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Abstract

We propose a novel neural network-based approach to modeling protein dynamics
using an implicit representation of a protein’s surface in 3D and time. Our method
utilizes the zero-level set of signed distance functions (SDFs) to represent protein
surfaces, enabling temporally and spatially continuous representations of protein
dynamics. Our experimental results demonstrate that our model accurately captures
protein dynamic trajectories and can interpolate and extrapolate in 3D and time.
Importantly, this is the first study to introduce this method and successfully model
large-scale protein dynamics. This approach offers a promising alternative to
current methods, overcoming the limitations of first-principles-based and deep
learning methods, and provides a more scalable and efficient approach to modeling
protein dynamics. Additionally, our surface representation approach simplifies
calculations and allows identifying movement trends and amplitudes of protein
domains, making it a useful tool for protein dynamics research. Codes are available
at https://github.com/Sundw-818/DSR, and we have a project webpage that shows
some video results, https://sundw-818.github.io/DSR/.

1 Introduction

Proteins, which are made up of chains of amino acids, are essential molecules in living organisms.
Protein with specific three-dimensional structures are responsible for a wide range of biological
processes such as enzymatic reactions, transport of molecules, and structural support. However,
proteins are not static objects in vivo, but constantly in motion, with individual amino acids vibrating,
rotating, and shifting in response to the change of environment. The biological functions of proteins
are fulfilled by their dynamical behaviors, and researchers study the dynamics and functions of
proteins by molecular dynamics(MD) simulations[1, 2].

First-principles molecular dynamics use the forces calculated from the electronic states by solving the
Schrödinger equation (namely, density functional theory) to compute the coordinate trajectories[3],
with programs such as VASP[4] and GPAW[5]. However, the computational expense of MD typically
increases exponentially in relation to the number of electronic degrees of freedom. In order to reduce
the computational cost, empirical force field (classical force field) models with simplified functional
forms are employed in MD simulation, such as AMBER[6, 7], CHARMM[8, 9], and GROMOS[10–
12], which are designed to capture the bonded and non-bonded interactions between atoms. Besides,
machine learning techniques can be employed to fit force fields or potential energy surfaces[13–16].
These force field-based methods are much faster than ab initio methods without exhaustive QM
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calculations. However, the integration time step in MD cannot be too large to resolve the fastest
motion in the system, for example the vibration of hydrogen-involved bonds whose timescales are as
short as a few femtoseconds. This restricts MD from having more speed advantages. To address this
problem, coarse-grained methods are being developed to perform molecular dynamics simulations
faster and on larger systems by eliminating some unimportant degrees of freedom[17–20]. Fast as it is,
coarse-grained simulations are only able to reproduce molecular properties at low resolution, such as
Rg2, sacrificing the all-atom details. Given this perspective, existing molecular dynamics approaches
suffer from either unaffordable computational costs or insufficient precision. Moreover, inherent
limitations such as the considerable random fluctuation of simulated trajectories and the consequential
low signal-to-noise ratio pose significant challenges in detecting crucial protein functional motion.
Even for the current most advanced Anton 3, under the parallel processing of 512 nodes, for a large
system of 1 million atoms, only 100 microseconds of MD simulation can be performed each day[21].

Figure 1: The protein surface representa-
tion. Showing the protein surface (PDB ID:
1PGA) at different time steps in a molecular
dynamics trajectory.

These aforementioned methods give thorough under-
standing of the natures of proteins by modeling pro-
tein molecules as discrete particles. But when study-
ing protein-protein interaction or protein-ligand bind-
ing, knowledge about surfaces of proteins is what re-
searchers need. To fulfill such demands, a continuous,
high-level representation of molecular shape known as
the molecular surface is proposed, as shown in Figure
1.Based on the the concept of "key-lock pairs" empha-
sizing complementarity of molecular surface[22], the
molecular surface models a protein as a continuous
shape with geometric and chemical features. One repre-
sentative method, molecular surface interaction fingerprinting (MaSIF), is a geometric deep learning
method that captures fingerprints important for specific biomolecular interactions, enabling accurate
and efficient analysis of protein-ligand complexes and potential applications in drug discovery and
molecular design[23, 24]. Furthermore, some works investigated the application of end-to-end
learning techniques for the analysis of protein surfaces and the identification of potential functional
sites, such as drug-target binding sites[25].

Previously, surface representation was mainly used for studying inter-molecular interactions or
assisting molecular docking, and it had not been applied to analysing molecular dynamics simulation
data. Inspired by the above works, we propose Dynamical Surface Representation (abbreviated
as DSR), a method for modeling protein dynamics by representing protein surfaces with implicit
neural networks. Implicit neural representations[26, 27] are a class of deep learning models that can
represent complex geometric shapes using a continuous function without requiring an explicit surface
representation. It’s well-suited for modeling the dynamic shapes of proteins which have complex
and varied conformations. Currently, deep learning applications in molecular dynamics (MD) mainly
target small molecules, while our method can be applied to very large proteins.

In this paper, we explore the use of implicit neural representations for modeling the dynamic shapes of
proteins. To be specific, protein surfaces are represented as a zero-level set of signed distance function
(SDF) in DSR. The value of SDF is defined as the minimum distance from a point in Euclidean
space to the surface of the object, where the positive value indicates that the point is outside the
object, otherwise, it is inside. In addition, we introduce a time variable in DSR model to simulate the
change of the protein surface over time, which is the dynamic simulation of the protein. In summary,
we use the idea of implicit neural representation and use the neural network as the implicit neural
representation of points on the 3D and time region, so as to achieve the purpose of modeling protein
dynamic changes in continuous space and time domain.

In summary, our paper’s main contribution is two-fold:

• We build an implicit neural network that learns SDF from raw point cloud data in 3D + time
domain, which is a both temporally and spatially continuous protein dynamic representation.

• We have achieved dynamic modeling of large proteins by using surface representations,
which overcomes the limitations of previous atomic models or coarse-grained models that
were restricted to small molecules or proteins.
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2 DSR

In this section, we present DSR, a dynamical surface representation as implicit neural networks
for protein. We first introduce the definition of SDF, and then describe how we use SDF to model
proteins. The architecture of the whole method is shown in Figure 2.

2.1 SDF Representation

Let Ω = [−1, 1]3 be a spatial domain, τ = [−1, 1] a temporal domain, and Mt be a 3D manifold
embedded in Ω at time t ∈ τ . For any point x = (x, y, z) ∈ Ω at time t, the fMt

: Ω → R is define
as

fMt
(x) =


d(x,Mt) if x outside Mt

0 if x belonging to Mt

−d(x,Mt) if x inside Mt

(1)

where d(x,Mt) := infy∈Mt
d(x, y), d(x, y) = ∥x− y∥2.

The zero-level set, which is the surface of the protein at time t, is presented by the points where
fMt

(·) = 0. That is, the points on the protein surface at time t can be represented as set {x |
fMt

(x) = 0,x ∈ Ω}.

2.2 Modeling Protein Dynamical Surface with SDFs

The protein surface representation is in the form of a 3D shape. In order to utilize the implicit function
form of SDF, a typical approach is to partition the space into a grid, and then compute the SDF value
for each grid point. However, for irregular objects, the accurate SDF values cannot be computed and
thus approximation algorithms, such as the 8SSEDT algorithm, are usually employed. This method is
associated with two limitations: firstly, protein surfaces are often intricate and rugged, and estimation
errors can result in larger biases after modeling; secondly, the SDF calculation for dynamic models
is linearly dependent on time and cubically dependent on resolution, and pre-computed SDFs will
incur high computational costs. Hence, an alternative strategy is used herein, whereby SDF is learned
directly from the raw point clouds, rather than utilizing pre-computed SDF for supervised learning.
This completely circumvents the need for pre-computing SDF, significantly reduces computational
costs, and enhances computational efficiency. In the following, we will elaborate on how to learn
SDF directly from the raw point clouds.

For a given input point cloud X = {xi}i∈I ⊂ R3 at time t,with point normal vector data (optional),
N = {ni}i∈I ⊂ R3, our objective is to find the optimal parameters θ of an MLP f(x, t; θ), where
f : R4+dz → R, that can accurately estimate a signed distance function to a surface Mt defined by
the point cloud X and normals N at time t.

The form of our loss function is as follows:

ℓ(θ) = ℓX (θ) + λEx (∥∇xf(x, t; θ)∥ − 1)
2
+ α ∥z∥ (2)

where λ > 0 is a parameter, ∥ · ∥ = ∥ · ∥2 is the Euclidean 2-norm, and

ℓX (θ) =
1

|I|
∑
i∈I

(|f (xi, t; θ)|+ τ ∥∇xf (xi, t; θ)− ni∥) (3)

promotes the vanishing of f on X , and in the presence of normal data (i.e., τ = 1 ) , ∇xf to the
given normals N .

The first term in the summation part of Eq. (3) indicates that the SDF value of the surface points
should be as small as possible. The second term represents the loss between the point normal vector
and the ground truth.

The second term in Eq. (2) called the Eikonal term promotes the gradients ∇xf to possess a 2-norm
of unity, i.e. ∥∇xf∥ = 1, which is the gradient property of SDFs. Note that this property is crucial to
the loss design, allowing us to avoid using pre-computed SDF values for supervised learning. While
its sufficiency has not been fully established in previous literature, we provide a more comprehensive
proof in the Appendix B.
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The third term z in Eq. (2) is a latent code that we introduce into the model to specify different
protein types, and its parameters are learnable. We claim that with sufficient data, we can explore the
latent space for greater generalization.

The global minimum of the loss in Eq. (2) will be the solution of the Eikonal partial differential
equation, i.e.,

∥∇xf(x)∥ = 1, (4)
which will also be a signed distance function, where f approaches 0 on X , with gradients N . The
calculation of the expectation is based on some probability distribution x ∼ D in R3, which will be
introduced in Section 3.2.

Throughout the optimization process, we did not use the pre-computed SDF value to supervise the
training, which is an end-to-end learning architecture from raw point clouds data to SDF value. In the
next section, we will introduce the experiment setup in detail, including the datasets, implementation
details, and model evaluation metrics.

Figure 2: Overview of DSR. The upper part is the training process. First, the manifold and space
points are sampled at different times, added the time dimension and be input into the DSR Model to
obtain SDF. And then the Gradient Module is used to calculate the derivative of SDF with respect
to (x, t). The lower part is the inference process. We first divide the space into a grid based on the
desired resolution, then adds the time dimension and inputs them into the DSR Model to predict
the SDF. Finally, the Marching Cube algorithm is utilized to generate different level sets, with the
zero-level set representing the protein dynamical surface.

3 DSR on large-scale proteins simulation data

3.1 Dataset.

500ns Trajectory Data. This data set[28] currently contains two 100ns atomistic molecular dy-
namics trajectories of Abeta (40 residues), one wild type and one E22G, following the protocol of the
500ns trajectories published in [29]. The simulation was performed at 310K in a generalized Born
implicit solvent. In this work, we used the first 2000 frames of wild type trajectories.

MDAnalysisData. MDAnalysisData collects a set of data resources pertaining to computational
biophysics, primarily focusing on molecular dynamics (MD) simulations and the structural and
dynamic attributes of biomolecules. We used five of these datasets,

(1) AdK equilibrium dataset[30] of 4187 frames,
(2) AdK conformation transition[31] sampled with two methods:

• Dynamic importance sampling molecular dynamics (DIMS MD) of 102 frames[32],
• Framework Rigidity Optimized Dynamics Algorithm (FRODA) of 142 frames[33],
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(3) A short MD trajectory of I-FABP (intestinal fatty acid binding protein) of 500 frames[34],
(4) A trajectory of the NhaA membrane protein of 5000 frames[35],
(5) Two MD trajectories of YiiP membrane protein, the short one has 900 frames, and the long one

has 9000 frames[36]. We opted for the longer one here.

For these 6 trajectories data, we use a fixed size 2000 to crop the frames due to the computational
resources, and we keep the full length for those shorter than the cropping size.

GPCRmd. The GPCRmd (http://gpcrmd.org/)[37] is an online platform that incorporates web-
based visualization capabilities and shares data. The GPCRmd database includes at least one
representative structure from each of the four structurally characterized GPCR classes. The GPCRmd
platform holds more than 600 GPCR MD simulations from GPCRmd community and individual
contributions. Each system was simulated for 500 ns in three replicates (total time 1.5 µs). We
selected one system per GPCR family, and a total of 4 trajectories were used to train the model, of
which trajectory ids are 10792_trj_81, 10840_trj_87, 10912_trj_95 and 15711_trj_791 respectively.

DRYAD_MD. This dataset contains the trajectory data of 23 proteins simulated by Jumper JM[38].
It is worth noting that the protein trajectories within this dataset exhibit significant oscillations, posing
a challenge for model training and resulting in a high failure rate. For this reason, we screened out 14
proteins with mean RMSD2 less than 1.0 for our experiments.

3.2 Implementation Details.

Problem setup. In this paper, we use PyMol[39] to obtain the protein surface representation, the
points and normal vectors, to train the model. The goal is to obtain a protein surface dynamic model
with respect to continuous space and time.

Architecture. For representing shapes we used level sets of MLP f(x, t; θ) = R4 × Rdz → R,
called DSR Model, with 8 layers, each containing 512 hidden units, and a single skip connection from
the input to the middle layer. We set the loss parameters to λ = 0.1, τ = 1, α = 1e − 3. And the
model architecture is as Figure 2. The activation function between fully connected layers is softplus
activation: x 7→ 1

β ln
(
1 + eβx

)
, where β = 100. The initial latent code vector z of size 192, were

sampled from N (0, 1.02). The Gradient Module was implemented by PyTorch Autograd to calculate
∇xf(x).

Distribution D. For all experiments, we utilize the distribution D as defined in the IGR[40] for the
expectation in Eq. (2). This distribution is determined by taking the average of a uniform distribution
and a sum of Gaussians that are centered at X with a standard deviation equal to the distance to the
k-th nearest neighbor (where we set k = 50).

Level set extraction. We extract the zero (or any other) level set of a trained model f(x, t; θ) using
the Marching Cubes algorithm[41] implemented in the python scikit-image package, which can use
any large-size grid to achieve any high resolution.

3.3 Evaluation Metrics.

We use three evaluation metrics commonly used in 3D modeling to evaluate the similarity between
two 3D shapes from three aspects: volume, distance, and normal vectors, which are Volumetric
Intersection over Union (IoU), Chamfer distance and Normal Consistency (NC). These three metrics
are all normalized to a range of 0-1, providing a comprehensive evaluation of the model’s performance
from different perspectives.

IoU. IoU compares the reconstructed volume with the ground truth shape (higher is better). For
two arbitrary shapes A,B ⊆ S ∈ Rn is attained by:

IoU =
|A ∩B|
|A ∪B|

(5)

2The RMSD here was calculated between consecutive frames to reflect the smoothness of the protein
trajectory.
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Chamfer distance. Chamfer distance is a standard metrics to evaluate the distance between two
point sets X1,X2 ⊂ Rn (lower is better).

dC (X1,X2) =
1

2

(
d−→
C
(X1,X2) + d−→

C
(X2,X1)

)
(6)

where
d−→
C
(X1,X2) =

1

|X1|
∑

x1∈X1

min
x2∈X2

∥x1 − x2∥ (7)

NC NC evaluate estimated surface normals (higher is better). Normal consistency between two
normalized unit vectors ni and nj is defined as the dot product between the two vectors. For evaluating
the surface normals, given the object surface points and normal vectors: Xpred = {(xi,

−→ni)}, and the
ground truth surface points and normal vectors: Xgt = {(yj ,

−→mj)}, the surface normal consistency
between Xpred and Xgt, denoted as Γ, is defined as:

Γ (Xgt, Xpred ) =
1

|Xgt|
∑

j∈|Xgt|

∣∣∣−→nj · −→mθ(yj ,Xpred )

∣∣∣ (8)

where
θ
(
yj , Xpred := {(xi,

−→ni)}
)
= argmin

i∈|Xpred |

∥∥yj − xi

∥∥2
2

(9)

4 Results and Analysis

We design experiments from three aspects to verify the ability to learn SDF from the raw point clouds,
the ability to reconstruct the protein dynamical surface, and the generalization of the model in terms
of temporal interpolation and extrapolation. To our knowledge, we are the first to model long-term
dynamics of large proteins through surface representation, with no other methods currently available
for comparison. Therefore, we conduct the following analysis to verify the learning ability of the
DSR model and the effectiveness of protein surface representation. Additionally, to demonstrate
that our model is not doing something trivial, we compare our method with linear interpolation on
interpolation tasks.

4.1 The Ability to Learn SDF

We show the reconstruction results of training on Abeta protein in Figure 3, which demonstrates the
ability of our model to learn the signed distance field. The first row in the figure is the reconstruction
results of our model, and the second row is the ground truth. It can be seen that our model has the
ability to reconstruct the dynamic shape of the protein at different moments, and can restore a clearer
and more delicate shape than the ground truth. Furthermore, we show some videos of this protein on
the webpage and discuss the effect of normal vectors on learning process in the Appendix D.

Figure 3: Given different times as input, the zero-level set visualization of the SDF value predicted
by the model for protein abeta. The first row is the reconstruction result of our model, and the second
row is the ground truth.

Note that SDF represents the shortest distance (signed) from the surface of the object, which means
that different level sets form surfaces at certain distances from the manifold surface. As shown
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in Figure 4 (a), the visualization of different level sets of SDF values predicted by our model is
consistent with the meaning expressed by SDF. In addition, our model is continuous with respect
to spatial and can use to reconstruct and predict for arbitrary space resolutions. Figure 4(b) shows
the reconstruction of a protein at different resolutions at a certain time. We also calculated three
evaluation metrics, namely IoU, Chamfer distance and NC, which have values of 0.9361±0.0265,
0.0009±0.0008 and 0.9967±0.0011 respectively.

Figure 4: (a) The visualization of different level-set of the SDF predicted by our model; positive level
sets are in red; negative ones are in blue; the zero level set, represents the approximated surface in
white. (b) The reconstruction of a protein at different resolutions.

4.2 Reconstruction across Time

In this experiment, we validate the ability of our trained model to reconstruct the protein shapes in
training frames (see Table 1). For data AdK equilibrium, NhaA, YiiP, and DRYAD_MD, we used the
first 1500 frames of each trajectory and diluted them by ten times. That is, selecting 150 frames for
each trajectory for training. Similarly, every second frame was selected within the first 80 frames for
DIMS, every third frame was chosen within the first 120 frames for FRODA, and every fifth frame
was selected within the first 400 frames for I-FABP.

As we can see from the Table 1, the model can reconstruct well in many cases. For example, DIMS,
the IoU value is as high as 0.9316, which means that the shape reconstructed by the model is almost
completely consistent with the ground truth on the entire timeline.

Table 1: Evaluation on the surface reconstruction across time.

IoU↑ Chamfer_dist↓ NC↑ IoU↑ Chamfer_dist↓ NC↑
DIMS 0.9316±0.0070 0.0003±0.0001 0.9671±0.0050 I-FABP 0.8907±0.0071 0.0005±0.0001 0.9382±0.0072
YiiP 0.8425±0.0161 0.0003±0.0001 0.8737±0.0164 FRODA 0.8318±0.0286 0.0004±0.0001 0.9098±0.0175

NahA 0.8265±0.0202 0.0005±0.0001 0.8372±0.0245 adk_equi 0.7526±0.0396 0.0020±0.0009 0.7914±0.0308
protG 0.6580±0.0695 0.0036±0.0017 0.8287±0.0595 ntl9 0.6342±0.1244 0.0066±0.0051 0.8165±0.0911
bba 0.6163±0.1481 0.0057±0.0073 0.8158±0.1044 cspa 0.6136±0.0682 0.0074±0.0036 0.8047±0.0527

T0765 0.5997±0.0923 0.0039±0.0022 0.7991±0.0757 ww 0.5920±0.1056 0.0088±0.0055 0.8196±0.0691
T0855 0.5585±0.0898 0.0117±0.0095 0.7804±0.0647 T0773 0.5289±0.0833 0.0123±0.0091 0.7404±0.0632
T0816 0.5284±0.1366 0.0083±0.0071 0.7368±0.0979 gpW 0.4836±0.1253 0.0093±0.0072 0.7176±0.0905

bbl 0.4603±0.1422 0.0094±0.0067 0.6968±0.0896 hyp 0.4578±0.1154 0.0099±0.0066 0.7104±0.0873
T0769 0.4535±0.0871 0.0191±0.0101 0.7102±0.0738 T0771 0.4219±0.0711 0.0111±0.0073 0.6537±0.0491

We analyze the effect of RMSD on model training quality, indicating that data containing high levels
of noise and significant vibration pose challenges to model training. As illustrated in the Figure 5, the
model shows superior performance on smoother and less noisy trajectory data.

4.3 Generalization Ability

Our model has generative capabilities to predict missing or future trajectories of a protein. Here we
obtain different samples in two aspects, interpolation and extrapolation of time.

4.3.1 Interpolation

Our model enable the prediction of protein shape at any given time due to its temporal continuity.
This is very useful when we only know the structures of two moments but not what the intermediate
process is. During training sample selection, we extract one frame at intervals of several frames to
evaluate the model’s interpolation capability in the temporal space. To demonstrate that our model
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Figure 5: The correlation between RMSD and three metrics was evaluated across various protein
trajectories, revealing a significant relationship between the metrics and RMSD, highlighting that
smaller RMSD and system noise levels correspond to improved model performance and easier
modeling of protein surface dynamics.

learns the protein’s inherent dynamic variations and is not just performing trivial tasks, we compared
it with linear interpolation, as shown in Figure 6, even though there were no previous works for direct
comparison. The evaluation results of our model and linear interpolation are shown in Appendix
Table 4, 5 respectively, and the performance of interpolation has reached a level comparable to that of
reconstruction.
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Figure 6: The three evaluation metrics for the interpolation task are shown in the plot, with the red
line representing our method and the blue line representing linear interpolation.

4.3.2 Future Prediction

Our model can not only interpolate missing frames in the middle, but also predict future dynamics
by extrapolating over time. To validate this, we use models trained on the MDAnalysisData and
DRYAD_MD datasets to predict future frames. Table 2 shows the prediction results of the model for
the next 10 frames and the next 11 ∼ 20 frames on some proteins. Due to space limitations of the
main text, the full results are presented in the Appendix E.2.

Table 2: Evaluation on the future 10 frames and 11 ∼ 20 frames

Future 10 frames Future 11∼20
IoU↑ Chamfer_dist↓ NC↑ IoU↑ Chamfer_dist↓ NC↑

DIMS 0.8467±0.0423 0.0010±0.0005 0.8666±0.0504 0.6835±0.0551 0.0055±0.0020 0.6932±0.0474
I-FABP 0.8878±0.0142 0.0006±0.0001 0.9271±0.0159 0.8444±0.0153 0.0012±0.0002 0.8797±0.0164
FRODA 0.7660±0.0502 0.0012±0.0006 0.8267±0.0490 0.6043±0.0474 0.0044±0.0012 0.6783±0.0384

4.3.3 A Case Study on GPCRmd

Furthermore, we have explored the model’s simultaneous simulation of multiple protein trajectories.
Here we use the four protein trajectories data in GPCRmd dataset. The model trains different latent
vectors to represent different proteins. In addition, in selecting training frames, we have employed
another strategy, wherein the interval between the frames utilized for training is gradually increased
with the sequence.

As shown in Figure 7, our model can learn the shapes of multiple proteins simultaneously, and it can
recover the fine details of the protein surfaces well despite their ruggedness. An interesting finding
is that the trajectories obtained from molecular dynamics simulations often have a lot of random
jittering or noise, while the trajectories interpolated by our model can well fit the main functional
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Figure 7: Comparison of ground truth and reconstruction for GPCRmd data at t = 2000. From (a) to
(d) are 10792_trj_81, 10912_trj_95, 15711_trj_791 and 16105_trj_848 respectively, ground truth and
reconstruction (top row) after rotating 90 degrees (bottom row) clockwise along the horizontal axis.

motion of the protein without noise. We put the detailed results and discussion in the Appendix E.3,
video demonstration on the webpage.

5 Discussions

Molecular surface Representation The molecular surface representation is commonly adopted
for tasks involving molecular interfaces[42], where non-covalent interactions (e.g., hydrophobic
interactions) play a decisive role[43]. Non-Euclidean convolutional neural networks[44] and point
cloud-based learning models[45] have been applied to encode the molecular surface for downstream
applications, e.g., protein binding site prediction[46]. However, it has not been applied to molecular
dynamic simulation, especially protein. In fact, this work explored the more essential application
scenarios of molecular surface representation, that is, we believe that chemical molecules are more
suitable to be regarded as electron clouds that can be represented by 3D shapes.

Deep learning molecular dynamics Deep learning is being used more in molecular dynamics
simulations, which has shown promising results. There have been several approaches, such as Behler-
Parrinello network[47], DTNN[48], and SchNet[49], that focus on predicting molecular properties
and potential energy. However, these methods are limited to small molecules and may not work
for proteins, which have many atoms. To address this issue, several coarse-grained models have
been proposed, such as CGnet[17], DeePCG[50], ARCG[51], and a CG auto-encoder[52]. Recent
works, flow-matching[53] and DFF[54], have used normalizing flows and diffusion models to model
coarse-grained force fields for dynamic simulation of small proteins. Another approach, DiffMD[55],
can predict simulation trajectories without energy or forces. However, these methods are currently
limited to simulating small proteins due to computational constraints and are not yet practical for
real-world applications, while the method in this paper provides a new idea for long-term modeling
of large proteins.

Implicit neural representations SIREN[56] and NeRF[26] have led to the popularity of implicit
neural representations (INR) for tasks like new view synthesis and geometry reconstruction. INR
involves creating a continuous function that can map coordinates to high-frequency information.
NeRF’s highly expressive nature has allowed it to be effectively employed in numerous fields,
such as image processing[57] (e.g., compression, denoising, super-resolution, inpainting), video
processing[58], medical imaging[59], etc. Signed distance function (SDF) is a type of INR that
characterizes an object’s shape well. DeepSDF[60] uses INR to model SDF, and IGR[40] simplifies
the modeling of SDF by using its gradient property. Drawing inspiration from the aforementioned
studies, our work learns a unified implicit representation of proteins that will facilitate future large-
scale modeling of protein dynamics like NeRF’s contribution in vision.

6 Conclusions and Future work

We introduced a method for learning implicit neural representations of protein surface dynamics in
continuous spatial and temporal space. Experimental results show that our method is very effective in
reconstructing proteins with smooth dynamic changes, and has a certain ability to interpolate in time.
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In addition, we found that our model tends to model major conformation changes of proteins rather
than those noise-like random vibrations. The case study of GPCRmd shows that the model has the
potential to learn the dynamics of a class of similar proteins, such as a protein family.

The main limitation of this method is that it is sensitive to noise in protein dynamic trajectories, as
discussed in Section 4.2. In addition, the generalization of the model needs to be further improved.
The first is the temporal generalization, especially future prediction. So far, there is no effective
method that can better predict the future in various motion prediction tasks. We believe that modeling
motion or velocity fields can help future predictions for a longer time.

We anticipate DSR as a powerful tool for building general-purpose protein surface models, and hope
that our work helps shed some light on a more efficient and generalizable protein representation.
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Appendix

A Motivations

The traditional methods for molecular dynamics simulation, such as solving the Schrödinger equa-
tion, the Born-Oppenheimer approximation method, and Density Functional Theory (DFT), are
computationally expensive and time-consuming. To provide a more detailed explanation, we can
give specific numbers to illustrate the computational complexity of these methods. For instance,
solving the Schrödinger equation directly for a system of 100 atoms would require solving a matrix
with approximately 1.26× 106 elements, which is computationally intractable even with supercom-
puters. The Born-Oppenheimer approximation, which separates electronic and nuclear motion, is
also computationally expensive. For example, a single energy minimization calculation using this
approximation for a protein containing 10,000 atoms can take several hours on a high-performance
computing cluster. DFT, which is a widely used approximation for solving the Schrödinger equation,
has a time complexity of O(n3), where n is the number of atoms in the system. For example, a DFT
calculation for a system of 1000 atoms would require approximately 1 billion calculations.

Since traditional biochemists tend to focus on atomic representations of proteins, the computational
complexity is closely related to the number of atoms in the system. However, we have converted
the representation to a continuous function of the protein surface, which can significantly reduce the
computational complexity.

B Theory Analysis

Theorem 1. Given a manifold Ω, the implicit signed distance function is defined as ϕ(x), x ∈ Rn

with ϕ(x) < 0 in the interior regin Ω−, ϕ(x) > 0 in the exterior regin Ω+, and ϕ(x) = 0 on the
boundary ∂Ω, then |∇ϕ(x)| = 1.

ϕ(x) =


d(x,Ω) if x ∈ Ω+

0 if x ∈ Ω

−d(x,Ω) if x ∈ Ω−
(10)

where d(x,Ω) := min(∥x− xI∥) for all xI ∈ ∂Ω.

Proof. Firstly, for a given point x, suppose that xc is the only point on the surface closest to x. Then
for every point y on the line segment between points x and xc, the point on the surface closest to y
is still xc.

x xc

y

Figure 8: xC is the closest surface point to x and y.

As shown in Figure 8, inside a sphere with xxc as radius, there will be no point on the surface closer
to x. Similarly, within the sphere with radius yxc, there will not be any point on the surface that is
closer to point y. Otherwise, the distance between the point and x would be less than the distance
between xxc, which contradicts the assumption. Therefore, it can be seen that the line segment xxc

is the shortest path from point x to the surface, and it is also the direction in which ϕ(x) changes the
fastest (i.e., for x ∈ Ω−, ϕ(x) increases the fastest, and for x ∈ Ω+, ϕ(x) decreases the fastest).

Then,
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|∇ϕ(x)| =

∣∣∣∣∣ ∂ϕ(x)

∂
(−−→xxc

) ∣∣∣∣∣
=

∣∣∣∣∣ lim
y→x
y∈xxc

ϕ(y)− ϕ(x)

d(y,x)

∣∣∣∣∣
=

∣∣∣∣∣ lim
y→x
y∈xxc

d (y, xc)− d (x,xc)

d(y,x)

∣∣∣∣∣
=

∣∣∣∣∣ lim
y→x
y∈xxc

d(y,x)

d(y,x)

∣∣∣∣∣ = 1

(11)

Secondly, if there are more than one point on the surface that is closest to x, let these points be
{xc1,xc2, · · · ,xcN}. Similarly, within the sphere with radius xxci, i ∈ 1, 2, · · · , N , there will not
be any point on the surface closer to x than {xc1,xc2, · · · ,xcN}. Therefore, gradient direction
should be the direction with the maximum numerical value among the directional derivatives in
{xxc1,xxc2, · · · ,xxcN}, i.e.

|∇ϕ(x)| = max
i

∣∣∣∣∣ ∂ϕ(x)

∂
(−−→xxci

) ∣∣∣∣∣ = max
i

∣∣∣∣∣ lim
y→x

y∈xxci

ϕ(y)− ϕ(x)

d(y,x)

∣∣∣∣∣ = 1 (12)

C Experiment Details

For each protein surface representation trajectory used for training, we scale the space to [−1, 1]3

and the time to [−1, 1]. When reconstructing, interpolating, and extrapolating, for time, we scale at
the same scale as training, and for space, we divide the [−1, 1]3 space into grid points according to a
given resolution. We use the Marching Cube algorithm to extract the zero-level set of the SDF value
output by the model, and scale it back to the original space size.

The training was done on a single Nvidia-V100 GPU with PyTorch deep learning framework[61].
For training, we use the Adam optimizer[62], where initial learning rate of sdf training is 5e-3 with
a decay of 0.5 every 200 epochs and initial learning rate of latent code is 1e-3 with a decay of 0.5
every 200 epochs. We trained each model for 4000 epochs. Because our model is continuous in time
and space, we can reconstruct or interpolate or extrapolate protein shapes at any time and at any
resolution.

For experiments of GPCRmd, we use different latent code to specify different sequences. When
doing inference, you can use different latent codes to perform tasks corresponding to the sequence by
specifying the sequence id.

Table 3: The architecture of our neural network.

Layer Input shape Output shape

Dense layer 196 512 (x, t) ∈ R4, latent code ∈ R192

Dense layer 512 512
Dense layer 512 512
Dense layer 512 316 skip connection from the first layer
Dense layer 512 512
Dense layer 512 512
Dense layer 512 512
Dense layer 512 1

Activation Softplus(beta=100, threshold=20)
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D Learning Ability

In order to illustrate that our method has the ability to learn the shape of objects, we visualize the
training process in Figure9. As can be seen from the Figure9, with the training process, the model can
reconstruct the shape of the protein in more detail. In addition, using normal vectors as constraints in
loss function during training will make the model achieve better results faster.

Figure 9: The shape visualization of Abeta. First row: the result of training epoch 100, 500, 1000 and
2000 epochs respectively without normal vector; second row: the result of training epoch 100, 300,
500 and 1000 epochs respectively with normal vector.
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E Detailed results

E.1 Interpolation

Table 4: Evaluation on the surface interpolation between trained frames by our model.

IoU↑ Chamfer_dist↓ NC↑ IoU↑ Chamfer_dist↓ NC↑
DIMS 0.9225±0.0035 0.0003±0.0001 0.9527±0.0034 I-FABP 0.8833±0.0078 0.0006±0.0001 0.9254±0.0066
YiiP 0.8387±0.0157 0.0004±0.0001 0.8659±0.0157 FRODA 0.8159±0.0234 0.0005±0.0001 0.8885±0.0135

NahA 0.8220±0.0191 0.0005±0.0001 0.8287±0.0219 adk_equi 0.7459±0.0436 0.0021±0.0012 0.7816±0.0327
protG 0.6434±0.0655 0.0040±0.0017 0.8113±0.0580 ntl9 0.6059±0.1452 0.0077±0.0065 0.7838±0.1083
bba 0.6204±0.1296 0.0052±0.0064 0.8074±0.0972 cspa 0.5957±0.0714 0.0080±0.0039 0.7812±0.0574

T0765 0.5821±0.0921 0.0042±0.0023 0.7747±0.0797 ww 0.5744±0.1061 0.0100±0.0102 0.7955±0.0720
T0855 0.5458±0.0943 0.0121±0.0095 0.7629±0.0716 T0773 0.5127±0.0755 0.0132±0.0090 0.7130±0.0559
T0816 0.5245±0.1289 0.0087±0.0088 0.7221±0.0951 gpW 0.4769±0.1262 0.0097±0.0086 0.7008±0.0967

bbl 0.4380±0.1372 0.0108±0.0088 0.6605±0.0895 hyp 0.4304±0.1163 0.0119±0.0110 0.6776±0.0865
T0769 0.4229±0.0932 0.0191±0.0095 0.6752±0.0801 T0771 0.4006±0.0729 0.0118±0.0075 0.6271±0.0503

Table 5: Evaluation on the surface interpolation between trained frames by linear interpolation.

IoU↑ Chamfer_dist↓ NC↑ IoU↑ Chamfer_dist↓ NC↑
DIMS 0.9084±0.0071 0.0003±0.0001 0.9266±0.0079 I-FABP 0.8770±0.0076 0.0006±0.0001 0.9053±0.0082
YiiP 0.8475±0.0126 0.0003±0.0001 0.8560±0.0143 FRODA 0.7961±0.0368 0.0005±0.0001 0.8593±0.0292

NahA 0.8219±0.0192 0.0004±0.0001 0.8129±0.0237 adk_equi 0.7181±0.0440 0.0020±0.0010 0.7320±0.0352
protG 0.5694±0.0820 0.0053±0.0025 0.7309±0.0719 ntl9 0.5273±0.1578 0.0084±0.0079 0.7021±0.1100
bba 0.5249±0.1506 0.0076±0.0079 0.7193±0.1056 cspa 0.5189±0.0728 0.0070±0.0032 0.6994±0.0556

T0765 0.4899±0.0937 0.0057±0.0028 0.6885±0.0745 ww 0.5079±0.1433 0.0124±0.0142 0.7177±0.0965
T0855 0.4674±0.1156 0.0039±0.0048 0.6762±0.0746 T0773 0.4496±0.0904 0.0094±0.0059 0.6389±0.0672
T0816 0.3994±0.1344 0.0097±0.0092 0.6259±0.0845 gpW 0.3846±0.1411 0.0109±0.0092 0.6228±0.0912

bbl 0.3304±0.1558 0.0130±0.0122 0.5964±0.0881 hyp 0.3313±0.1201 0.0113±0.0107 0.5974±0.0691
T0769 0.3820±0.1236 0.0083±0.0062 0.6122±0.0808 T0771 0.3147±0.0914 0.0061±0.0031 0.5723±0.0564
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E.2 Future Prediction

In this section we list the three evaluation metrics for the prediction results of all other proteins in the
next 100 frames. Tables 6, 7, and 8 show the results of IoU, chamfer distance, and NC respectively.
As shown in the table, the results decrease slightly as time goes into the future, which is not surprising.
It is worth noting that even when predicting the next 100 frames of some proteins, the prediction
results do not drop much, such as the Yiip, NahA and adk_equi, which also shows that our model has
certain expression power and stability.

Table 6: The future prediction results on IoU

Future frames 10 11∼20 21∼30 31∼40 41∼50
YiiP 0.8482±0.0041 0.8293±0.0067 0.8068±0.0087 0.8128±0.0091 0.8122±0.0090

NahA 0.7922±0.0137 0.7914±0.0133 0.7640±0.0141 0.7589±0.0071 0.7465±0.0092
adk_equi 0.7417±0.0289 0.7304±0.0285 0.6582±0.0680 0.7107±0.0385 0.7080±0.0589

protG 0.6666±0.0579 0.6366±0.0641 0.6390±0.0371 0.6257±0.0611 0.6203±0.0614
ntl9 0.5829±0.2385 0.6712±0.1451 0.6997±0.0593 0.6069±0.1673 0.6092±0.1806
bba 0.4958±0.0546 0.5088±0.0432 0.5334±0.0261 0.4973±0.0315 0.4628±0.1062
cspa 0.5467±0.0935 0.5237±0.0624 0.4914±0.0479 0.5332±0.0494 0.4872±0.0744

T0765 0.4820±0.0941 0.4638±0.0877 0.4684±0.0628 0.4544±0.0476 0.4241±0.0442
ww 0.3716±0.1133 0.3163±0.0826 0.3176±0.0620 0.2753±0.0162 0.2729±0.0234

T0855 0.4215±0.0368 0.3631±0.0374 0.3221±0.0286 0.2899±0.0308 0.2355±0.0398
T0773 0.4364±0.0982 0.4011±0.0848 0.4272±0.0880 0.4169±0.0839 0.3802±0.0727
T0816 0.5301±0.0805 0.5502±0.0557 0.5187±0.0574 0.4652±0.1149 0.4366±0.1391
gpW 0.4604±0.1025 0.4644±0.1483 0.4785±0.1504 0.5072±0.0857 0.4492±0.0957
bbl 0.2557±0.2497 0.3817±0.2172 0.4064±0.2026 0.1792±0.0579 0.1916±0.0453
hyp 0.3189±0.0746 0.3185±0.0751 0.2889±0.0693 0.2498±0.0490 0.2650±0.0370

T0769 0.4256±0.0706 0.4216±0.0867 0.3700±0.0666 0.4157±0.0918 0.4313±0.0668
T0771 0.4031±0.0798 0.3738±0.0724 0.3543±0.0717 0.3596±0.0668 0.3538±0.0569

Future frames 51∼60 61∼70 71∼80 81∼90 91∼100
YiiP 0.7986±0.0071 0.7744±0.0116 0.7686±0.0058 0.7698±0.0076 0.7546±0.0066

NahA 0.7637±0.0079 0.7551±0.0046 0.7402±0.0081 0.7438±0.0072 0.7330±0.0097
adk_equi 0.7625±0.0153 0.7814±0.0177 0.7635±0.0170 0.7402±0.0273 0.7144±0.0343

protG 0.6083±0.0342 0.6159±0.0276 0.6216±0.0477 0.6165±0.0466 0.5892±0.0644
ntl9 0.5884±0.1663 0.5821±0.1629 0.5614±0.1328 0.6173±0.1268 0.6306±0.0274
bba 0.4950±0.0140 0.4606±0.0734 0.4469±0.0495 0.4138±0.0639 0.4439±0.0159
cspa 0.4631±0.0683 0.4704±0.0308 0.4312±0.0597 0.4157±0.0689 0.3389±0.0467

T0765 0.4523±0.0361 0.4199±0.0318 0.4179±0.0315 0.3732±0.0292 0.3463±0.0396
ww 0.2549±0.0273 0.2364±0.0279 0.2225±0.0154 0.2175±0.0294 0.2076±0.0366

T0855 0.2401±0.0407 0.1940±0.0303 0.1956±0.0155 0.1609±0.0178 0.1460±0.0244
T0773 0.4414±0.0686 0.3944±0.0777 0.3706±0.0788 0.3455±0.0454 0.3166±0.0478
T0816 0.4738±0.0916 0.4706±0.1068 0.4301±0.1223 0.4740±0.0240 0.4167±0.0849
gpW 0.3396±0.1590 0.4465±0.1135 0.4157±0.0684 0.4349±0.1060 0.4121±0.0894
bbl 0.2384±0.0626 0.2008±0.0631 0.1802±0.0676 0.1861±0.0450 0.1819±0.0530
hyp 0.2171±0.0733 0.2445±0.0203 0.2240±0.0347 0.2035±0.0409 0.1915±0.0321

T0769 0.4022±0.0699 0.3642±0.0584 0.3614±0.0507 0.3194±0.0527 0.3391±0.0438
T0771 0.3373±0.0570 0.3053±0.0540 0.3068±0.0359 0.2831±0.0325 0.2603±0.0353
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Table 7: The future prediction results on Chamfer distance

Future frames 10 11∼20 21∼30 31∼40 41∼50
YiiP 0.0003±2.1863 0.0004±3.7481 0.0005±5.4920 0.0005±5.3535 0.0005±4.2672

NahA 0.0007±7.7686 0.0007±8.1652 0.0009±8.1229 0.0010±4.5848 0.0011±8.0088
adk_equi 0.0021±0.0006 0.0026±0.0006 0.0050±0.0027 0.0029±0.0009 0.0031±0.0014

protG 0.0036±0.0017 0.0042±0.0017 0.0041±0.0014 0.0046±0.0018 0.0045±0.0017
ntl9 0.0112±0.0150 0.0044±0.0066 0.0023±0.0009 0.0069±0.0086 0.0065±0.0082
bba 0.0088±0.0026 0.0081±0.0016 0.0073±0.0009 0.0087±0.0009 0.0126±0.0105
cspa 0.0130±0.0028 0.0140±0.0022 0.0152±0.0019 0.0134±0.0014 0.0161±0.0044

T0765 0.0071±0.0035 0.0078±0.0029 0.0075±0.0025 0.0078±0.0019 0.0083±0.0020
ww 0.0170±0.0028 0.0196±0.0037 0.0201±0.0021 0.0202±0.0019 0.0209±0.0011

T0855 0.0131±0.0012 0.0142±0.0015 0.0148±0.0023 0.0159±0.0019 0.0186±0.0031
T0773 0.0159±0.0068 0.0179±0.0078 0.0177±0.0106 0.0162±0.0080 0.0160±0.0057
T0816 0.0286±0.0043 0.0310±0.0044 0.0318±0.0044 0.0345±0.0041 0.0340±0.0066
gpW 0.0104±0.0021 0.0131±0.0037 0.0117±0.0024 0.0122±0.0033 0.0140±0.0036
bbl 0.0276±0.0203 0.0213±0.0265 0.0155±0.0223 0.0283±0.0222 0.0209±0.0057
hyp 0.0354±0.0025 0.0378±0.0090 0.0387±0.0104 0.0372±0.0050 0.0371±0.0050

T0769 0.0142±0.0028 0.0123±0.0020 0.0104±0.0024 0.0093±0.0019 0.0079±0.0011
T0771 0.0083±0.0025 0.0087±0.0023 0.0079±0.0011 0.0090±0.0012 0.0089±0.0010

Future frames 51∼60 61∼70 71∼80 81∼90 91∼100
YiiP 0.0006±4.0775 0.0007±7.4013 0.0008±3.4454 0.0008±6.6268 0.0009±5.4942

NahA 0.0010±6.2155 0.0011±4.4547 0.0013±7.3425 0.0013±5.2765 0.0014±6.8101
adk_equi 0.0017±0.0002 0.0015±0.0002 0.0018±0.0003 0.0023±0.0005 0.0028±0.0008

protG 0.0050±0.0013 0.0044±0.0009 0.0045±0.0015 0.0044±0.0011 0.0052±0.0019
ntl9 0.0067±0.0073 0.0067±0.0075 0.0065±0.0059 0.0050±0.0063 0.0034±0.0006
bba 0.0093±0.0008 0.0119±0.0052 0.0125±0.0032 0.0149±0.0050 0.0131±0.0011
cspa 0.0171±0.0042 0.0159±0.0022 0.0188±0.0045 0.0177±0.0038 0.0210±0.0024

T0765 0.0072±0.0025 0.0092±0.0023 0.0098±0.0026 0.0112±0.0022 0.0132±0.0036
ww 0.0246±0.0054 0.0256±0.0030 0.0277±0.0047 0.0304±0.0065 0.0326±0.0063

T0855 0.0185±0.0024 0.0244±0.0060 0.0218±0.0015 0.0237±0.0026 0.0249±0.0028
T0773 0.0125±0.0081 0.0162±0.0082 0.0167±0.0061 0.0183±0.0048 0.0202±0.0109
T0816 0.0349±0.0038 0.0355±0.0051 0.0354±0.0052 0.0342±0.0024 0.0349±0.0021
gpW 0.0210±0.0112 0.0156±0.0055 0.0177±0.0025 0.0164±0.0035 0.0177±0.0058
bbl 0.0154±0.0058 0.0255±0.0159 0.0303±0.0172 0.0228±0.0060 0.0399±0.0363
hyp 0.0464±0.0175 0.0390±0.0062 0.0435±0.0070 0.0534±0.0080 0.0541±0.0077

T0769 0.0072±0.0015 0.0105±0.0051 0.0081±0.0011 0.0102±0.0035 0.0106±0.0041
T0771 0.0095±0.0014 0.0095±0.0012 0.0108±0.0024 0.0123±0.0029 0.0132±0.0021
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Table 8: The future prediction results on NC

Future frames 10 11∼20 21∼30 31∼40 41∼50
YiiP 0.8752±0.0057 0.8505±0.0067 0.8226±0.0087 0.8269±0.0104 0.8249±0.0117

NahA 0.7863±0.0182 0.7854±0.0146 0.7564±0.0151 0.7513±0.0072 0.7400±0.0118
adk_equi 0.7750±0.0205 0.7723±0.0198 0.7329±0.0441 0.7514±0.0294 0.7529±0.0408

protG 0.8184±0.0514 0.8018±0.0580 0.8063±0.0376 0.7879±0.0653 0.7795±0.0705
ntl9 0.7595±0.1691 0.8099±0.1178 0.8347±0.0429 0.7569±0.1273 0.7618±0.1284
bba 0.7259±0.0680 0.7323±0.0585 0.7703±0.0338 0.7344±0.0587 0.7122±0.0832
cspa 0.7477±0.0714 0.7243±0.0472 0.7040±0.0384 0.7242±0.0370 0.6859±0.0511

T0765 0.6863±0.0664 0.6732±0.0648 0.6730±0.0410 0.6556±0.0360 0.6409±0.0258
ww 0.6313±0.1016 0.5828±0.0755 0.5697±0.0553 0.5362±0.0355 0.5386±0.0339

T0855 0.6896±0.0400 0.6516±0.0394 0.6340±0.0306 0.6104±0.0240 0.5751±0.0377
T0773 0.6588±0.0668 0.6393±0.0581 0.6551±0.0517 0.6422±0.0591 0.6219±0.0396
T0816 0.7513±0.0869 0.7966±0.0635 0.7647±0.0790 0.7393±0.1030 0.7151±0.1231
gpW 0.6905±0.0715 0.6998±0.1042 0.7097±0.1046 0.7173±0.0746 0.6836±0.0724
bbl 0.5752±0.1445 0.6645±0.1352 0.6805±0.1300 0.5444±0.0363 0.5292±0.0266
hyp 0.6558±0.0692 0.6538±0.0722 0.6247±0.0652 0.5840±0.0506 0.6105±0.0493

T0769 0.6662±0.0673 0.6734±0.0623 0.6193±0.0560 0.6527±0.0661 0.6723±0.0489
T0771 0.6136±0.0458 0.5941±0.0373 0.5845±0.0322 0.5843±0.0304 0.5758±0.0266

Future frames 51∼60 61∼70 71∼80 81∼90 91∼100
YiiP 0.8044±0.0084 0.7786±0.0117 0.7733±0.0047 0.7707±0.0100 0.7531±0.0058

NahA 0.7493±0.0103 0.7323±0.0052 0.7195±0.0084 0.7164±0.0094 0.7007±0.0095
adk_equi 0.7889±0.0126 0.8052±0.0162 0.7931±0.0085 0.7735±0.0222 0.7519±0.0262

protG 0.7754±0.0330 0.7838±0.0258 0.7910±0.0283 0.7810±0.0359 0.7608±0.0485
ntl9 0.7378±0.1167 0.7330±0.1219 0.7148±0.0991 0.7658±0.0919 0.7753±0.0177
bba 0.7637±0.0127 0.7291±0.0683 0.7218±0.0528 0.6993±0.0607 0.7187±0.0136
cspa 0.6714±0.0448 0.6660±0.0248 0.6464±0.0425 0.6452±0.0436 0.5939±0.0337

T0765 0.6476±0.0167 0.6218±0.0246 0.6156±0.0297 0.5940±0.0272 0.5774±0.0203
ww 0.5268±0.0294 0.5466±0.0283 0.5425±0.0231 0.5261±0.0206 0.5092±0.0121

T0855 0.5920±0.0276 0.5566±0.0309 0.5737±0.0070 0.5505±0.0204 0.5432±0.0179
T0773 0.6469±0.0345 0.6179±0.0404 0.6003±0.0373 0.5855±0.0301 0.5663±0.0235
T0816 0.7629±0.0908 0.7722±0.0919 0.7296±0.1131 0.7657±0.0317 0.7070±0.0845
gpW 0.6158±0.1008 0.6914±0.0787 0.6581±0.0503 0.6627±0.0693 0.6653±0.0590
bbl 0.5579±0.0543 0.5243±0.0473 0.5101±0.0246 0.5204±0.0239 0.5127±0.0109
hyp 0.5703±0.0607 0.6011±0.0231 0.5737±0.0409 0.5576±0.0250 0.5596±0.0243

T0769 0.6372±0.0511 0.6165±0.0432 0.6206±0.0423 0.6016±0.0355 0.6141±0.0253
T0771 0.5688±0.0278 0.5505±0.0230 0.5495±0.0181 0.5367±0.0195 0.5339±0.0176
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E.3 GPCRmd

Table 9 shows the evaluations of the four proteins in GPCRmd on the three tasks of reconstruction,
time interpolation and prediction of the future 50 frames. From the table, the results of different
proteins are comparable, indicating that the model has a certain multi-protein generalization ability.

Table 9: Evaluation on GPCDmd

IoU↑ Chamfer_dist↓ NC↑ IoU↑ Chamfer_dist↓ NC↑
10792_trj_81 10912_trj_95

Reconstruction 0.8158±0.0224 0.0005±0.0001 0.8668±0.0242 0.8181±0.0242 0.0004±0.0002 0.8674±0.0242
Interpolation 0.7885±0.0173 0.0006±0.0001 0.8118±0.0159 0.7928±0.0180 0.0005±0.0001 0.8127±0.0176

Future 50 frames 0.7234±0.0317 0.0014±0.0005 0.7433±0.0319 0.7027±0.0502 0.0011±0.0003 0.7092±0.0544
15711_trj_791 16105_trj_848

Reconstruction 0.7621±0.0508 0.0009±0.0004 0.8217±0.0462 0.7725±0.0516 0.0009±0.0004 0.8327±0.0476
Interpolation 0.7090±0.0556 0.0012±0.0005 0.7082±0.0520 0.7186±0.0623 0.0012±0.0006 0.7216±0.0604

Future 50 frames 0.5654±0.0762 0.0027±0.0011 0.5926±0.0485 0.6076±0.0462 0.0018±0.0007 0.6336±0.0389
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