𝜑(·;𝜌𝑤)

[𝑣 · 𝑥] E
𝑥∼𝜑(·;𝜌𝑤)

[𝑤 · 𝑥] .

25

Since 𝑥 ∈ 𝒳 , we have that
sup

𝑣:‖𝑣‖2=1

sup
𝜉∈(0,𝜌⋆)

|𝑓 ′𝑣(𝜉)| ≤ 2‖𝑤‖2𝐷2 .

This gives that ⃦⃦⃦⃦
E

𝑥∼𝜑(·;0)
[𝑥]− E

𝑥∼𝜑(·;𝜌⋆𝑤)
[𝑥]

⃦⃦⃦⃦
2

≤ 2𝜌⋆‖𝑤‖2𝐷2 .

We then continue with controlling the second moment: it suffices to find 𝜖2 such that for any 𝑣 ∈ Θ,
it holds

𝑣⊤ E
𝑥∼𝜑(·;𝜌⋆𝑤)

[𝑥𝑥⊤]𝑣 ≥ 𝑣⊤ E
𝑥∼𝜑(·;0)

[𝑥𝑥⊤]𝑣 − 𝜖2‖𝑣‖22 .

Let us set 𝑔𝑣(𝜌) = E𝑥∼𝜑(·;𝜌𝑤)[(𝑣 · 𝑥)2] for any vector 𝑣 ∈ Θ. We have that

|𝑔𝑣(0)− 𝑔𝑣(𝜌⋆)| = 𝜌⋆|𝑔′𝑣(𝜉)| ,
where 𝜉 ∈ (0, 𝜌⋆). It holds that⃒⃒⃒⃒

𝑑𝑔𝑣
𝑑𝜌

⃒⃒⃒⃒
=

⃒⃒⃒⃒
E

𝑥∼𝜑(·;𝜌𝑤)
[(𝑣 · 𝑥)2(𝑤 · 𝑥)]− E

𝑥∼𝜑(·;𝜌𝑤)
[(𝑣 · 𝑥)2] E

𝑥∼𝜑(·;𝜌𝑤)
[𝑤 · 𝑥]

⃒⃒⃒⃒
≤ 2‖𝑣‖2‖𝑤‖2𝐷3 .

This gives that for any 𝑣 ∈ Θ, it holds

𝑣⊤ E
𝑥∼𝜑(·;𝜌⋆𝑤)

[𝑥𝑥⊤]𝑣 ≥ 𝑣⊤ E
𝑥∼𝜑(·;0)

[𝑥𝑥⊤]𝑣 − 2𝜌⋆‖𝑤‖2𝐷3‖𝑣‖22 .

Note that the above holds for 𝑣 = 𝑐 too. Lemma 8 gives us that
Var𝑥∼𝜑(·;𝜌⋆𝑤)[𝑐 · 𝑥] ≥ Var𝑥∼𝜑(·;0)[𝑐 · 𝑥]− 3max{𝜖2, 𝜖21, 𝜖1𝐷}‖𝑐‖22 ,

where 𝜖1 = 2𝜌⋆𝐵𝐷2 and 𝜖2 = 2𝜌⋆𝐵𝐷3. This implies that by picking

𝜌⋆ = 𝐶0
𝛼

𝐵𝐷3

for some universal constant 𝐶0, we get that
Var𝑥∼𝜑(·;𝜌⋆𝑤)[𝑐 · 𝑥] = Ω(𝛼‖𝑐‖22) .

In this section, we considered 𝜌⋆ as indicated by the above Proposition 8.

G Applications to Combinatorial Problems

In this section we provide a series of combinatorial applications of our theoretical framework
(Theorem 1). In particular, for each one of the following combinatorial problems (that provably
satisfy Assumption 1), it suffices to specify the feature mappings 𝜓𝑆 , 𝜓ℐ and compute the parameters
𝐶,𝐷𝑆 , 𝐷ℐ , 𝛼.

G.1 Maximum Cut, Maximum Flow and Max-𝑘-CSPs

We first provide a general lemma for the variance of ”linear tensors” under the uniform measure.

Lemma 9 (Variance Lower Bound Under Uniform). Let 𝑛, 𝑘 ∈ N. For any 𝑤 ∈ R(
𝑛
𝑘), it holds that

Var𝑥∼𝑈({−1,1}𝑛)[𝑤 · 𝑥⊗𝑘] =
∑︁

∅̸=𝑆⊆[𝑛]:|𝑆|≤𝑘

𝑤2
𝑆 .

Proof. For any 𝑤 ∈ R(
𝑛
𝑘), it holds that

Var𝑥∼𝑈({−1,1}𝑛)[𝑤 · 𝑥⊗𝑘] = E
𝑥∼𝑈({−1,1}𝑛)

[︀
(𝑤 · 𝑥⊗𝑘)2

]︀
− E
𝑥∼𝑈({−1,1}𝑛)

[𝑤 · 𝑥⊗𝑘]2 .

Note that 𝑤 ∈ R(
𝑛
𝑘) can be written as 𝑤 = (𝑤∅, 𝑤−∅) where 𝑤∅ corresponds to the constant term of

the Fourier expansion and 𝑤−∅ = (𝑤𝑆)∅̸=𝑆⊆[𝑛]:|𝑆|≤𝑘 is the vector of the remaining coordinates. The
Fourier expansion implies that

Var𝑥∼𝑈({−1,1}𝑛)[𝑤 · 𝑥⊗𝑘] = ‖𝑤−∅‖22 ,
which yields the desired equality for the variance.

26

G.1.1 Maximum Cut

Let us consider a graph with 𝑛 nodes and weighted adjacency matrix 𝐴 with non-negative weights.
Maximum cut is naturally associated with the Ising model and, intuitively, our approach does not
yield an efficient algorithm for solving Max-Cut since we cannot efficiently sample from the Ising
model in general. To provide some further intuition, consider a single-parameter Ising model for
𝐺 = (𝑉,𝐸) with Hamiltonian 𝐻𝐺(𝑥) =

∑︀
(𝑖,𝑗)∈𝐸

1+𝑥𝑖𝑥𝑗

2 . Then the partition function is equal
to 𝑍𝐺(𝛽) =

∑︀
𝑥∈{−1,1}𝑉 exp(𝛽𝐻𝐺(𝑥)). Note that when 𝛽 > 0, the Gibbs measure favours

configurations with alligned spins (ferromagnetic case) and when 𝛽 < 0, the measure favours
configurations with opposite spins (anti-ferromagnetic case). The antiferromagnetic Ising model
appears to be more challenging. According to physicists the main reason is that its Boltzmann
distribution is prone to a complicated type of long-range correlation known as ‘replica symmetry
breaking’ [COLMS22]. From the TCS viewpoint, observe that as 𝛽 goes to −∞, the mass of the
Gibbs distribution shifts to spin configurations with more edges joining vertices with opposite spins
and concentrates on the maximum cuts of the graph. Hence, being able to efficiently approximate the
log-partition function for general Ising models, would lead to solving the Max-Cut problem.

Theorem 2 (Max-Cut has a Compressed and Efficiently Optimizable Solution Generator). Consider
a prior over Max-Cut instances with 𝑛 nodes. For any 𝜖 > 0, there exists a solution generator
𝒫 = {𝑝(𝑤) : 𝑤 ∈ 𝒲} such that 𝒫 is complete, compressed with description poly(𝑛)polylog(1/𝜖)
and ℒ + 𝜆𝑅 : 𝒲 ↦→ R is efficiently optimizable via projected stochastic gradient descent in
poly(𝑛, 1/𝜖) steps for some 𝜆 > 0.

Proof of Theorem 2. It suffices to show that Max-Cut satisfies Assumption 1. Consider an input
graph 𝐺 with 𝑛 nodes and Laplacian matrix 𝐿𝐺. Then

MAXCUT =
1

4
max

𝑠∈{−1,1}𝑛
𝑠⊤𝐿𝐺𝑠 =

1

4
min

𝑠∈{−1,1}𝑛
−𝑠⊤𝐿𝐺𝑠 .

We show that there exist feature mappings so that the cost of every solution 𝑠 under any instance/graph
𝐺 is a bilinear function of the feature vectors (cf. Item 2 of Assumption 1). We consider the correlation-
based feature mapping 𝜓𝑆(𝑠) = (𝑠𝑠⊤)♭ ∈ R𝑛2

, where by (·)♭ we denote the vectorization/flattening
operation and the negative Laplacian for the instance (graph), 𝜓ℐ(𝐺) = (−𝐿𝐺)♭ ∈ R𝑛2

. Then simply
setting the matrix 𝑀 to be the identity 𝐼 ∈ R𝑛2×𝑛2

the cost of any solution 𝑠 can be expressed as the
bilinear function 𝜓ℐ(𝐺)

⊤𝑀𝜓𝑆(𝑠) = (−𝐿♭𝐺)⊤(𝑠𝑠𝑇)♭ = −𝑠⊤𝐿𝐺𝑠. We observe that (for unweighted
graphs) with 𝑛 nodes the bit-complexity of the family of all instances ℐ is roughly 𝑂(𝑛2), and
therefore the dimensions of the 𝜓𝑆 , 𝜓ℐ feature mappings are clearly polynomial in the bit-complexity
of ℐ. Moreover, considering unweighted graphs, it holds ‖𝜓ℐ(𝐺)‖2, ‖𝜓𝑆(𝑠)‖2, ‖𝑀‖F ≤ poly(𝑛).
Therefore, the constants 𝐷𝑆 , 𝐷ℐ , 𝐶 are polynomial in the bit-complexity of the instance family.

It remains to show that our solution feature mapping satisfy the variance preservation assumption.
For any 𝑣, we have that Var𝑠∼𝑈(𝑆)[𝑣 · 𝜓𝑆(𝑠)] = Var𝑠∼𝑈({−1,1}𝑛)[𝑣 · (𝑠𝑠⊤)♭] = Ω(‖𝑣‖22), using
Lemma 9 with 𝑘 = 2, since 𝑐∅ = 0 with loss of generality.

G.1.2 Minimum Cut/Maximum Flow

Let us again consider a graph with 𝑛 nodes and Laplacian matrix 𝐿𝐺. It is known that the minimum
cut problem is solvable in polynomial time when all the weights are positive. From the discussion
of the maximum cut case, we can intuitively relate minimum cut with positive weights to the
ferromagnetic Ising setting [dPS97]. We remark that we can consider the ferromagnetic parameter

space 𝒲fer = R(
𝑛
2)

≥0 and get the variance lower bound from Lemma 9. We constraint projected
SGD in𝒲fer. This means that during any step of SGD our algorithm has to sample from a mixture
of ferromagnetic models with known mixture weights. The state of the art approximate sampling
algorithm from ferromagnetic Ising models achieves the following performance, improving on prior
work [JS93, LSS19, CLV22, CGG+19].

Proposition 9 (Theorem 1.1 of [CZ22]). Let 𝛿𝛽 , 𝛿𝜆 ∈ (0, 1) be constants and 𝜇 be the Gibbs
distribution of the ferromagnetic Ising model specified by graph 𝐺 = (𝑉,𝐸), |𝑉 | = 𝑛, |𝐸| = 𝑚,
parameters 𝛽 ∈ [1 + 𝛿𝛽 ,+∞)𝑚 and external field 𝜆 ∈ [0, 1− 𝛿𝜆]𝑛. There exists an algorithm that

27

samples 𝑋 satisfying TV(𝑋,𝜇) ≤ 𝜖 for any given parameter 𝜖 ∈ (0, 1) within running time

𝑚

(︂
log 𝑛

𝜖

)︂𝑂𝛿𝛽,𝛿𝜆
(1)

.

This algorithm can handle general instances and it only takes a near-linear running time when
parameters are bounded away from the all-ones vector. Our goal is to sample from a mixture of
two such ferromagnetic Ising models which can be done efficiently. For simplicity, we next restrict
ourselves to the unweighted case.
Theorem 3 (Min-Cut has a Compressed, Efficiently Optimizable and Samplable Solution Generator).
Consider a prior over Min-Cut instances with 𝑛 nodes. For any 𝜖 > 0, there exists a solution generator
𝒫 = {𝑝(𝑤) : 𝑤 ∈ 𝒲} such that 𝒫 is complete, compressed with description poly(𝑛)polylog(1/𝜖),
ℒ+ 𝜆𝑅 :𝒲 ↦→ R is efficiently optimizable via projected stochastic gradient descent in poly(𝑛, 1/𝜖)
steps for some 𝜆 > 0 and efficiently samplable in poly(𝑛, 1/𝜖) steps.

Proof. We have that

MINCUT =
1

4
min

𝑥∈{−1,1}𝑛
𝑥⊤𝐿𝐺𝑥 .

The analysis (i.e., the selection of the feature mappings) is similar to the one of Theorem 2 with the
sole difference that the parameter space is constrained to be𝒲fer and 𝜓ℐ(𝐺) = (𝐿𝐺)

♭. We note that
Proposition 9 is applicable during the optimization steps. Having an efficient approximate sampler
for solutions of Min-Cut, it holds that the runtime of the projected SGD algorithm is poly(𝑛, 1/𝜖).
We note that during the execution of the algorithm we do not have access to perfectly unbiased
samples from mixture of ferromagnetic Ising models. However, we remark that SGD is robust to that
inaccuracy in the stochastic oracle. For further details, we refer e.g., to [d’A08]).

G.1.3 Max-𝑘-CSPs

In this problem, we are given a set of variables {𝑥𝑢}𝑢∈𝒰 where |𝒰| = 𝑛 and a set of Boolean
predicates 𝑃 . Each variable 𝑥𝑢 takes values in {−1, 1}. Each predicate depends on at most 𝑘
variables. For instance, Max-Cut is a Max-2-CSP. Our goal is to assign values to variables so as to
maximize the number of satisfied constraints (i.e., predicates equal to 1). Let us fix a predicate ℎ ∈ 𝑃 ,
i.e., a Boolean function ℎ : {−1, 1}𝑛 → {0, 1} which is a 𝑘-junta. Using standard Fourier analysis,
the number of satisfied predicates for the assignment 𝑥 ∈ {−1, 1}𝑛 is

𝐹 (𝑥) =

|𝑃 |∑︁
𝑗=1

∑︁
𝑆⊆[𝑛],|𝑆|≤𝑘

̂︀ℎ𝑗(𝑆) ∏︁
𝑢∈𝑆

𝑥𝑢 ,

where ̂︀ℎ𝑗(𝑆) is the Fourier coefficient of the predicate ℎ𝑗 at 𝑆.
Theorem 4 (Max-𝑘-CSPs have a Compressed and Efficiently Optimizable Solution Generator).
Consider a prior over Max-𝑘-CSP instances with 𝑛 variables, where 𝑘 ∈ N can be considered
constant compared to 𝑛. For any 𝜖 > 0, there exists a solution generator 𝒫 = {𝑝(𝑤) : 𝑤 ∈ 𝒲}
such that 𝒫 is complete, compressed with description 𝑂(𝑛𝑘)polylog(1/𝜖) and ℒ + 𝜆𝑅 : 𝒲 ↦→ R
is efficiently optimizable via projected stochastic gradient descent in poly(𝑛𝑘, 1/𝜖) steps for some
𝜆 > 0.

Proof. Any instance of Max-𝑘-CSP is a list of predicates (i.e., Boolean functions) and our goal
is to maximize the number of satisfied predicated with a single assignment 𝑠 ∈ {−1, 1}𝑛. We
show that there exist feature mappings so that the cost of every solution 𝑠 under any instance/predi-
cates list 𝑃 is a bilinear function of the feature vectors (cf. Item 2 of Assumption 1). We con-
sider the order 𝑘 correlation-based feature mappings 𝜓𝑆(𝑠) = (𝑠⊗𝑘)♭ ∈ R𝑛𝑘

, where by (·)♭
we denote the flattening operation of the order 𝑘 tensor, and, 𝜓ℐ(𝑃) = 𝜓ℐ(ℎ1, . . . , ℎ|𝑃 |) =

−
∑︀|𝑃 |
𝑗=1((

̂︀ℎ𝑗(𝑆))𝑆⊆[𝑛],|𝑆|≤𝑘)
⊤ ∈ R𝑛𝑘

, where (̂︀ℎ𝑗(𝑆))𝑆⊆[𝑛],|𝑆|≤𝑘 is a vector of size 𝑛𝑘 with
the Fourier coeffients of the 𝑗-th predicate. We take 𝜓ℐ being the coordinate-wise sum of
these coefficients. The setting the matrix 𝑀 to be the identity matrix 𝐼 ∈ R𝑛𝑘×𝑛𝑘

, we get
that the cost of any solution 𝑠 can be expressed as the bilinear function 𝜓ℐ(𝑃)

⊤𝑀𝜓𝑆(𝑠) =

28

−
∑︀|𝑃 |
𝑗=1

∑︀
𝑆⊆[𝑛],|𝑆|≤𝑘

̂︀ℎ𝑗(𝑆)∏︀𝑢∈𝑆 𝑥𝑢. For any ℎ : {−1, 1}𝑛 → {0, 1}, we get that the description

size of any ̂︀ℎ(𝑆) is poly(𝑛, 𝑘) and so the dimensions of the 𝜓𝑆 , 𝜓ℐ feature mappings are polynomial
in the description size of ℐ. Moreover, we get that ‖𝜓ℐ(𝑃)‖, ‖𝜓𝑆(𝑠)‖, ‖𝑀‖ ≤ poly(𝑛𝑘). Hence,
the constants 𝐷𝑆 , 𝐷ℐ , 𝐶 are polynomial in the description size of the instance family. Finally, we
have that for any 𝑣, Var𝑠∼𝑈(𝑆)[𝑣 ·𝜓𝑆(𝑠)] = Var𝑠∼𝑈({−1,1}𝑛)[𝑣 · 𝑠⊗𝑘] = Ω(‖𝑣‖22), using Lemma 9,
assuming that 𝑣∅ is 0 without loss of generality. This implies the result.

G.2 Bipartite Matching and TSP

G.2.1 Maximum Weight Bipartite Matching

In Maximum Weight Bipartite Matching (MWBM) there exists a complete bipartite graph (𝐴,𝐵)
with |𝐴| = |𝐵| = 𝑛 (the assumptions that the graph is complete and balanced is without loss of
generality) with weight matrix 𝑊 where 𝑊 (𝑖, 𝑗) indicates the value of the edge (𝑖, 𝑗), 𝑖 ∈ 𝐴, 𝑗 ∈ 𝐵
and the goal is to match the vertices in order to maximize the value. Hence the goal is to maximize
𝐿(Π) = 𝑊 · Π over all permutation matrices. By the structure of the problem some maximum
weight matching is a perfect matching. Furthermore, by negating the weights of the edges we
can state the problem as the following minimization problem: given a bipartite graph (𝐴,𝐵) and
weight matrix 𝑊 ∈ (R ∪ {∞})𝑛×𝑛, find a perfect matching 𝑀 with minimum weight. One of the
fundamental results in combinatorial optimization is the polynomial-time blossom algorithm for
computing minimum-weight perfect matchings by [Edm65].

We begin this section by showing a variance lower bound under the uniform distribution over the
permutation group.
Lemma 10 (Variance Lower Bound). Let 𝑈(S𝑛) be the uniform distribution over 𝑛× 𝑛 permutation
matrices. For any matrix 𝑊 ∈ R𝑛×𝑛, with

∑︀
𝑖𝑊𝑖𝑗 = 0 and

∑︀
𝑗𝑊𝑖𝑗 = 0 we have

VarΠ∼𝑈(S𝑛)[𝑊 ·Π] =
‖𝑊‖2F
𝑛− 1

.

Proof. We have that EΠ∼𝑈(S𝑛)[Π𝑖𝑗] = 1/𝑛 and EΠ∼𝑈(S𝑛)[Π𝑖𝑗Π𝑎𝑏] =
1{𝑖 ̸=𝑎∧𝑗 ̸=𝑏}
𝑛(𝑛−1) + 1{𝑖=𝑎,𝑗=𝑏}

𝑛 .
We have

VarΠ∼𝑈(S𝑛)[𝑊 ·Π] = E
Π∼𝑈(S𝑛)

[(𝑊 ·Π)2]−
(︂

E
Π∼𝑈(S𝑛)

[𝑊 ·Π]

)︂2

=
∑︁
𝑖,𝑗,𝑎,𝑏

𝑊𝑎𝑏𝑊𝑖𝑗

(︂
1{𝑖 ̸= 𝑎, 𝑗 ̸= 𝑏}

𝑛(𝑛− 1)
+
1{𝑖 = 𝑎, 𝑗 = 𝑏}

𝑛

)︂
−

⎛⎝∑︁
𝑖,𝑗

𝑊𝑖𝑗

𝑛

⎞⎠2

=
1

𝑛

∑︁
𝑖,𝑗

𝑊 2
𝑖𝑗 +

∑︁
𝑖,𝑗,𝑎,𝑏

𝑊𝑖𝑗𝑊𝑎𝑏
1{𝑖 ̸= 𝑎, 𝑗 ̸= 𝑏}

𝑛(𝑛− 1)

=
‖𝑊‖2F
𝑛

+
∑︁
𝑖,𝑗,𝑎,𝑏

𝑊𝑖𝑗𝑊𝑎𝑏
1{𝑖 ̸= 𝑎, 𝑗 ̸= 𝑏}

𝑛(𝑛− 1)
,

where to obtain the third equality we used our assumption that
∑︀
𝑖𝑗𝑊𝑖𝑗 = 0. We observe that, by

our assumption that
∑︀
𝑏𝑊𝑎𝑏 = 0 for all 𝑎 it holds

∑︀
𝑏 ̸=𝑗𝑊𝑎𝑏 = −𝑊𝑎𝑗 and therefore, we have∑︁

𝑏

𝑊𝑎𝑏1{𝑖 ̸= 𝑎, 𝑗 ̸= 𝑏} = 1{𝑖 ̸= 𝑎}
∑︁
𝑏

𝑊𝑎𝑏1{𝑗 ̸= 𝑏} = −1{𝑖 ̸= 𝑎}𝑊𝑎𝑗 .

Similarly, using the fact that
∑︀
�̸�=𝑖𝑊𝑎𝑗 = −𝑊𝑖𝑗 we obtain that∑︁

𝑎𝑏

𝑊𝑎𝑏1{𝑖 ̸= 𝑎, 𝑗 ̸= 𝑏} =
∑︁
𝑎

−𝑊𝑎𝑗1{𝑖 ̸= 𝑎} =𝑊𝑖𝑗 .

Therefore, using the above identity, we have that∑︁
𝑖,𝑗,𝑎,𝑏

𝑊𝑖𝑗𝑊𝑎𝑏
1{𝑖 ̸= 𝑎, 𝑗 ̸= 𝑏}

𝑛(𝑛− 1)
=

∑︁
𝑖,𝑗

𝑊 2
𝑖𝑗

𝑛(𝑛− 1)
=
‖𝑊‖2F
𝑛(𝑛− 1)

.

Combining the above we obtain the claimed identity.

29

Remark 8. We note that in MWBM the conditions
∑︀
𝑖𝑊𝑖𝑗 = 0 and

∑︀
𝑗𝑊𝑖𝑗 = 0 are without loss of

generality.

We next claim that there exists an efficient algorithm for (approximately) sampling such permutation
matrices.

Lemma 11 (Efficient Sampling). There exists an algorithm that generates approximate samples
from the Gibbs distribution 𝑝(·;𝑊) with parameter 𝑊 over the symmetric group, i.e., 𝑝(Π;𝑊) ∝
exp(𝑊 ·Π)1{Π ∈ S𝑛}, in poly(𝑛) time.

Proof. This lemma essentially requires approximating the permanent of a weighted matrix, since
this would imply that one has an approximation of the partition function. Essentially, our goal is to
generate a random variable 𝑋 that is 𝜖-close in statistical distance to the probability measure

𝑝(Π;𝑊) ∝ exp(𝑊 ·Π)1{Π ∈ S𝑛} .

Note that the partition function is

𝑍(𝑊) =
∑︁
Π∈S𝑛

𝑒𝑊 ·Π =
∑︁
Π∈S𝑛

∏︁
(𝑖,𝑗)

𝑒𝑊𝑖𝑗Π𝑖𝑗 =
∑︁
𝜎∈S𝑛

∏︁
𝑖∈[𝑛]

𝐴𝑖,𝜎(𝑖) ,

where 𝐴 is a non-negative real matrix with entries 𝐴𝑖𝑗 = exp(𝑊𝑖𝑗). Note that in the third equality,
we used the isomorphism between permutations and permutation matrices. Hence, 𝑍(𝑊) is exactly
the permanent of the matrix 𝐴.

Proposition 10 ([JSV04]). There exists a fully polynomial randomized approximation scheme for the
permanent of an arbitrary 𝑛× 𝑛 matrix 𝐴 with non-negative entries.

To conclude the proof of the lemma, we need the following standard result.

Proposition 11 (See Appendix H and [Sin12, Jer03]). For self-reducible problems, fully polynomial
approximate integration and fully polynomial approximate sampling are equivalent.

This concludes the proof since weighted matchings are self-reducible (see Appendix H).

The above lemma establishes our goal:

Theorem 5 (MWBM has a Compressed, Efficiently Optimizable and Samplable Solution Gen-
erator). Consider a prior over MWBM instances with 𝑛 nodes. For any 𝜖 > 0, there exists a
solution generator 𝒫 = {𝑝(𝑤) : 𝑤 ∈ 𝒲} such that 𝒫 is complete, compressed with description
poly(𝑛)polylog(1/𝜖),ℒ+ 𝜆𝑅 :𝒲 ↦→ R is efficiently optimizable via projected stochastic gradient
descent in poly(𝑛, 1/𝜖) steps for some 𝜆 > 0 and efficiently samplable in poly(𝑛, 1/𝜖) steps.

Proof. Consider an input graph 𝐺 with 𝑛 nodes and adjacency matrix 𝐸. The feature vector
corresponding to a matching can be represented as a binary matrix Π ∈ {0, 1}𝑛×𝑛 with

∑︀
𝑗 Π𝑖𝑗 = 1

for all 𝑖 and
∑︀
𝑖Π𝑖𝑗 = 1 for all 𝑗, i.e., Π is a permutation matrix. Then

MWBM = max
Π∈S𝑛

𝐸 ·Π = min
Π∈S𝑛

−𝐸 ·Π .

Therefore, for a candidate matching 𝑠, we set 𝜓𝑆(𝑠) to be the matrix Π defined above. Moreover,
the feature vector of the graph is the negative (flattened) adjacency matrix −𝐸♭. The cost oracle
is then 𝐿(𝑅;𝐸) = −

∑︀
𝑖𝑗 𝐸𝑖𝑗𝑀𝑖𝑗𝑅𝑖𝑗 perhaps for an unknown weight matrix 𝑀𝑖𝑗 (see Remark 6).

This means that the dimensions of the feature mappings 𝜓𝑆 , 𝜓ℐ are polynomial in the bit complexity
of ℐ. Moreover, we get that ‖𝜓ℐ(𝐼)‖F, ‖𝜓𝑆(𝑠)‖F, ‖𝑀‖𝐹 ≤ poly(𝑛). We can employ Lemma 10
to get the variance lower bound under the uniform probability distribution in the subspace induced
by the matrices satisfying Lemma 10, i.e., the matrices of the parameter space (see Remark 9).
Finally, (approximate) sampling from our solution generators can be done efficiently using Lemma 11
and hence (noisy) projected SGD will have a runtime of order poly(𝑛, 1/𝜖) (as in the case of Min-
Cut).

We close this section with a remark about Item 3 of Assumption 1.

30

Remark 9. We note that Item 3 of Assumption 1 can be weakened. We use our variance lower bound
in order to handle inner products of the form 𝑤 · 𝑥 where 𝑤 will lie in the parameter space and
𝑥 is the featurization of a solution that lies in some space 𝑋 . Hence it is possible that 𝑤 lies in a
low-dimensional subspace of 𝑋 . For our optimization purposes, it suffices to provide variance lower
bounds only in the subspace where 𝑤 lies into.

G.2.2 Travelling Salesman Problem

Let us consider a weighted clique 𝐾𝑛 with 𝑛 vertices and weight matrix 𝑊 ∈ R𝑛×𝑛. A solution
to the TSP instance 𝑊 is a sequence 𝜋 : [𝑛] → [𝑛] of the 𝑛 elements indicating the TSP tour
(𝜋(1), 𝜋(2), . . . , 𝜋(𝑛), 𝜋(1)) and suffers a cost

𝐿(𝜋) =

𝑛−1∑︁
𝑖=1

𝑊𝜋(𝑖),𝜋(𝑖+1) +𝑊𝜋(𝑛),𝜋(1) .

Crucially, the allowed sequences are a proper subset of all possible permutations. For instance, the
permutations with fixed points or small cycles are not allowed. In particular, the solution space of
TSP corresponds to the set of cyclic permutations with no trivial cycles, i.e., containing an 𝑛-cycle.
Clearly, the number of 𝑛-cycles is (𝑛− 1)!. The goal is to find a tour of minimum cost. Our first goal
is to write the cost objective as a linear function of the weight matrix 𝑊 and the feasible solutions,
which correspond to cyclic permutations. To this end, we can think of each cyclic permutation 𝜋 as a
cyclic permutation matrix Π ∈ {0, 1}𝑛×𝑛. Then, the desired linearization is given by 𝐿(Π) =𝑊 ·Π
(for a fixed graph instance).

Our next task is to provide a Gibbs measure that generates random cyclic permutations. Let C𝑛 be
the space of 𝑛× 𝑛 cyclic permutation matrices. Then we have that the tour Π is drawn from

𝑝𝑊 (Π) =
exp(𝑊 ·Π)1{Π ∈ C𝑛}∑︀

Π′∈C𝑛
exp(𝑊 ·Π′)

,

where 𝑊 is the weight matrix. The following key lemma provides guarantees for the performance
of our approach to TSP. This lemma allows us to show that the number of optimization steps is
poly(𝑛, 1/𝜖).
Lemma 12 (Variance Lower Bound). Let 𝑈(C𝑛) be the uniform distribution over 𝑛 × 𝑛 cyclic
permutation matrices. For any matrix 𝑊 ∈ R𝑛×𝑛, with

∑︀
𝑖𝑊𝑖𝑗 = 0 and

∑︀
𝑗𝑊𝑖𝑗 = 0 we have

VarΠ∼𝑈(C𝑛)[𝑊 ·Π] ≥ ‖𝑊‖2F
(𝑛− 1)(𝑛− 2)

.

Proof. The first step is to compute some standard statistics about cyclic permutations (see Lemma 13).
Lemma 13 and the analysis of Lemma 10 gives us that VarΠ∼𝑈(C𝑛)[𝑊 ·Π] is equal to

‖𝑊‖2F
𝑛− 1

+
∑︁
𝑖,𝑗,𝑎,𝑏

𝑊𝑖𝑗𝑊𝑎𝑏

(︂
1{𝑖 ̸= 𝑎 = 𝑗 ̸= 𝑏}
(𝑛− 1)(𝑛− 2)

+
1{𝑗 ̸= 𝑏 = 𝑖 ̸= 𝑎}
(𝑛− 1)(𝑛− 2)

+
1{𝑖 ̸= 𝑎 ̸= 𝑗 ̸= 𝑏 ̸= 𝑖}

(𝑛− 1)(𝑛− 3)

)︂
.

Let us set
𝐴1 =

∑︁
𝑖,𝑗,𝑎,𝑏

𝑊𝑖𝑗𝑊𝑎𝑏1{𝑖 ̸= 𝑎 = 𝑗 ̸= 𝑏} .

We have that∑︁
𝑏

𝑊𝑎𝑏1{𝑖 ̸= 𝑎}1{𝑎 = 𝑗}1{𝑗 ̸= 𝑏} = 1{𝑖 ̸= 𝑎}1{𝑎 = 𝑗}
∑︁
𝑏

𝑊𝑎𝑏1{𝑗 ̸= 𝑏} = −1{𝑖 ̸= 𝑎}1{𝑎 = 𝑗}𝑊𝑎𝑗 .

Hence

𝐴1 = −
∑︁
𝑖,𝑗,𝑎

𝑊𝑖𝑗𝑊𝑎𝑗1{𝑖 ̸= 𝑎}1{𝑎 = 𝑗} = −
∑︁
𝑖,𝑗

𝑊𝑖𝑗𝑊𝑗𝑗1{𝑖 ̸= 𝑗} =
∑︁
𝑗

𝑊 2
𝑗𝑗 .

Due to symmetry, 𝐴2 =
∑︀
𝑖,𝑗,𝑎,𝑏𝑊𝑖𝑗𝑊𝑎𝑏1{𝑗 ̸= 𝑏 = 𝑖 ̸= 𝑎} =

∑︀
𝑗𝑊

2
𝑗𝑗 . It remains to argue about

𝐴3 =
∑︁
𝑖,𝑗,𝑎,𝑏

𝑊𝑖𝑗𝑊𝑎𝑏1{𝑖 ̸= 𝑎 ̸= 𝑗 ̸= 𝑏 ̸= 𝑖} .

31

We have that∑︁
𝑏

𝑊𝑎𝑏1{𝑖 ̸= 𝑎}1{𝑎 ̸= 𝑗}1{𝑗 ̸= 𝑏}1{𝑏 ̸= 𝑖} = −1{𝑖 ̸= 𝑎}1{𝑎 ̸= 𝑗}(𝑊𝑎𝑗 +𝑊𝑎𝑖) .

This gives that
𝐴3 = −

∑︁
𝑖,𝑗,𝑎

𝑊𝑖𝑗(𝑊𝑎𝑗 +𝑊𝑎𝑖)1{𝑖 ̸= 𝑎}1{𝑎 ̸= 𝑗} .

Note that∑︁
𝑖,𝑗,𝑎

𝑊𝑖𝑗𝑊𝑎𝑗1{𝑖 ̸= 𝑎}1{𝑎 ̸= 𝑗} =
∑︁
𝑗,𝑎

𝑊𝑎𝑗1{𝑎 ̸= 𝑗}
∑︁
𝑖

𝑊𝑖𝑗1{𝑖 ̸= 𝑎} = −
∑︁
𝑗,𝑎

𝑊 2
𝑎𝑗1{𝑎 ̸= 𝑗} .

This implies that
𝐴3 =

∑︁
𝑗 ̸=𝑎

𝑊 2
𝑎𝑗 +

∑︁
�̸�=𝑎

𝑊 2
𝑎𝑖 = 2

∑︁
𝑗 ̸=𝑎

𝑊 2
𝑎𝑗 .

In total, this gives that

VarΠ∼𝑈(C𝑛)[𝑊 ·Π] =
‖𝑊‖2F
𝑛− 1

+
2
∑︀
𝑗𝑊

2
𝑗𝑗

(𝑛− 1)(𝑛− 2)
+

2
∑︀
𝑖 ̸=𝑗𝑊

2
𝑖𝑗

(𝑛− 1)(𝑛− 3)
≥ ‖𝑊‖

2
F

𝑛− 1
+

‖𝑊‖2F
(𝑛− 1)(𝑛− 2)

.

Remark 10. We note that in TSP the conditions
∑︀
𝑖𝑊𝑖𝑗 = 0 and

∑︀
𝑗𝑊𝑖𝑗 = 0 are without loss of

generality.

The next lemma is a generic lemma that states some properties of random cyclic permutation matrices.
Lemma 13. Consider a uniformly random cyclic permutation matrix Π. Let us fix 𝑖 ̸= 𝑗 and 𝑎 ̸= 𝑏.
Then

• E[Π𝑖𝑗] =
1

𝑛−1 .

• E[Π𝑖𝑗Π𝑎𝑏] =
1{𝑖 ̸=𝑎=𝑗 ̸=𝑏}
(𝑛−1)(𝑛−2) + 1{𝑗 ̸=𝑏=𝑖 ̸=𝑎}

(𝑛−1)(𝑛−2) + 1{𝑖 ̸=�̸�=𝑗 ̸=�̸�=𝑖}
(𝑛−1)(𝑛−3) + 1{𝑖=𝑎,𝑗=𝑏}

𝑛−1 .

Proof. First, note that any matrix that corresponds to a cyclic permutation does not contain fixed
points and so the diagonal elements are 0 deterministically. For the first item, the number of cyclic
permutations such that 𝑖→ 𝑗 (i.e., Π𝑖𝑗 = 1) is (𝑛− 2)!. This implies that the desired expectation is
(𝑛− 2)!/|C𝑛| = 1/(𝑛− 1). For the second item, if 𝑖 = 𝑎, 𝑗 = 𝑏, we recover the first item. Otherwise
if 𝑖 = 𝑎 or 𝑗 = 𝑏, then the expectation vanishes since we deal with permutation matrices. Finally, let
us consider the case where 𝑖 ̸= 𝑎 and 𝑗 ̸= 𝑏. Our goal is to count the number of cyclic permutations
with 𝑖→ 𝑗 and 𝑎→ 𝑏.

• If 𝑖 ̸= 𝑎 ̸= 𝑗 ̸= 𝑏 ̸= 𝑖, then there are 𝑛 choices to place 𝑖 and 𝑛− 2 choices to place 𝑎. Then
there are (𝑛− 4)! possible orderings for the remaining elements. This gives an expectation
equal to 1/((𝑛− 1)(𝑛− 3)).

• If 𝑖 ̸= 𝑎 = 𝑗 ̸= 𝑏 or 𝑗 ̸= 𝑏 = 𝑖 ̸= 𝑎, then there are 𝑛 choices for 𝑖 and (𝑛− 3)! orderings for
the remaining elements. Hence, the expectation is 1/((𝑛− 1)(𝑛− 2)).

We note that sampling from our solution generators is the reason that we cannot find an optimal TSP
solution efficiently. In general, an algorithm that has converged to an almost optimal parameter 𝑊 ⋆

has to generate samples from the Gibbs measure that is concentrated on cycles with minimum weight.
In this low-temperature regime, sampling is NP-hard. We are now ready to state our result.
Theorem 6 (TSP has a Compressed, Efficiently Optimizable Solution Generator). Consider a
prior over TSP instances with 𝑛 nodes. For any 𝜖 > 0, there exists a solution generator 𝒫 =
{𝑝(𝑤) : 𝑤 ∈ 𝒲} such that 𝒫 is complete, compressed with description poly(𝑛)polylog(1/𝜖) and
ℒ+ 𝜆𝑅 :𝒲 ↦→ R is efficiently optimizable via projected stochastic gradient descent in poly(𝑛, 1/𝜖)
steps for some 𝜆 > 0.

32

Proof. Consider an input graph 𝐺 with 𝑛 nodes and weighted adjacency matrix 𝐸. The feature vector
is again a permutation matrix Π with the additional constraint that Π has to represent a single cycle
(a tour over all cities). Then

TSP = min
Π∈C𝑛

𝐸 ·Π .

The cost function for TSP is 𝐿(Π;𝐸) =
∑︀
𝑖𝑗 𝐸𝑖𝑗𝑀𝑖𝑗Π𝑖𝑗 . We refer to Theorem 5 for the details

about the feature mappings. We can finally use Lemma 12 to obtain a variance lower bound (in the
subspace induced by the parameters satisfying this lemma, see Remark 9) under the uniform measure
over the space of cyclic permutation matrices C𝑛.

H Sampling and Counting

In this section, we give a quick overview of the connections between approximate sampling and
counting. For a formal treatment, we refer to [Sin12].

In what follows, 𝜎 may be thought of as an encoding of an instance of some combinatorial problem,
and the 𝜔 of interest are encodings of the structures we wish to generate. Consider a weight function
𝑊 and assume that 𝑊 (𝜎, 𝜔) is computable in time polynomial in |𝜎|.
Definition 4 (Approximate Sampling). A fully polynomial approximate sampler for (Ω𝜎, 𝜋𝜎) is
a Probabilistic Turing Machine which, on inputs 𝜎 and 𝜖 ∈ Q+ (0 < 𝜖 ≤ 1), outputs 𝜔 ∈ Σ⋆,
according to a measure 𝜇𝜎 satisfying TV(𝜋𝜎, 𝜇𝜎) ≤ 𝜖, in time bounded by a bivariate polynomial in
|𝜎| and log(1/𝜖).

One of the main applications of sampling is to approximate integration. In our setting this means
estimating 𝑍(𝜎) to some specified relative error.
Definition 5 (Approximate Integration). A fully polynomial randomized approximation scheme for
𝑍(𝜎) is a Probabilistic Turing Machine which on input 𝜎, 𝜖, outputs an estimate ̂︀𝑍 so that

Pr[𝑍/(1 + 𝜖) ≤ ̂︀𝑍 ≤ (1 + 𝜖)𝑍] ≥ 3/4 ,

and which runs in time polynomial in |𝜎| and 1/𝜖.

Definition 6 (Self-Reducible Problems). An NP search problem is self-reducible if the set of solutions
can be partitioned into polynomially many sets each of which is in a one-to-one correspondence
with the set of solutions of a smaller instance of the problem, and the polynomial size set of smaller
instances are efficiently computable.

For instance, consider the relation MATCH which associates with an undirected graph 𝐺 all matchings
(independent sets of edges) of𝐺. Then MATCH is self-reducible since, for any edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸(𝐺),
we have that

MATCH(𝐺) = MATCH(𝐺1) ∪ {𝑀 ∪ {𝑒} :𝑀 ∈ MATCH(𝐺2)} ,
where 𝐺1 is the graph obtained by deleting 𝑒 and 𝐺2 is the graph obtained be deleting both 𝑢 and 𝑣
together with all their incident edges.
Theorem 7 (See Corollary 3.16 in [Sin12]). For self-reducible problems, approximate integration
and good sampling are equivalent.

We remark that the above result holds for the more general class of self-partitionable problems.

I Details of the Experimental Evaluation

We investigate the effect of the entropy regularizer (see Equation (2)) in a very simple setting: we try
to find the Max-Cut of a fixed graph 𝐺, i.e., the support of the priorℛ is a single graph. We show that
while the unregularized objective is often “stuck” at sub-optimal solutions – and this happens even for
very small instances (15 nodes) – of the Max-Cut problem, the regularized version (with the fast/slow
mixture scheme) is able to find the optimal solutions. We consider an instance randomly generated
by the Erdős–Rényi model 𝐺(𝑛, 𝑝) and then optimize the “vanilla” loss ℒ and the regularized loss
ℒ𝜆 defined in Equation (3). The solutions are vectors 𝑠 ∈ {±1}𝑛. We first use the feature mapping
𝜓𝑆(𝑠) = (𝑠𝑠⊤)♭ described in Section 1.1 and an exponential family solution generator that samples a

33

class FastSlowMixture(torch.nn.Module):
def __init__(self, dimension, rho):

"""
The Model parameters.
"""
super().__init__()

self.l1 = torch.nn.Parameter(torch.empty(30, dimension))
torch.nn.init.kaiming_uniform_(self.l1, a=5**0.5)

self.l2 = torch.nn.Parameter(torch.empty(10, 30))
torch.nn.init.kaiming_uniform_(self.l2, a=5**0.5)

self.l3 = torch.nn.Parameter(torch.empty(1, 10))
torch.nn.init.kaiming_uniform_(self.l3, a=5**0.5)

self.a2 = torch.nn.ReLU()
self.a1 = torch.nn.ReLU()

self.rho = rho

def forward(self, x, is_cold=True):

temp = self.rho * (1. - is_cold) + is_cold

out = x
out = torch.nn.functional.linear(out, temp * self.l1)
out = self.a1(out)
out = torch.nn.functional.linear(out, temp * self.l2)
out = self.a2(out)
out = torch.nn.functional.linear(out, temp * self.l3)

return out

Figure 4: Our implementation of the fast/slow network. The output of the network is the log-density
(score) of a solution 𝑠 ∈ {±1}dimension. If evaluated with the is-cold set to False, the parameters of
every linear layer are re-scaled by the inverse temperature rho.

solution 𝑠 with probability ∝ exp(𝑤 · 𝜓𝑆(𝑠)) for some weight vector 𝑤 ∈ R𝑛2

. We also consider
optimizing a simple 3-layer ReLU network as solution generator with input 𝑠 ∈ {±1}𝑛 on the same
random graphs. We generate 100 random 𝐺(𝑛, 𝑝) graphs with 𝑛 = 15 nodes and 𝑝 = 0.5 and train
solution generators using both the ”vanilla” and the entropy-regularized loss functions. We perform
600 iterations and, for the entropy regularization, we progressively decrease the regularization weight,
starting from 10, and dividing it by 2 every 60 iterations. We used a fast/slow mixing with mixture
probability 0.2 and inverse temperature rho=0.03 (see Figure 4).

For convenience, we present a pytorch implementation of our simple 3-layer ReLU network here.
For more details we refer to our full code submitted in the supplementary material.

Out of the 100 trials we found that our proposed objective was always able to find the optimal cut
while the model trained with the vanilla loss was able to find it for approximately 65% of the graphs
(for 65 out of 100 using the linear network and for 66 using the ReLU network). In Figure 2 we show
two instances where the model trained with the ”vanilla” loss gets stuck on a sub-optimal solution
while the entropy-regularized one succeeds in finding the optimal solution. Our experiments show
that the regularization term and the fast/slow mixture scheme that we introduced to achieve our main
theoretical convergence result, see Section 3 and Proposition 4, are potentially useful for training
more realistic models for bigger instances and we leave more extensive experimental evaluation as an
interesting direction for future work.

34

We note that, similarly to our theoretical results, our sampler in this experimental section is of the
form 𝑒score(𝑠;𝑤), where 𝑠 ∈ {−1, 1}𝑛 (here 𝑛 is the number of nodes in the graph) is a candidate
solution of the Max-Cut problem. The function used is a 3-layer MLP (see Figure Figure 4). Since
the instances that we consider here are small (𝑛 = 15) we can explicitly compute the density (score)
of every solution and use that to compute the expected gradient. For larger instances, one could use
some approximate sampler (e.g., via Langevin dynamics) to generate samples. The main message
of the current experimental section is that even for very small instances of Max-Cut (i.e., with 15
nodes), optimizing the vanilla objective is not sufficient and the iteration gets trapped in local optima.
In contrast, our entropy regularized always manages to find the optimal cut.

35

	Introduction
	Our Framework
	Our Results
	Related Work
	Combinatorial Applications
	Optimization Landscape
	Complete, Compressed and Efficiently Optimizable Solution Generators
	Experimental Evaluation
	Preliminaries and Notation
	The Proof of remark:just some properties
	Completeness
	Compression
	Efficiently Optimizable
	Quasar Convexity of the Regularized Loss
	The Proof of prop:quasar-vec
	Bounded Gradient Lemma and Proof
	Correlation Lower Bound Lemma and Proof
	Convergence for Quasar Convex Functions
	Deferred Proofs: Variance under Almost Uniform Distributions
	Applications to Combinatorial Problems
	Maximum Cut, Maximum Flow and Max-k-CSPs
	Maximum Cut
	Minimum Cut/Maximum Flow
	Max-k-CSPs
	Bipartite Matching and TSP
	Maximum Weight Bipartite Matching
	Travelling Salesman Problem
	Sampling and Counting
	Details of the Experimental Evaluation

