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Abstract

Transfer-based attacks [1] are a practical method of black-box adversarial attacks
in which the attacker aims to craft adversarial examples from a source model that is
transferable to the target model. Many empirical works [2–6] have tried to explain
the transferability of adversarial examples from different angles. However, these
works only provide ad hoc explanations without quantitative analyses. The theory
behind transfer-based attacks remains a mystery.
This paper studies transfer-based attacks under a unified theoretical framework. We
propose an explanatory model, called the manifold attack model, that formalizes
popular beliefs and explains the existing empirical results. Our model explains why
adversarial examples are transferable even when the source model is inaccurate as
observed in Papernot et al. [7]. Moreover, our model implies that the existence of
transferable adversarial examples depends on the “curvature” of the data manifold,
which further explains why the success rates of transfer-based attacks are hard to
improve. We also discuss our model’s expressive power and applicability.

1 Introduction

Machine learning (ML) models are vulnerable to adversarial examples [8, 9]. It has been observed
that adversarial examples of one model can fool another model [9, 10], i.e., adversarial examples
are transferable. Utilizing this transferability, researchers have developed some practical black-box
attack methods, in which they first obtain a source model and then use the adversarial examples of
the source model to attack the target model [5, 11]. This type of attack is referred to in the literature
as transfer-based attacks (TBA).

TBAs have many intriguing properties. For instance, Papernot et al. [7] find that the adversarial
examples of an inaccurate source model can transfer to the target model with a non-negligible success
rate. Besides, the success rates of TBAs are constantly lower than other methods of black-box attacks
[5, 6, 12]; the low success rate seems to be an intrinsic property of TBAs.

Previous works have tried to explain these properties from different perspectives [2–6]. Unfortunately,
these works only provide ad hoc explanations for the properties of TBAs without quantitative analyses
under a unified framework. For example, Dong et al. [6] suggest that the low success rates of TBAs
are due to the adversarial examples of the source model falling into a “non-adversarial region” of the
target model, while the properties of such regions are not discussed quantitatively. As for the cause
of transferability, a self-evident explanation is that the source and target models have similar decision
boundaries [10]. However, these similarities are hard to characterize, and it is even harder to associate
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the decision boundary similarity with the properties of TBAs. More importantly, this explanation
contradicts the abovementioned experimental results in Papernot et al. [7], i.e., adversarial examples
are also transferable when the source and target model does not have similar decision boundaries.
We refer the readers to Section 2 for more related works. In summary, existing analyses make good
sense under their respective settings, but it is unclear whether they are in accord with each other. It is
natural to ask the following question:

Can we find a unified theoretical framework that explains the properties of TBAs?

This paper gives a positive answer to this question. More specifically, we propose an explanatory
model, called the manifold attack model, that formalizes popular beliefs and explains the existing
empirical results in a unified theoretical framework. Our model assumes that the natural data lies on
a low-dimensional manifold [13–16] denoted byM; see Section 2 for more related works on this
assumption. As the central part of our model, we specify a hypothesis class FM and assume that
both the source and the target model come from FM. The construction of FM is motivated by the
following two widespread beliefs. In order to classify unseen data correctly, ML models are believed
to have extracted semantic information (i.e., the ground truth) of the natural data after training. On the
other hand, ML models are also able to learn non-robust features that generalize well in test phrases
[17, 18]. These features reflect the geometrical information of the training data [17].

In our model, the hypothesis class FM is designed to capture both semantic and geometric information
of the data. As we will define in Section 4, the classifiers in FM can be decomposed into the product
of a basis classifier fb and a multiplier ϕ, i.e., f = fb · ϕ for ∀ f ∈ FM. We characterize the semantic
information as separated sets A1, A2, · · · , Ak ⊂ M (for a k-class classification task) and capture
this information by letting fb take different values on these sets. The geometrical information G is
interpreted as the “approximated shape” of the data manifold, and we let ϕ concentrate around G.
By multiplying fb and ϕ together, we obtain a classifier that captures the semantic and geometry
information of the training data. In brief, our model assumes that both the source and target models
come from a specified hypothesis class and the natural data is drawn from a low-dimensional manifold.

Despite its simple form, the manifold attack model provides us with powerful tools to theoretically an-
alyze the properties of TBAs. More specifically, Theorem 4.8 proves that the off-manifold adversarial
examples are transferable when the source model is inaccurate, which explains the empirical results
from Papernot et al. [7]. By further discussing the existence of off-manifold adversarial examples, we
theoretically explain why the success rates of TBAs are hard to improve. Moreover, Theorem 4.13
quantitatively discusses the relationship between the existence of transferable adversarial examples
and the “curvature” of the data manifoldM, which formalizes the explanation in Dong et al. [6].

In addition to the explanatory results, we further discuss the expressive power and the possible
extensions of our model in general applications. Section 5.1 proves that our model is extensible,
i.e., we can replace the hypothesis class FM by the family of ReLU networks while proving similar
results. Our model builds a bridge between the less developed theory behind TBAs and the huge
amount of theoretical works analyzing ReLU networks. Furthermore, Section 5.2 demonstrate that
the expressive power of our model is strong enough for the study of TBAs. We also provide a detailed
discussion on the applicability of our model in Appendix A.

In summary, we propose a model that is theoretically tractable and consistent with existing results. It
formalizes widespread beliefs and explains the properties of TBAs under a unified framework. The
remainder of this paper is structured as follows. Sections 2 and 3 introduce the related works and
terminologies, respectively. We propose our model and present the explanatory results in Section 4.
Section 5 makes further discussions on our model. Section 6 summarizes this paper. Some remarks
and the omitted proofs can be found in the appendix.

2 Related Works

The related works of TBAs and the low-dimensional manifold assumption are summarized as follows.

2.1 Transfer-Based Attacks

The research on the adversarial robustness of ML can be roughly divided into adversarial attacks [8,
9, 19], defenses [20–22], and the analyses of the robustness of existing methods [23–26]. Adversarial
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attacks can be divided into two classes based on whether the attackers have the gradient information
of the target model, i.e., white-box [27] and black-box [7] attacks. TBAs are one of the two main
approaches to performing black-box attacks on ML models. Apart from TBAs, the other main
approach is the optimization-based attack that approximates the gradient of the target model and
performs white-box attacks thereafter [28–30]. While TBAs require much less information from the
target model (and thus more practical) than optimize-based attacks, the success rates of TBAs are
constantly lower, even when the source models are almost accurate [2, 3, 5, 6, 11].

There are a few theoretical works that have tried to explain the properties of TBAs. However, these
works rely heavily on either simple models or strong assumptions. Apart from those mentioned in
Section 1, the seminal work of Goodfellow et al. [9] tries to explain the transferability of adversarial
examples using linear models. Charles et al. [31] theoretically prove, in the context of linear classifiers
and two-layer ReLU networks, that transferable adversarial examples exist. However, [31] does not
explain those properties of TBAs mentioned in Section 1. Gilmer et al. [32] assume that the natural
data is drawn from a “concentric spheres dataset”, which can be viewed as a special form of the low-
dimensional data manifold. In comparison to previous works, our model requires milder assumptions
on both data distribution and hypothesis class, while providing a more detailed discussion of the
properties of TBAs.

2.2 The Low-Dimensional Manifold Assumption

The low-dimensional manifold assumption is commonly seen in many areas of research, ranging
from classic approximation theory [13, 14] to computer vision [15, 16]. Under this assumption, it is
intuitive to divide the adversarial examples into two groups based on whether they lie on or off the
data manifold. Both on-manifold [15, 33] and off-manifold [32, 34] adversarial examples have been
studied in many previous works. In most cases, a classifier is simultaneously vulnerable to both on-
and off-manifold adversarial examples [33].

In this paper, we discuss the transferability of both on- and off-manifold adversarial examples. We
are mainly motivated by the techniques from Zhang et al. [35] and Li et al. [14]. The main results of
Zhang et al. [35] decompose the adversarial risk based on the position of the adversarial example
and discuss the existence of different types of adversarial examples; Zhang et al. [35] provides us
with useful tools to analyze the existence of transferable adversarial examples. Li et al. [14] consider
robust generalization and approximate continuous classifiers by ReLU networks. In this paper, we
prove that the hypothesis class FM in our model can also be approximated by ReLU networks.

3 Problem Setup

This section introduces the basic setups and terminologies. We use a black triangle sign (▲) to indicate
the end of assumptions, definitions, or remarks.

3.1 Notations

Let Rd be the real vector space equipped with the lp-norm, where p ∈ [1,+∞]. In this paper, we
consider the k-class classification problems (k ≥ 2) on Rd. Denote the data-label pairs by (x, y), in
which y is chosen from some label spaceY. By convention, we letY = {−1, 1} in binary classification
and Y = {1, 2, · · · , k} when k > 2. Unless otherwise specified, we assume that the natural data lie on
a low-dimensional manifoldM ⊂ Rd. More specifically, we adopt the following assumption.

Assumption 1 (Low-dimensional Manifold). LetM ⊂ [0, 1]d be a compact smooth manifold2 and
assume that the dimension ofM is less than d. Let D be some given continuous distribution that is
supported onM. We say that a random variable x is natural data if x ∼ D. ▲

Denote the support set of D by supp(D). With slight abuse of notation, let y also be a mapping from
supp(D) to Y that assigns each natural data x ∼ D with a true label y = y(x). Notice that only natural
data is endowed with a true label. Since supp(D) ⊂ [0, 1]d, we will make no distinction between Rd

and [0, 1]d in the remainder of this paper without loss of generality (WLOG).

2Some realistic datasets are supported on [0, 1]d, e.g., MNIST and Fashion-MNIST.
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Let dp be the metric induced by the lp-norm and B(x; r) the lp-ball around x with radius r. For any
subset S ⊂ Rd, let dp(x, S ) := infx′∈S dp(x, x′) be the distance between S and x. Let the classifiers f
be functions defined on Rd. When k > 2, we consider f (x) = ( f (1)(x), f (2)(x), · · · , f (k)(x))T that maps
x ∈ Rd to f (x) ∈ Rk. For ease of notation, let y( f , x) := arg max1≤i≤k f (i)(x) be the output class of f
for ∀x ∈ Rd. Since D is continuous, y( f , x) take unique value w.p. (with probability) 1 when x ∼ D.
In binary classification problems, we consider f : Rd → R and y( f , x) = sign( f (x)).

Given perturbation radius δ and natural data x ∼ D, we call xa ∈ B(x; δ) an adversarial example of f at
x if y( f , x) , y( f , xa). Given classifier f , let the standard risk of f be Rstd( f ) := Px∼D

[
y( f , x) , y(x)

]
,

and the adversarial risk of f with regard to (w.r.t.) δ is defined as

Radv( f ; δ) := Px∼D
[
∃xa ∈ B(x; δ) s.t. y( f , x) , y( f , xa)

]
. (1)

Since TBA is often against accurate target models in practice, our paper assumes that the standard
risk of the target model ft is Rstd( ft) = 0 for the sake of simplicity. Given such accurate ft, the goal of
a TBA is to find adversarial examples of ft. Specifically, the attacker needs to obtain a source model
fs and craft adversarial examples of fs using white-box attacks. Given natural data x ∼ D and an
adversarial example xa ∈ B(x; δ) of fs at x, we say that xa transfers to ft if y( ft, x) , y( ft, xa).

3.2 The On- and Off-Manifold Adversarial Examples

In this paper, the on- and off-manifold adversarial examples are defined as follows.
Definition 3.1 (On- and off-manifold adversarial examples). For any given classifier f , perturbation
radius δ and natural data x ∼ D, let xa ∈ B(x; δ) be an adversarial example of f at x. We call xa an
on-manifold adversarial example xa ∈ M, or an off-manifold adversarial example if xa <M. ▲

We say that a classifier f suffers from, or is vulnerable to (on-, off-manifold) adversarial examples if
∃x ∼ D, xa ∈ B(x; δ) such that xa is an (on-, off-manifold) adversarial examples of f at x. If f does
not suffer from (on-, off-manifold) adversarial examples, then we consider it to be robust against
(on-, off-manifold) adversarial examples.

In most cases, the adversarial examples of ft are regarded as imperceptible to humans (e.g., in a cat-
or-dog classification task, the adversarial examples of cat images still look like cats), which implies
that adversarial examples are not naturally generated data. Otherwise, the adversarial examples would
be endowed with the same label as their corresponding natural data, which leads to a contradiction
since Rstd( ft) = 0. In other words, adversarial examples should not lie in the support of D. To ensure
this, we additionally assume that the natural data with different true labels are separated from each
other. Notice that there is an intrinsic connection between the natural data x and its true label y(x),
which is often referred to as “semantic information” of the natural data. In this paper, we formalize
the semantic information of the natural data as a family of sets {A j : j ∈ Y}, where

A j := {x ∈ supp(D) : y(x) = j}, ∀ j ∈ Y. (2)

In practice, the semantic information Ai and A j is often separated if i , j (e.g., Remark A.1). In this
paper, we assume that the semantic information is separated in the following sense.
Assumption 2 (Separated Semantic Information). Given λ > 0, for ∀i , j ∈ Y, we assume that Ai

and A j are 2λ-separated. Here, for any given subsets E, F ⊂ Rd and r > 0, we say that E and F are
r-separated if dp(x1, x2) ≥ r for ∀x1 ∈ E and x2 ∈ F. ▲

With the help of Assumption 2, it is easy to check that the adversarial examples would not lie in
the support set of D if δ < λ. In the rest of this paper, we will treat δ and λ as fixed parameters and
always assume that δ < λ.

4 The Manifold Attack Model

Our proposed model specifies a hypothesis class that has two components. The first one is a semantic
classifier that tries to capture the semantic information of the natural data. Similar to Equation (2),
we call {A j

f : j ∈ Y} the semantic information learned by a classifier f if y( f , x) = j for ∀x ∈ A j
f and

∀ j ∈ Y. To avoid trivial discussion, we assume that A j
f , ∅ for ∀ j ∈ Y. The following definition

specifies a family of classifiers that learn separated semantic information.
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Definition 4.1 (Semantic classifier). We call fb a semantic classifier if there is a family of pairwise
2λ-separated set {A j

f : j ∈ Y} such that {A j
f : j ∈ Y} is the semantic information learned by fb. ▲

It is easy to check that Rstd( fb) = 0 if A j ⊂ A j
f for ∀ j ∈ Y. Intuitively, the accuracy of a classifier

depends on how well it learns the semantic information of the natural data.

The second component of our model is a function that captures the geometric structure of the data.
Definition 4.2 (Concentration multiplier). Given G ⊂ Rd, we call ϕ a concentration multiplier around
G if ϕ(x) = 1 for ∀x ∈ G, and ϕ(x1) < ϕ(x2) for ∀x1, x2 ∈ R

d with dp(x1,G) > dp(x2,G). ▲

Intuitively, the geometric information G can be interpreted as the “approximated shape” of the natural
data. The concentration multipliers would assign a much lower confidence score to those data points
that are outside of or far away from G. In the ideal case, G precisely captures the shape ofM, which
enables ϕ to detect the off-manifold data points (i.e., the out-of-distribution (OOD) data [36, 37]).

As mentioned in Section 1, ML models often capture both the semantic and geometrical information
of the natural data. Therefore, we assume that the source and target models can be decomposed into
the product of a semantic classifier and a concentration multiplier. More specifically, we consider the
hypothesis class defined as follows.
Definition 4.3. Consider the k-class classification problems (k ≥ 2) on [0, 1]d. Let Fb and Φ be a
collection of semantic classifiers and concentration multipliers, respectively. When k > 2, let FM be
the family of all classifiers f : [0, 1]d → Rk that satisfy

f ( j)(x) = f ( j)
b (x) · ϕ(x) for ∀x ∈ [0, 1]d and ∀ j ∈ Y. (3)

In the binary classification case, we let f (x) = fb(x) · ϕ(x) for ∀x ∈ [0, 1]d. Here, fb and ϕ are
chosen from Fb and Φ, respectively. Since the semantic information is contented in the manifold, we
additionally assume that ∪ j∈YA j

f ⊂ G, in which {A j
f : j ∈ Y} is the semantic information learned by

fb and G is the approximated shape ofM learned by ϕ. ▲

Definitions 4.1 to 4.3 together with Assumptions 1 and 2 establish the abstract framework for the
manifold attack model. This model formalizes how a classifier captures the semantic and geometric
information from natural data. It is worth noticing that choices of f ∈ FM in Definition 4.3 remains
largely arbitrary if we choose Fb (and Φ) to be the family of all possible semantic classifiers (and
concentration multiplier) introduced in Definition 4.1 (and Definition 4.2). In fact, for any f that
learns 2λ-separated semantic information {A j

f : j ∈ Y} and any ϕ such that ( f (x) = 0) =⇒ (ϕ(x) = 0)

for ∀x ∈ Rd, we can simply let f ( j)
b (x) = f ( j)(x) · ϕ−1(x) for ∀x , 0. It is easy to check that fb is a

semantic classifier as long as A j
f ∩G , ∅ for ∀ j ∈ Y.

The generality in Definition 4.3 comes at the expense of theoretical intractability. Take the semantic
classifier for example. In Definition 4.1, fb cannot be determined by the semantic information it
learns. Moreover, fb cannot even be parameterized according to this definition. There is an implicit
tradeoff between generality and theoretical tractability: quantitative analysis of specific scenarios
might need more delicate definitions. Next, we introduce one specific combination of fb and ϕ to
carry on analyzing the properties of TBAs.

For the sake of simplicity, we only present analyses and results in the context of binary classification
in Sections 4 and 5. For ease of notation, let A := {x : y(x) = 1} and B := {x : y(x) = −1}, i.e., the
semantic information of binary natural data. The following proposition specifies a sub-family of
semantic classifiers:
Proposition 4.4 (semantic classifier, binary case). Given 2λ-separated sets A f , B f ⊂ M. Define:

fb(x) = fb(x; A f , B f ) :=
dp(x, B f ) − dp(x, A f )
dp(x, B f ) + dp(x, A f )

. (4)

Then, fb is a semantic classifier. In particular, we can obtain from Equation (4) that fb(x) > 0 if x is
closer (w.r.t. dp) to A f than B f and fb(x) < 0 otherwise.

Let Fbin the collection of all semantic classifiers defined by Equation (4) for all possible 2λ-separated
A f , B f ⊂ M. The following proposition shows that a semantic classifier can be accurate and robust.
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Figure 1: A visualization of the manifold, semantic information, and adversarial examples. The
manifoldM is represented by the grid surface. For clarity, we only visualize the above half ofM and
omit the below half. Left: the 2λ-separated semantic information A, B ⊂ M is painted in dark blue.
According to Equation (6), the adversarial examples of ft = f ∗b · ϕoff lie in the shaded bodies in light
blue, which is outside of the data manifold. Right: the semantic information A, B of the natural data
is represented as the light blue area onM. The raised parts uponM are Nδ(A f ) (painted in orange)
and Nδ(B f ) (painted in dark blue). The intersections ofM and Nδ(A f ) (or Nδ(B f )) is A f (or B f ),
which are indicated by the areas surrounded by the inner contour lines. On the outer contour line of
A f and B f , we have ϕon = 0 since d2(x,Nδ(A f ∪ B f )) = δ.

Proposition 4.5. Take A f = A and B f = B in Equation (4) and denote the corresponding classifier
by f ∗b . Then, for any given λ ≥ δ > 0, we have Rstd( f ∗b ) = Radv( f ∗b , δ) = 0.

Similar to Proposition 4.4, we specify a distance-based family of concentration multipliers.
Proposition 4.6 (Concentration multiplier, binary case). For any given r > 0 and G ⊂ Rd, denote

ϕ(x) = ϕ(x; r,G) :=
r − dp(x,G)
r + dp(x,G)

, ∀x ∈ Rd. (5)

Then ϕ(x) is a concentration multiplier around G.

Propositions 4.4 and 4.6 introduce a combination of fb and ϕ in binary case. Both fb and ϕ can be
parameterized by the semantic and geometrical information it learns. It is also possible to extend our
analysis to other scenarios by specifying other combinations of fb and ϕ, which is out of the scope of
our paper. In the following sections, we adopt the following assumption.
Assumption 3. The source and target model are chosen from the hypothesis class given by Defini-
tion 4.3, where Fb and Φ are the function classes introduced by Propositions 4.4 and 4.6. ▲

With slight abuse of notation, we denote the hypothesis class in Assumption 3 by FM. Intuitively, for
any f = fb · ϕ ∈ FM, the semantic classifier controls the accuracy of f . The similarity between A, B
and A f , B f reflects how well fb fits the natural data. Moreover, the overlapping area (A∪B)∩(A f ∪B f )
should contain the training data of f (and thus be non-empty) if f has reached zero training error.
The concentration multiplier helps classification by assigning lower confidence scores on those x < G,
but it might also bring in adversarial examples. Since we only impose mild conditions on the choice
of G (i.e., A f ∪ B f ⊂ G), FM can capture complicated geometrical information. We will come back
to the expressive power of FM at Section 5.2.

4.1 The Transferability of Adversarial Examples

As a warm-up, we study the robustness of f ∈ FM against on- and off-manifold adversarial examples
without specifying fb and ϕ. The following proposition shows that the vulnerability of f ∈ FM to on-
and off-manifold adversarial examples are different.
Proposition 4.7. Let f = fb · ϕ. Given Radv( f ; δ) , 0, we can obtain (w.p. 1) that

1. f suffers from off-manifold adversarial examples.

2. if fb captures the semantic information of the natural data (i.e., A ⊂ A f and B ⊂ B f ), then f
is robust against on-manifold adversarial examples.
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Remark. The results in Proposition 4.7 hold w.p. 1 since our proof ignores some minor events (e.g.,
f (x) = 0) that occur w.p. 0. For the sake of simplicity, we will not specify those events that happen
almost surely in the rest of this paper.

The first result of Proposition 4.7 implies that f ∈ FM suffers from adversarial examples if and only
if f suffers from off-manifold adversarial examples. In Section 4.2, we will discuss the existence of
transferable adversarial examples based on this result.

We explain the properties of TBAs by proving the existence of f ∈ FM that satisfies desired properties.
First of all, we introduce a sub-family of FM that is robust against on-manifold adversarial examples.
The following concentration multipliers force fb to concentrate around the data manifold, which
brings off-manifold adversarial examples to fb without introducing on-manifold adversarial examples.
For any unspecified α ∈ (0, 1), let

ϕoff(x) := ϕ(x;αδ,M) =
αδ − dp(x,M)
αδ + dp(x,M)

. (6)

Consider the classifiers induced by ϕoff , i.e., f = fb ·ϕoff . It is clear from Equation (6) that f (x) = fb(x)
when x ∈ M. Combining this with the separated assumptions of semantic information, we can see
that ϕoff blocks the on-manifold adversarial examples. Figure 1 demonstrates that the target model
ft = f ∗b · ϕoff is only vulnerable to off-manifold perturbations. The following proposition shows that
off-manifold adversarial examples are transferable even if the source model is inaccurate, which
explains the phenomenon in Papernot et al. [7].
Theorem 4.8. Consider TBAs with perturbation radius δ ∈ (0, λ], target model ft = f ∗b · ϕoff and
source model fs = fb · ϕoff , fb ∈ Fb. Denote the semantic information of fb by A f and B f . Then, for
∀x ∈ A ∪ B, all adversarial examples (if exist) of fs at x are transferable if x ∈ A f ∪ B f .

Theorem 4.8 proves that all of the adversarial examples of fs are transferable if the concentration
multipliers of ft and fs are identical, given that (A ∪ B) ∩ (A f ∪ B f ) , ∅. In particular, fs is not neces-
sarily accurate, which is consistent with the empirical results in Papernot et al. [7]. Theorem 4.8 also
implies that the vulnerability of ML models might be due to the non-robust geometrical information.
Such vulnerability is transferable between models that learn similar geometrical information.

Next, we turn to the on-manifold adversarial examples. Proposition 4.7 shows that we cannot find
an f ∈ FM such that f suffers from only on-manifold adversarial examples. Instead, we specify a
family of concentration multipliers that blocks out off-manifold adversarial examples that is “directly
above” the manifold. In this case, we consider Euclidean space Rd with l2-norm and inner product
⟨x1, x2⟩ := xT

1 x2. For ∀x ∈ M, let TxM ⊂ R
d be the tangent space ofM at x, i.e., the space spanned

by the possible tangent directions that pass through x. Now that we are considering an inner product
space, let NxM ⊂ R

d be the normal space at x such that ∀u ∈ NxM and v ∈ TxM, we have ⟨u, v⟩ = 0.

Denote Nr(S ) := {x′ ∈ Rd : ∃x ∈ S s.t. d2(x, x′) < r, x′ − x ∈ NxM} for any given r > 0 and S ⊂ M.
We call Nr(S ) a tubular neighborhood of S if for ∀x′ ∈ Nr(S ), there is an unique x ∈ S such that
x′ − x ∈ NxM. For any semantic classifier fb with semantic information A f and B f , define

ϕon(x) = ϕon(x; fb) := ϕ(x; δ,Nδ(A f ∪ B f ) (7)

and consider f = fb · ϕon(·; fb). According to Equation (7), ϕon blocks the off-manifold adversarial
examples of f that is “directly above” A f and B f . We use Figure 1 to visualize our idea. The following
proposition provides a sufficient condition for adversarial examples that are not transferable.
Proposition 4.9. Consider TBA with perturbation radius δ ∈ (0, λ], target model ft = f ∗b · ϕon(·, f ∗b )
and source model fs = fb · ϕon(·; fb), fb ∈ Fb. Denote

S crt := (A ∩ A f ) ∪ (B ∩ B f ), S wrg := (A ∩ B f ) ∪ (B ∩ A f ). (8)

Then, for ∀x ∈ A ∪ B, we have

1. if B(x, δ) ∩M ⊂ S crt ∪ S wrg, then ft and fs are both robust against adversarial examples;

2. if B(x, δ) ∩M ⊂ A ∪ B and x ∈ A f ∪ B f , then the adversarial examples of fs at x (if exists)
cannot transfer to ft.

We interpret S crt (or S wrg) as the “correct (or wrong) semantic information” captured by fb. When
S crt = supp(D) and S wrg = ∅ (i.e., fb captures the semantic information of the natural data), the
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first result of Proposition 4.9 implies that a large part of x ∈ supp(D) is robust against adversarial
examples if we block the off-manifold adversarial examples that are “directly above” the semantic
information. The second result of Proposition 4.9 implies that the potentially transferable adversarial
examples are mostly located inside of the following set

(A ∪ B) ∩ (S wrg ∪ S crt)c = (A ∪ B) ∩ (A f ∪ B f )c, (9)

or at least close to its boundary. Here, we interpret (A ∪ B) ∩ (A f ∪ B f )c as the semantic information
not contained in the training data.

In summary, the results in this section together provide a general view of the role that on- and off-
manifold adversarial examples play in TBAs. Although both on- and off-manifold adversarial exist,
ML models seem to be more vulnerable to off-manifold adversarial examples, and the off-manifold
adversarial examples seem to play a more important role in TBAs.

4.2 The Existence of Transferable Adversarial Examples

Dong et al. [2] argue that the low success rates of TBAs are possibly due to the adversarial examples
of fs falling into a “non-adversarial region” of ft. In this section, we try to formalize this explanation
and study the properties of such non-adversarial regions.

According to Proposition 4.7, f ∈ FM suffers from adversarial examples if and only if f suffers from
off-manifold adversarial examples. This section is devoted to discussing the possible non-existence
of off-manifold examples. Before we delve into this problem, let us introduce the notion of robust
radius that is initially studied in the certified robustness problems [38, 39].

Definition 4.10 (Robust Radius, binary case). For any classifier f , the robust radius of f is defined
as the minimum r ≥ 0 such that for ∀x ∈ A ∪ B and x1, x2 ∈ B(x, r), we have f (x1) f (x2) ≥ 0.

Denote the robust radius of f by rδ( f ). In our model, the robust radius of f ∈ FM is controlled
by ϕ. Based on this notion, the following example demonstrates how the existence of off-manifold
adversarial examples depends on the shape of the data manifoldM.

Example 4.11. We use the same setting as Proposition 4.9 and consider the target model ft = f ∗b ·ϕoff .
Given 0 < r1 < r2 < δ < r3, denote ϕ1 = ϕoff(·; r1,M) and ϕ2 = ϕoff(·; r2,M). Using Equation (6),
we obtain that rδ( f ∗b · ϕ1) = r1 < δ and rδ( f ∗b · ϕ2) = r2 < δ. However, rδ( f ) < δ does not imply that
all x ∈ A ∪ B are vulnerable to adversarial examples.

We demonstrated our idea in Figure A.1. Denote the dark blue surface in Figure A.1 byMr2 := {x :
d2(x,M) = r2}. Observe that r2 is of the same magnitude as the “curvature” ofM, we can find a
x0 ∈ A ∪ B such that d2(x,Mr2 ) = r3 > δ, i.e., x0 is not vulnerable to adversarial examples. Note that
all of such x0 together form the non-adversarial region in Dong et al. [2]. ▲

Example 4.11 shows that the existence of the adversarial examples of f = fb · ϕoff depends on the
“curvature” ofM, which seems to be a rather agnostic result. However, we can quantify the “curvature”
ofM by the following lemma.

Lemma 4.12 (Bredon [40]). LetM ⊂ Rd be a compact smooth manifold, then there is a ∆ > 0 such
that N∆M is a tubular neighborhood ofM.

Lemma 4.12 can be viewed as a variant of the tubular neighborhood theorem (cf. Bredon [40]). The
constant ∆ is decided by M and can be used to evaluate the “curvature” of M in Example 4.11.
More specifically, the following proposition provides a sufficient condition for the existence of the
off-manifold adversarial examples.

Theorem 4.13. Given perturbation radius δ ∈ (0, λ] and target model ft = f ∗b · ϕoff(·; r,M). Let ∆ be
the constant specified in Lemma 4.12. Then, for ∀x ∈ A ∪ B, the off-manifold adversarial example of
ft at x exists if r < ∆.

Theorem 4.13 establishes a quantitative relationship between the existence of off-manifold examples
and the “curvature” of the manifold.
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5 Discussion

5.1 Approximation with ReLU Networks

In applications, the target and source models of TBAs are mostly neural networks, e.g., ReLU
networks. In this subsection, we use ReLU networks (cf. Definition 5.1) to approximate the classifiers
f ∈ FM. Moreover, we recover some of the results in Section 4 based on the approximated classifier.

We start by introducing the family of ReLU networks. Denote the rectified linear unit (ReLU) by
ρ(x) := max{x, 0}, where 0 is the zero vector in Rd and max{·, ·} takes the entry-wise maximum of x
and 0. The family of deep ReLU networks defined as follows.
Definition 5.1 (Deep ReLU networks). For any bias vector b = (b1, · · · , bL) and sequence of weight
matrices W = (W1, · · · ,WL), we call function f̃ : Rd → R a (deep) ReLU networks parametrized by
b and W if

f̃ (x) = bL +WLρ(bL−1 +WL−1ρ(· · · ρ(b1 +W1x) · · · ))) (10)
for ∀x ∈ Rd. Let Wi be a matrix with mi rows and ni columns. We have n1 = d, mL = 1, and mi = ni+1
(1 ≤ i ≤ L − 1).

The non-constant entries in b and W are called the parameters of f̃ . We say that a function is induced
by ReLU networks if it can be expressed by the linear combination of finite many ReLU networks.

It has been proven [14, 41–43] that ReLU networks can approximate (w.r.t. the sup-norm) continuous
functions with a bounded domain to any precision. Here, we denote the sup-norm of a function
f : S ⊂ Rd → R by ∥ f ∥∞ := supx∈S | f (x)|. Specifically, we have:
Lemma 5.2 (Li et al. [14]). Given l-Lipschitz function f : [0, 1]d → [−1, 1] and precision ϵ > 0,
there is a ReLU network f̃ with O((l/ϵ)d) · O(d2 + d log(1/ϵ)) parameters that satisfies ∥ f − f̃ ∥∞ ≤ ϵ.

Lemma 5.2 provides a useful tool to approximate the Lipschitz functions from [0, 1]d to [−1, 1]. It is
straightforward to check the Lipschitzness of f ∈ FM. As a result, given ϵ > 0 and f ∈ FM, we can
find an ReLU network f̃ such that ∥ f − f̃ ∥∞ < ϵ. Unfortunately, f̃ can no longer be decomposed into
the product of fb and ϕ, which invalidates most of the results in Section 4. We have to make a detour
to approximate f ∈ FM. As a first step, we approximate fb and ϕ by f̃b and ϕ̃, respectively.
Corollary 5.3. Let fb be a semantic classifier with semantic information A f and B f that satisfy a
2λ-separated property. Given ϵ > 0, there is a ReLU network f̃b with O((1/λϵ)d) · O(d2 + d log(1/ϵ))
parameters such that ∥ fb − f̃b∥∞ ≤ ϵ.
Corollary 5.4. Given ϵ > 0, r > 0 and S ⊂ [0, 1]d, there is a ReLU network ϕ̃ with O((1/rϵ)d) ·
O(d2 + d log(1/ϵ)) parameters that can approximate ϕ(·; r, S ) to precision ϵ.

Corollaries 5.3 and 5.4 approximate fb and ϕ with ReLU networks. It remains to approximate the
product of two ReLU networks using the following lemma.
Lemma 5.5 (Yarotsky [41]). There is a function ×̃ : [−1, 1]2 → [−1, 1] induced by ReLU network
with O(log2(ϵ−1)) parameters such that ×̃(x, y) = 0 if xy = 0, and

sup
x,y∈[0,1]

|×̃(x, y) − xy| ≤ ϵ. (11)

The above lemma constructs a ReLU network that efficiently approximates the multiplying operator
in R2. The following proposition shows that we can approximate f ∈ FM with ReLU networks to
any precision.
Proposition 5.6. Given ϵ, λ, δ, r > 0, for any f ∈ FM, there is a ReLU network f̃ with

O(max{
1
λϵ
,

1
rϵ
}d) · O(d2 + d log(

1
ϵ

)) + O(log2(
1
ϵ

)) (12)

parameters that satisfies ∥ f − f̃ ∥∞ ≤ ϵ.

The following theorem partially recovers the results in Theorem 4.8 with ReLU networks.
Theorem 5.7. Consider TBAs with perturbation radius δ ∈ (0, λ/2], target model ft = f ∗b · ϕoff and
source model fs = fb · ϕoff , fb ∈ Fb. Denote the semantic information of fb by A f and B f . Given
ϵ ≤ 0.1, let f̃t and f̃s be ReLU networks that satisfy

∥ f̃t − ft∥∞ ≤ ϵ, ∥ f̃s − fs∥∞ ≤ ϵ. (13)
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Then, for ∀x ∈ (A ∪ B) ∩ (A f ∪ B f ), the adversarial examples xa (if exist) of f̃s satisfies

f̃t(x) · f̃t(xa) ≤ 2ϵ(1 + ϵ)2 + 2ϵ2. (14)

Notice that Equation (14) does not imply that the adversarial examples are transferable. Instead, it
can only reduce the confidence in the decision made by f̃t. The results in Theorem 4.8 cannot be fully
recovered. When f is close to zero, whether the approximated ReLU network f̃ is greater or less
than zero is hard to decide.

The following theorem recovers Proposition 4.9 after modifying some parameters.
Theorem 5.8. Consider TBAs with perturbation radius δ ∈ (0, λ/2], target model ft = f ∗b · ϕoff and
source model fs = fb · ϕoff , fb ∈ Fb. Denote the semantic information of fb by A f and B f . Given
ϵ ≤ 0.1, let f̃t and f̃s be ReLU networks that satisfy Equation (13). Then, for ∀x ∈ A ∪ B, we have

1. if B(x, δ) ∩M ⊂ S crt ∪ S wrg, then f̃t and f̃s are both robust against adversarial examples;

2. if B(x, δ) ∩M ⊂ A ∪ B and x ∈ A f ∪ B f , then the adversarial examples of f̃s at x (if exists)
cannot transfer to f̃t.

By approximating the classifiers in FM, we build a bridge between the less-developed theory behind
TBAs and the huge amount of theoretical works analyzing ReLU networks.

5.2 The Expressiveness of the Manifold Attack Model

In learning theory, the expressive power of a hypothesis class F evaluates the performance of f ∈ F
in fitting natural data; see [44] for a comprehensive overview. Previous works have tried to explain
the transferability based on less expressive hypothesis classes, e.g., linear classifiers [32] and the
linear combination of “features” [17]. In this subsection, we study the expressive power of our model.

The main goal of TBAs is not to fit the natural data. Instead, for any well-trained classifier f ∗ :
[0, 1]d → {−1, 1}, i.e., Rstd( f ∗) = 0, the goal of our model is to find f ∈ FM such that the adversarial
examples of f fits those of f ∗. More specifically, we have
Proposition 5.9. For any classifier f ∗ with Rstd( f ∗) = 0 and perturbation radius δ ∈ (rδ( f ∗), λ), there
is f ∈ FM such that 1) Rstd( f ) = Rstd( f ∗), and 2) for ∀x ∈ A ∪ B, if xa is an adversarial example of
f ∗ at x, then exists x′a ∈ B(xa, rδ( f ∗)/4) such that x′a is an adversarial example of f .

The above proposition implies that our proposed model can cover a wide range of classifiers and is
thus sufficient for the study of TBAs on manifolds.

6 Conclusion

This paper explains the properties of TBAs under a unified theoretical framework. We suggest that
off-manifold adversarial examples play a major role in TBAs. In particular, we show that off-manifold
adversarial examples are transferable when the source model is inaccurate. We also prove that the
non-existence of off-manifold adversarial examples is one of the reasons why the success rates of
TBAs are hard to improve.
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A Further Discussions

The following remark provides an example of the semantic information of a dataset.
Remark A.1 (The semantic information of CIFAR-10). Generally speaking, "semantic" refers to
the relationship between natural data and their true label, which should be consistent with human
recognition. For example, the semantic information contained in the CIFAR-10 dataset is the true
labels (e.g., airplane, automobile, and bird) and their corresponding natural images (e.g., images of
airliners, SUVs, and chickens). In this example, an image cannot simultaneously include an airplane
and an automobile since "the classes are completely mutually exclusive" in the CIFAR-10 dataset (cf.
the official website of CIFAR-10.) ▲

It is also easy to check that the semantic information provided by CIFAR-10 is separated.

A.1 Visualization of the Non-Adversarial Region

We provide a visualization of Example 4.11 in Figure A.1.

r1

r2

M

Ax0

r3

Figure A.1: A visualization of Example 4.11. The data manifoldM is represented by the grid surface.
Let the surface in light blue (or dark blue) be the contour surface that ϕ1 = 0 (or ϕ2 = 0). The distance
between x0 and the dark blue surface is r3, which is greater than δ and r2. In this visualized example,
x0 is robust against off-manifold adversarial examples.

A.2 The Applicability of the Manifold Attack Model

Recall that Assumption 3 asserts that the classifiers f ∈ F can be decomposed into the product of
a semantic classifier fb and a concentration multiplier ϕ. In this section, we empirically certify the
following weaker version of Assumption 3.

Assumption 4 (Manifold attack model, weaker version). Let f be the source or target model of a
TBA. LetM1 be a compact smooth manifold that is not necessarily a subset ofM. Let N∆1M1 be a
tubular neighborhood ofM1 for some ∆1 > 0. We assume that for ∀x ∈ M1 and for any non-zero
u ∈ NxM1, we have f (x + r1u) > f (x + r2u) holds for ∀δ1 > r2 > r1 > 0.

By letting G =M1 in Definition 4.2, the classifier in Assumption 3 would also satisfy Assumption 4.
In this sense, we claim that Assumption 4 is a weaker version of Assumption 3. Next, we validate
Assumption 4 on low-dimensional linearly separated data defined as follows. Given d > κ > 0,
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consider the κ-dimensional manifold (in this case, a flat plane)

M = {(x1, x2, · · · , xk, 0, · · · , 0) : xi ∈ R,∀i = 1, 2, · · · , κ} ⊂ Rd. (A.15)

Assume that the natural data x ∈ M is drawn from some continuous distribution D(x), say a mixture
of Gaussian distribution. For the sake of simplicity, let the natural data be linearly separable in the
following sense. Given λ > 0 and natural data x = (x1, · · · , xd), we assume that |x1| > λ, and the
label of x is decided by y(x) = 1 if x1 > λ, and y(x) = −1 if x1 < −λ.

In order to test Assumption 4, our goal is to train a classifier that satisfies this assumption. The
training setting is stated as follows. Given N > 0, let the training set S N = {x1, x2, · · · , xN} ∼ DN(x)
be independent and identically distributed (i.i.d.) random variables. For ∀1 ≤ n ≤ N, denote the label
of xn by yN . Since D is continuous, we assume WLOG that

(∃a ∈ R s.t. xi = ax j) =⇒ i = j (A.16)

holds for ∀1 ≤ i, j ≤ N. The hypothesis class is defined as Fw := { fw : w ∈ Rd}, where

fw = ⟨w,
x
∥x∥2
⟩ (A.17)

for ∀x ∈ Rd. Consider the logistic loss function l(u) := log(1 + exp(−u)),∀u ∈ R, and the gradient
descent (GD) iteration

w(t + 1) = w(t) − η∇wLN(w(t)). (A.18)

We can show (both empirically and theoretically) that:

• The GD iteration converges to an accurate classifier f̂ ,

• ∃M1 such that f̂ satisfies Assumption 4,

which implies that we can actually train an accurate classifier (instead of constructing one using
oracle information) that satisfies our assumption. The following section briefly introduces the setting
and results of the experiment. The theoretical analysis is omitted.

A.2.1 Numerical Experiments

In order to visualize our results, the manifoldM is set to be a 2-dimensional plane embedded in R3.
The distribution D is a mixture of two Gaussian distributions with means (2, 2, 0) and (−2,−2, 0), and
covariance σ = 0.5. The optimizer is stochastic gradient descent (SGD). We train a two-layer network,
denoted by f̂ , that reaches 100% testing accuracy. We check whether f̂ satisfies Assumption 4. The
experimental results are demonstrated in Figure A.2.

Hardware Specification and Environment Our experiments are conducted on an Ubuntu 64-bit
Linux workstation, having a 10-core Intel Xeon Silver CPU (2.20 GHz) and 4 Nvidia GeForce RTX
2080 Ti GPUs with 11GB graphics memory.

B Complete Proofs

Proposition 4.4 (semantic classifier, binary case). Given 2λ-separated sets A f , B f ⊂ M. Define:

fb(x) = fb(x; A f , B f ) :=
dp(x, B f ) − dp(x, A f )
dp(x, B f ) + dp(x, A f )

. (B.19)

Then, fb is a semantic classifier. In particular, we can obtain from Equation (4) that fb(x) > 0 if x is
closer (w.r.t. dp) to A f than B f and fb(x) < 0 otherwise.

Proof of Proposition 4.4. It is easy to check that fb(x) = 1 when x ∈ A f and fb(x) = −1 when x ∈ B f .
By definition, we know that fb is a semantic classifier. □

Proposition 4.5. Take A f = A and B f = B in Equation (4) and denote the corresponding classifier
by f ∗b . Then, for any given λ ≥ δ > 0, we have Rstd( f ∗b ) = Radv( f ∗b , δ) = 0.
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Figure A.2: The experimental results can be interpreted as follows. Denote the vectors x ∈ R3 by
x = (x, y, z). The bottom plane is the manifold, i.e., the (x, y)-plane. For each sub-figure, we consider
the score of f̂ at (x, y, z) for a specific z chosen from {0, 3, 5, 7}. The height of the surface is the
score of f̂ . Obviously, the score of f̂ decreases as z goes larger, which is in accord with the claim in
Assumption 4.

Proof of Proposition 4.5. By Equation (4), we have

f ∗b (x) =
dp(x, B) − dp(x, A)
dp(x, B) + dp(x, A)

, ∀x ∈ Rd. (B.20)

Clearly, we have f ∗b (x) = 1 when x ∈ A and f ∗b (x) = −1 when x ∈ B. Then, the standard risk of f ∗b
w.r.t. D(x) is

Rstd( f ∗b ) = PD

[
f ∗b (x)y < 0 | x ∈ A

]
+ PD

[
f ∗b (x)y < 0 | x ∈ B

]
= 0 (B.21)

Recall that A and B are 2λ-separated (cf. Assumption 2). For ∀x ∈ A and x′ ∈ B(x, δ), we have
dp(x, B) > δ, which implies that dp(x′, B) − dp(x′, A) > 0, and thus f ∗b (x′) f ∗b (x) = f ∗b (x′) > 0. For
∀x ∈ B, a similar deduction shows that f ∗b (x′) f ∗b (x) > 0 holds for ∀x′ ∈ B(x, δ). Together, we have

Radv( f ∗b , δ) :=P
[
∃x′ ∈ B(x; δ) s.t. f ∗b (x′) f ∗b (x) < 0 | x ∈ A

]
+ P

[
∃x′ ∈ B(x; δ) s.t. f ∗b (x′) f ∗b (x) < 0 | x ∈ B

]
= 0,

(B.22)

which completes the proof. □

Remark B.1. The construction of Equation (B.20) can be found in previous works [14, 45]. In
particular, Li et al. [14] uses the ReLU-approximation of f ∗b to study the robust generalization of deep
neural networks.

Proposition 4.6 (Concentration multiplier, binary case). For any given r > 0 and G ⊂ Rd, denote

ϕ(x) = ϕ(x; r,G) :=
r − dp(x,G)
r + dp(x,G)

, ∀x ∈ Rd. (B.23)

Then ϕ(x) is a concentration multiplier around G.

Proof of Proposition 4.6. For ∀x ∈ G, we have dp(x,G) = 0. That is, ϕ(x) = 1 for ∀x ∈ G. For
∀x1, x2 s.t. dp(x1,G) > dp(x2,G), it is easy to check that ϕ(x1) < ϕ(x2). □
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Proposition 4.7. Let f = fb · ϕ. Given Radv( f ; δ) , 0, we can obtain (w.p. 1) that

1. f suffers from off-manifold adversarial examples.

2. if fb captures the semantic information of the natural data (i.e., A ⊂ A f and B ⊂ B f ), then f
is robust against on-manifold adversarial examples.

Proof of Proposition 4.7. We first prove the first result. By definition, there are r > 0 and G ⊂ Rd

such that

f (x) =
dp(x, B f ) − dp(x, A f )
dp(x, B f ) + dp(x, A f )

·
r − dp(x,G)
r + dp(x,G)

. (B.24)

Given Radv( f ; δ) , 0, there is natural data x ∈ supp(D) and x0 ∈ B(x, δ) such that f (x) f (x0) < 0. If
x0 ∈ M

c, there is nothing to prove.

Otherwise, we have x0 ∈ M. Denote

r0 :=
1
2

min{|dp(x0, A f ) − dp(x0, B f )|, |r − dp(x0,G)|, |δ − dp(x, x0)|}. (B.25)

Consider the non-empty set
B(x, δ) ∩ B(x0, r0) ∩Mc.

For ∀x′0 ∈ B(x0, r0), there is

dp(x, x′0) ≤ dp(x, x0) + dp(x0, x′0) < δ. (B.26)

It is also easy to check that(
dp(x0, B f ) − dp(x0, A f )

)
·
(
dp(x′0, B f ) − dp(x′0, A f )

)
> 0,(

r − dp(x0,G)
)
·
(
r − dp(x′0,G))

)
> 0,

(B.27)

which implies that f (x) f (x′0) < 0 and x′0 is an off-manifold adversarial example.

As for the second result, since A ⊂ A f , B ⊂ B f , and A f ∪ B f ⊂ G, we have

r − dp(u,G)
r + dp(u,G)

= 1, where u ∈ {x, x′} (B.28)

for ∀x ∈ A ∪ B and x′ ∈ B(x, δ) ∩M. We can easily obtain that fb(x) = fb(x′), which implies that f
has no on-manifold adversarial examples. □

Theorem 4.8. Consider TBAs with perturbation radius δ ∈ (0, λ], target model ft = f ∗b · ϕoff and
source model fs = fb · ϕoff , fb ∈ Fb. Denote the semantic information of fb by A f and B f . Then, for
∀x ∈ A ∪ B, all adversarial examples (if exist) of fs at x are transferable if x ∈ A f ∪ B f .

Proof of Theorem 4.8. If fs is robust against adversarial examples, then there is nothing to prove.
Otherwise, consider x ∈ A f ∩ A WLOG. By Equation (6), denote

fs(x) = fb(x) · ϕoff(x) =
dp(x, B f ) − dp(x, A f )
dp(x, B f ) + dp(x, A f )

·
αδ − dp(x,M)
αδ + dp(x,M)

. (B.29)

We can find an adversarial example of fs at x. Denote this adversarial example by xa, and we have
fs(xa) < 0. It is not hard to verify that dp(xa, B f ) − dp(xa, A f ) > 0 since δ < λ, which implies that
fb(xa) > 0. It is easy to obtain that fs(xa) < 0 and ϕoff(xa) < 0. We thus have αδ < dp(xa,M), which
implies that xa is off the manifold and the distance between xa andM is greater than αδ. In particular,
we have

ϕoff(x)ϕoff(xa) < 0, (B.30)
which is independent of the choice of fb. Now consider ft(x) and ft(xa), where

ft(x) = f ∗b (x) · ϕoff(x) =
dp(x, B) − dp(x, A)
dp(x, B) + dp(x, A)

·
αδ − dp(x,M)
αδ + dp(x,M)

. (B.31)

No matter x ∈ A or x ∈ B, we have for ∀x′ ∈ B(x, δ), there is f ∗b (x) = f ∗b (x′) (by the 2λ-separated
property of A and B). By Equation (B.30), we have

ft(x) ft(xa) = f ∗b (x) f ∗b (xa) · ϕoff(x)ϕoff(xa) < 0, (B.32)

i.e., xa transfers to ft, which completes the proof. □
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Proposition 4.9. Consider TBA with perturbation radius δ ∈ (0, λ], target model ft = f ∗b · ϕon(·, f ∗b )
and source model fs = fb · ϕon(·, fb), fb ∈ Fb. Denote

S crt := (A ∩ A f ) ∪ (B ∩ B f ), S wrg := (A ∩ B f ) ∪ (B ∩ A f ). (B.33)

Then, for ∀x ∈ A ∪ B, we have

1. if B(x, δ) ∩M ⊂ S crt ∪ S wrg, then ft and fs are both robust against adversarial examples;

2. if B(x, δ) ∩M ⊂ A ∪ B and x ∈ A f ∪ B f , then the adversarial examples of fs at x (if exists)
cannot transfer to ft.

Proof of Proposition 4.9. For the first results, it is easy to check that ϕon(x) = 1 and ϕon(xa) = 1 for
∀xa ∈ B(x, δ), which implies that f is robust against adversarial examples. It remains to prove the
second result. By Equation (7), denote

fs(x) = fb(x) · ϕon(x; fb) =
d2(x, B f ) − d2(x, A f )
d2(x, B f ) + d2(x, A f )

·
αδ − d2(x,Nδ(A f ∪ B f ))
αδ + d2(x,Nδ(A f ∪ B f ))

. (B.34)

For ∀x ∈ A ∪ B such that B(x, δ) ∩M ⊂ A ∪ B and x ∈ A f ∪ B f , denote the unspecific adversarial
example (if exist) of fs at x by xa. Assume that x ∈ A ∩ B f WLOG. By definition, we have

f ∗b (x) = ft(x) > 0, fb(x) = fs(x) < 0. (B.35)

By the 2λ-separated assumption of A f and B f , we have

fb(xa) < 0. (B.36)

From fs(x) fs(xa) < 0, we can obtain that ϕon(x; fb)ϕon(xa; fb) < 0. Since x ∈ B f , we have

d2(x,Nδ(A f ∪ B f )) = 0, (B.37)

i.e., ϕon(x; fb) = 1. Combine this with ϕon(x; fb)ϕon(xa; fb) < 0, we have ϕon(xa; fb) < 0, i.e.,

αδ < d2(xa,Nδ(A f ∪ B f )) < d2(xa, x) ≤ δ. (B.38)

It remains to show that ft(xa) > 0. By Equation (7), denote

ft(x) = f ∗b (x) · ϕon(x; f ∗b ) =
d2(x, B) − d2(x, A)
d2(x, B) + d2(x, A)

·
αδ − d2(x,Nδ(A ∪ B))
αδ + d2(x,Nδ(A ∪ B))

. (B.39)

By x ∈ A and the 2λ-separated assumption of A and B, we have f ∗b (xa) > 0. By B(x, δ) ∩M ⊂ A, we
have xa ∈ Nδ(A ∪ B)), i.e., ϕon(xa; f ∗b ) > 0. Together, we have ft(xa) = f ∗b (xa) · ϕon(xa; f ∗b ) > 0. That
is, xa is not an adversarial example of ft, which completes the proof. □

Theorem 4.13. Given perturbation radius δ ∈ (0, λ] and target model ft = f ∗b · ϕoff(·; r,M). Let ∆ be
the constant specified in Lemma 4.12. Then, for ∀x ∈ A ∪ B, the off-manifold adversarial example of
ft at x exists if r < ∆.

Proof of Theorem 4.13. For ∀x ∈ A ∪ B, let u ∈ Nx(M) be the normal direction at x with ∥u∥2 = 1.
Since r < ∆, we can find r0 > r such that r0 < ∆ and r0 < δ. Denote

xa := x + r0u. (B.40)

Clearly, we have xa ∈ B(x, δ). Since N∆(M) is a tubular neighborhood ofM, we have

d2(xa,M) = r0 > r, (B.41)

which implies that xa is an off-manifold adversarial example of ft at x. Notice that Equation (B.41)
not necessarily holds when r0 > ∆. □

Corollary 5.3. Let fb be a semantic classifier with semantic information A f and B f that satisfy a
2λ-separated property. Given ϵ > 0, there is a ReLU network f̃ with O((1/λϵ)d) · O(d2 + d log(1/ϵ))
parameters such that ∥ f − f̃ ∥∞ ≤ ϵ.
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Proof of Corollary 5.3. According to Lemma 5.2, our goal is to upper bound the Lipschitz constant l
of fb. By definition, it suffices to upper bound the supremum of

s :=
| fb(x1; A f , B f ) − fb(x2; A f , B f )|

dp(x1, x2)

=
1

dp(x1, x2)
·

∣∣∣∣∣∣ dp(x1, A f )
dp(x1, A f ) + dp(x1, B f )

−
dp(x2, A f )

dp(x2, A f ) + dp(x2, B f )

∣∣∣∣∣∣.
(B.42)

We only need to consider three cases:

1. both of x1, x2 ∈ A f ∪ B f , or

2. both of x1, x2 ∈ (A f ∪ B f )c, and

3. either x1 or x2 is in A f ∪ B f .

When x1, x2 ∈ A f ∪ B f , a trivial verification shows that s ≤ 1
λ
. We now turn to the second case. By

symmetry, let
dp(x1, A f )

dp(x1, A f ) + dp(x1, B f )
−

dp(x2, A f )
dp(x2, A f ) + dp(x2, B f )

> 0. (B.43)

By simplifying Equation (B.42), we can obtain that

| fb(x1; A f , B f ) − fb(x2; A f , B f )|
dp(x1, x2)

=
1

dp(x1, x2)
·

(
dp(x1, A f )

dp(x1, A f ) + dp(x1, B f )
−

dp(x2, A f )
dp(x2, A f ) + dp(x2, B f )

)
≤

1
2λ
·

(
dp(x1, A f ) − dp(x2, A f )

dp(x1, x2)
·

dp(x2, B f )
dp(x2, A f ) + dp(x2, B f )

+
dp(x1, B f ) − dp(x2, B f )

dp(x1, x2)
·

dp(x2, A f )
dp(x2, A f ) + dp(x2, B f )

)
≤

1
2λ
· (1 · 1 + 1 · 1) =

1
λ
,

(B.44)

which implies that s ≤ 1
λ

in this case. Finally, we consider the third case. We assume WLOG that
x1 ∈ A f and x2 ∈ (A f ∪ B f )c. Substitute into Equation (B.42), we have

s =
1

dp(x1, x2)
·

∣∣∣∣∣∣ dp(x1, A f )
dp(x1, A f ) + dp(x1, B f )

−
dp(x2, A f )

dp(x2, A f ) + dp(x2, B f )

∣∣∣∣∣∣
=

1
dp(x1, x2)

·
dp(x2, A f )

dp(x2, A f ) + dp(x2, B f )
≤

1
2λ

(B.45)

To sum up above, we have supx1,x2
s = 1

λ
, which implies that fb is 1

λ
-Lipschitz continuous, as is

required. □

Corollary 5.3. Given ϵ > 0, r > 0 and S ⊂ [0, 1]d, there is a ReLU network ϕ̃ with O((1/rϵ)d) ·
O(d2 + d log(1/ϵ)) parameters that can approximate ϕ(·; r, S ) to precision ϵ.

Proof of Corollary 5.3. We prove this corollary in a similar manner as Corollary 5.3, i.e., we upper
bound the supremum of

s :=
|ϕ(x1; r, S ) − ϕ(x2; r, S )|

dp(x1, x2)
=

1
dp(x1, x2)

·

∣∣∣∣∣∣ dp(x1, S )
r + dp(x1, S )

−
dp(x2, S )

r + dp(x2, S )

∣∣∣∣∣∣
=

r
dp(x1, x2)

·

∣∣∣∣∣∣ 1
r + dp(x1, S )

−
1

r + dp(x2, S )

∣∣∣∣∣∣.
(B.46)

We also consider three cases in this proof:

1. both of x1, x2 ∈ S , or

18



2. both of x1, x2 ∈ S c, and

3. either x1 or x2 is in S .

In case 1, we see at once that s = 0. When both of x1, x2 ∈ S c, we assume WLOG that dp(x1, S ) >
dp(x2, S ). By Equation (B.46), we have

s =
dp(x1, S ) − dp(x2, S )

dp(x1, x2)
·

r
(r + dp(x1, S ))(r + dp(x2, S ))

≤
1
r
. (B.47)

Analysis similar to Equation (B.47) shows that

s =
r

dp(x1, x2)
·

(
1
r
−

1
r + dp(x2, S )

)
≤

1
r
. (B.48)

To sum up above, we have supx1,x2
s = 1

λ
, which implies that ϕ is 1

r -Lipschitz continuous, as is
required. □

Proposition 5.6. Given ϵ, λ, δ, r > 0, for any f ∈ FM, there is a ReLU network f̃ with

O(max{
1
λϵ
,

2
rϵ
}d) · O(d2 + d log(

1
ϵ

)) + O(log2(
1
ϵ

)) (B.49)

parameters that satisfies ∥ f − f̃ ∥∞ ≤ ϵ.

Proof of Proposition 5.6. This proposition can be derived directly from Lemma 5.5, Corollary 5.3,
and Corollary 5.4. □

Theorem 5.7. Consider TBAs with perturbation radius δ ∈ (0, λ/2], target model ft = f ∗b · ϕoff and
source model fs = fb · ϕoff , fb ∈ Fb. Denote the semantic information of fb by A f and B f . Given
ϵ ≤ 0.1, let f̃t and f̃s be ReLU networks that satisfy

∥ f̃t − ft∥∞ ≤ ϵ, ∥ f̃s − fs∥∞ ≤ ϵ (B.50)

Then, for ∀x ∈ (A ∪ B) ∩ (A f ∪ B f ), the adversarial examples xa (if exist) of f̃s satisfies

f̃t(x) · f̃t(xa) ≤ 2ϵ(1 + ϵ)2 + 2ϵ2. (B.51)

Proof of Theorem 5.7. Consider x ∈ A f WLOG. If fs is robust against adversarial examples at
x ∈ B(x, δ) ∩M ⊂ A f , then there is nothing to prove. If not, denote the adversarial example of fs at x
by xa. Since x ∈ A f ⊂ M, there is

f̃s(x) ≥ f̃b(x) · ϕ̃off(x) − ϵ ≥ (1 − ϵ)2 − ϵ > 0 (B.52)

and we thus have f̃s(xa) < 0. By xa ∈ B(x; δ) and the assumption δ < λ2 , we have

f̃b(xa) = 1 −
2dp(xa, A f )

dp(xa, B f ) + dp(xa, A f )
≥ 1 −

2δ
2λ
≥

1
2
. (B.53)

To obtain ×̃( f̃b, ϕ̃off)(xa) < 0, there must be f̃b(xa) · ϕ̃off(xa) < ϵ, which implies that

ϕ̃off(xa) < 2ϵ. (B.54)

Now consider f̃t(x) and f̃t(xa). By definition, we have f̃ ∗b (x) ∈ [1 − ϵ, 1 + ϵ], ϕ̃off(x) ∈ [1 − ϵ, 1 + ϵ],
and thus

f̃t(x) = ×̃( f̃ ∗b , ϕ̃off)(x) ≤ (1 + ϵ)2 + ϵ. (B.55)
Similar to Equation (B.53), there is

f̃ ∗b (xa) = 1 −
2dp(xa, A)

dp(xa, B) + dp(xa, A)
≤ 1 (B.56)

Combining Equations (B.54) to (B.56) together, we have

f̃t(x) · f̃t(xa) ≤ 2ϵ(1 + ϵ)2 + 2ϵ2. (B.57)

as is required. □
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Theorem 5.8. Consider TBAs with perturbation radius δ ∈ (0, λ/2], target model ft = f ∗b · ϕoff and
source model fs = fb · ϕoff , fb ∈ Fb. Denote the semantic information of fb by A f and B f . Given
ϵ ≤ 0.1, let f̃t and f̃s be ReLU networks that satisfy Equation (13). Then, for ∀x ∈ A ∪ B, we have

1. if B(x, δ) ∩M ⊂ S crt ∪ S wrg, then f̃t and f̃s are both robust against adversarial examples;

2. if B(x, δ) ∩M ⊂ A ∪ B and x ∈ A f ∪ B f , then the adversarial examples of f̃s at x (if exists)
cannot transfer to f̃t.

Proof of Theorem 5.8. The proof of the first result is also straightforward, which is omitted here. It
remains to prove the second result. By Equation (7), denote

fs(x) = fb(x) · ϕon(x; fb) =
d2(x, B f ) − d2(x, A f )
d2(x, B f ) + d2(x, A f )

·
αδ − d2(x,Nδ(A f ∪ B f ))
αδ + d2(x,Nδ(A f ∪ B f ))

. (B.58)

For ∀x ∈ A ∪ B such that B(x, δ) ∩M ⊂ A ∪ B and x ∈ A f ∪ B f , denote the unspecific adversarial
example (if exist) of fs at x by xa. Assume that x ∈ A ∩ A f WLOG. By definition, we have

f̃b(x) ∈ [1 − ϵ, 1 + ϵ]. (B.59)

By the 2λ-separated assumption of A f and B f , we have and

f̃b(xa) ∈ [1 − ϵ, 1 + ϵ]. (B.60)

Since x ∈ A f ∪ B f , we have x ∈ Nδ(A f ∪ B f ) and

ϕ̃on(x; fb) ∈ [1 − ϵ, 1 + ϵ], (B.61)

which implies that
f̃s(x) = ×̃( f̃b, ϕ̃on(·; fb))(x) ≥ (1 − ϵ)2 − ϵ > 0. (B.62)

From f̃s(x) f̃s(xa) < 0, we can obtain that f̃s(xa) < 0, which implies that

ϕ̃on(xa; fb) · f̃b(x) < ϵ, (B.63)

which implies that

ϕ̃on(xa; fb) <
ϵ

1 − ϵ
< 2ϵ. (B.64)

By definition, we have

f̃t(x) = ×̃( f̃ ∗b , ϕ̃on(·; f ∗b ))(x) ≥ (1 − ϵ)2 − ϵ > 0. (B.65)

By x ∈ A and the 2λ-separated assumption of A and B, we have

f̃ ∗b (xa) = 1 −
2dp(xa, A)

dp(xa, B) + dp(xa, A)
≥ 1 −

2δ
2λ
≥

1
2
. (B.66)

By B(x, δ) ∩M ⊂ A, we have xa ∈ Nδ(A ∪ B)), i.e.,

ϕon(xa; f ∗b ) ∈ [1 − ϵ, 1 + ϵ] (B.67)

Together, we have

f̃t(xa) = ×̃( f̃ ∗b , ϕ̃on(·; f ∗b ))(xa) ≥
1 − ϵ

2
> 0, (B.68)

which completes the proof. □

Proposition 5.9. For any classifier f ∗ with Rstd( f ∗) = 0 and perturbation radius δ ∈ (rδ( f ∗), λ), there
is f ∈ FM such that

1. Rstd( f ) = Rstd( f ∗), and

2. for ∀x ∈ A ∪ B, if xa is an adversarial example of f ∗ at x, then exists x′a ∈ B(xa, rδ( f ∗)/4)
such that x′a is an adversarial example of f .
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Proof of Proposition 5.9. Define the following set

S a := {x ∈ [0, 1]d ∩ (A ∪ B)c : ∃x′ ∈ A ∪ B s.t. x′ ∈ B(x; δ), f ∗(x) f ∗(x′) < 0}, (B.69)

and let

G =

⋃
x∈S a

B(x, rδ( f ∗)/2)

c

. (B.70)

By definition, A ∪ B ∈ G. Consider

f (x) = f ∗b (x) · ϕ(x; rδ( f ∗)/4,G). (B.71)

Since A ∪ B ∈ G, we have Rstd( f ) = Rstd( f ∗b ) = 0 = Rstd( f )∗. For ∀x ∈ A ∪ B, if xa is an adversarial
example of f ∗ at x, then

rδ( f ∗)
4
≤ dp(xa,G) ≤

rδ( f ∗)
2
, (B.72)

which implies that exists x′a ∈ B(xa, rδ( f ∗)/4) such that x′a is an adversarial example of f . □
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