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Abstract

In the arena of privacy-preserving machine learning, differentially private stochastic
gradient descent (DP-SGD) has outstripped the objective perturbation mechanism
in popularity and interest. Though unrivaled in versatility, DP-SGD requires a
non-trivial privacy overhead (for privately tuning the model’s hyperparameters) and
a computational complexity which might be extravagant for simple models such
as linear and logistic regression. This paper revamps the objective perturbation
mechanism with tighter privacy analyses and new computational tools that boost
it to perform competitively with DP-SGD on unconstrained convex generalized
linear problems.

1 Introduction

The rise of deep neural networks has transformed the study of differentially private learning no less
than any other area of machine learning. Differentially private stochastic gradient descent (DP-SGD)
(Song et al., 2013; Bassily et al., 2014; Abadi et al., 2016) has thus gained widespread appeal as a
versatile framework for privately training deep learning models.

How does DP-SGD fare on simpler models such as linear and logistic regression? The verdict is
unclear. Clearly an algorithm capable of privately optimizing non-convex functions represented by
millions of parameters is up to the computational task of fitting a linear model. A more pressing
concern is that DP-SGD is up to too much. Look, for example, at the algorithm’s computational
complexity: DP-SGD requires O(n2) steps to achieve the optimal excess risk bounds for DP convex
empirical risk minimization (Bassily et al., 2014).

DP-SGD furthermore takes after its non-private counterpart in sensitivity to hyperparameters. A
poor choice of learning rate or batch size, for instance, could lead to suboptimal performance or
slow convergence. There are well-established procedures for hyperparameter optimization that
typically involve evaluating the performance of the model trained using different sets of candidate
hyperparameters. But with privacy constraints, there is a catch: tuning hyperparameters requires
multiple passes over the training dataset and thereby constitutes a privacy cost.

At best, existing work tends to circumvent this obstacle by optimistically assuming the availability
of a public auxiliary dataset for hyperparameter tuning. More often the procedure for private
hyperparameter selection is left largely to the reader’s imagination. Only recently have Liu & Talwar
(2019) and subsequently Papernot & Steinke (2022) studied how to obtain tighter privacy loss bounds
for this task beyond standard composition theorems.

In the meantime, objective perturbation (Chaudhuri et al., 2011; Kifer et al., 2012) has been to some
extent shelved as a historical curiosity. Sifting through the literature, we find that opinions are divided:
some tout objective perturbation as "[o]ne of the most effective algorithms for differentially private
learning and optimization" (Neel et al., 2020), whereas other works (Wang et al., 2017) dismiss
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objective perturbation as being impractical and restrictive. Some empirical evaluations (Yu et al.,
2019; McKenna et al., 2021) suggest that DP-SGD often achieves better utility in practice than does
objective perturbation; others (Iyengar et al., 2019) report the opposite.

Our goal in this paper is to lay some of this debate to rest and demonstrate that for generalized linear
problems in particular, objective perturbation can outshine DP-SGD.

1.1 Our Contributions

• We establish an improved (ϵ, δ)-DP bound for objective perturbation via privacy
profiles, a modern tool for privacy accounting that bounds the hockey-stick divergence.
The formula can be computed numerically using only calls to Gaussian CDFs. We further
obtain a dominating pair of distributions as defined by Zhu et al. (2022) which enables tight
composition and amplification by subsampling of the privacy profiles.

• We present a novel Rényi differential privacy (RDP) (Mironov, 2017) analysis of the
objective perturbation mechanism. Using this analysis, we show empirically that
objective perturbation performs competitively against DP-SGD with “honestly” 1-
tuned hyperparameters. The tightest analyses to date of private hyperparameter tuning are
the RDP bounds derived in Papernot & Steinke (2022). This tool allows us to empirically
evaluate objective perturbation against DP-SGD on a level playing field (Section 5).

• We fix a decade-old oversight in the privacy analysis of objective perturbation. Existing
literature overlooks a nuanced argument in the privacy analysis of objective perturbation,
which requires a careful treatment of the dependence between the noise vector and the private
minimizer. Without assuming GLM structure, the privacy bound of objective perturbation is
subject to a dimensional dependence that has gone unacknowledged in previous work2.

• We introduce computational tools that expand the applicability of objective perturba-
tion to a broader range of loss functions. The privacy guarantees of objective perturbation
require the loss function to have bounded gradient. Our proposed framework extends the
Approximate Minima Perturbation framework of Iyengar et al. (2019) to take any smooth
loss function as a blackbox, then algorithmically ensure that it has bounded gradient. We
also provide a computational guarantee O(n log n) on the running time of this algorithm,
in contrast to the O(n2) complexity of DP-SGD for achieving information-theoretic limits.

1.2 A Short History of DP Learning

Differentially private learning dates back to Chaudhuri et al. (2011), which extended the output
perturbation method of Dwork et al. (2006) to classification algorithms and also introduced objective
perturbation. In its first public appearance, objective perturbation required gamma-distributed noise;
Kifer et al. (2012) provided a refined analysis of the mechanism with Gaussian noise, which is the
entry point into our work.

Differentially private stochastic gradient descent (DP-SGD) (Song et al., 2013; Bassily et al., 2014;
Abadi et al., 2016) brought DP into the fold of modern machine learning, allowing private training of
models with arbitrarily complex loss landscapes that can scale to enormous datasets. DP-SGD adds
Gaussian noise at every iteration to an aggregation of clipped gradients, and thus privacy analysis
for DP-SGD often boils down to finding tight composition bounds (of the subsampled Gaussian
mechanism).

The initial version of DP-SGD based on the standard strong composition (Bassily et al., 2014) is
not quite practical, but that has changed, thanks to a community-wide effort in developing modern
numerical privacy accounting tools in the past few years. These include the moments accountant
that composes Renyi DP functions (Abadi et al., 2016; Wang et al., 2019; Mironov et al., 2019) and
the Fourier accountant (also known as PLV or PLD accountants) that directly compose the privacy
profiles (Sommer et al., 2019; Koskela et al., 2020; Gopi et al., 2021; Zhu et al., 2022). It is safe to
conclude that the numerically computed privacy loss of DP-SGD using these modern tools is now
very precise.

1“Honest” hyperparameter tuning is a term coined by Mohapatra et al. (2022).
2The concurrent work of Agarwal et al. (2023) has independently identified this bug as well.
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Because DP-SGD releases each intermediate model, the algorithm can stop after any number of
iterations and simply accumulates privacy loss as it goes. In contrast, the privacy guarantees of
objective perturbation hold only when the output of the mechanism is the exact minima of the
perturbed objective. This requirement is at odds with practical convex optimization frameworks
which typically use first-order methods to search for an approximate solution.

To remedy this, Iyengar et al. (2019) proposed an approach to approximately minimize a perturbed
objective function while maintaining privacy. Approximate Minima Perturbation (AMP) was intro-
duced as a tractable alternative to objective perturbation whose privacy guarantees permit the output
to be an approximate (rather than exact) solution to the perturbed minimization problem. In this paper
we extend AMP to a broader range of loss functions; Algorithm 1 can be viewed as a special case of
AMP with a transformation of the loss function.

2 Preliminaries

2.1 Differential Privacy

Differential privacy (DP) (Dwork et al., 2006) offers provable privacy protection by restricting how
much the output of a randomized algorithm can leak information about a single data point.

DP requires a notion of how to measure similarity between datasets. We say that datasets Z and Z ′

are neighboring datasets (denoted Z ≃ Z ′) if they differ by exactly one datapoint z, i.e. Z ′ = Z∪{z}
or Z ′ = Z \ {z} for some data entry z.

Definition 2.1 (Differential privacy). A mechanismM : Z → R satisfies (ϵ, δ)-differential privacy
if for all neighboring datasets Z,Z ′ ∈ Z and output sets S ⊆ R,

Pr [M(Z) ∈ S] ≤ eϵPr [M(Z ′) ∈ S] + δ.

When δ > 0,M satisfies approximate DP. When δ = 0,M satisfies the stronger notion of pure DP.

We say thatM is tightly (ϵ, δ)-DP if there is no δ′ < δ for whichM would be (ϵ, δ′)-DP.

In what follows, we overview two different styles of achieving DP guarantees: one via hockey-stick
divergence, and the other via Rényi divergence.

2.1.1 DP via hockey-stick divergence

Definition 2.2 (Hockey-stick divergence). Denote [x]+ = max{0, x} for x ∈ R. For α > 0 the
hockey-stick divergence Hα from a distribution P to a distribution Q is defined as

Hα(P ||Q) =

∫
[P (x)− α ·Q(x)]+ dx.

Now (with some abuse of notation) we will discuss how to bound the hockey-stick divergence
between distributionsM(Z) andM(Z ′) via the concept of privacy profiles.

Definition 2.3 (Privacy profiles Balle et al., 2018). The privacy profile δM(ϵ) of a mechanismM is
defined as

δM(ϵ) := maxZ≃Z′ He ϵ

(
M(Z)||M(Z ′)

)
.

Tight (ϵ, δ)-DP bounds can then be obtained as follows.

Lemma 2.4 (Zhu et al., 2022, Lemma 5). MechanismM satisfies (ϵ, δ)-DP if any only if δ ≥ δM(ϵ).

Dominating pairs of distributions are useful for bounding the hockey-stick divergence
He ϵ

(
M(Z)||M(Z ′)

)
accurately and, in particular, for obtaining tight bounds for compositions.

Definition 2.5 (Zhu et al. 2022). A pair of distributions (P,Q) is a dominating pair of distributions
for mechanismM : Z → R if for all neighboring datasets Z and Z ′ and for all α > 0,

Hα(M(Z)||M(Z ′)) ≤ Hα(P ||Q).
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2.1.2 DP via Rényi divergence

Definition 2.6. (Rényi divergence.) Let α > 0. For α ̸= 1, the Rényi divergence Dα from distribution
P to distribution Q is defined as

Dα(P ||Q) =
1

α− 1
logEx∼Q

[(
P (x)

Q(x)

)α ]
.

When α = 1, Rényi divergence reduces to the Kullback–Leibler (KL) divergence:

D1(P ||Q) = Ex∼P

[
log

(
P (x)

Q(x)

) ]
.

Rényi differential privacy (RDP) is a relaxation of pure DP (δ = 0) based on Rényi divergence.
Definition 2.7 (Rényi differential privacy). A mechanism M : Z → R satisfies (α, ϵ)-Rényi
differential privacy if for all neighboring datasets Z,Z ′ ∈ Z ,

Dα

(
M(Z) || M(Z ′)

)
≤ ϵ,

RDP implies (ϵ, δ)-DP for any 0 < δ ≤ 1 with ϵ = minα>1{ϵ(α) + log(1/δ)/(α− 1)}. Tighter but
more complex conversion formulae were derived by Balle et al. (2020) and Canonne et al. (2020),
which we adopt numerically in our experiments whenever approximate DP is needed.

2.2 Differentially Private Empirical Risk Minimization

We have a dataset Z ∈ Z and a loss function ℓ(θ; z); we want to solve problems of the form

θ̂ = argmin
θ∈Θ

∑
z∈Z

ℓ(θ; z) + r(θ),

where z = (x, y) ∈ X × Y is a data point and r(θ) is a regularization term. The feature space is
X ⊆ Rd and the label space is Y ⊆ R. We will assume that ||x||2 ≤ 1 and |y| ≤ 1.

This work focuses on unconstrained convex generalized linear models (GLMs): we require that ℓ(θ)
and r(θ) are convex and twice-differentiable and that Θ = Rd. The loss function is assumed to have
GLM structure of the form ℓ(θ; z) = f(xT θ; y).

Objective Perturbation Construct the perturbed objective function by sampling b ∼ N (0, σ2Id):

LP (θ;Z, b) =
∑
z∈Z

ℓ(θ; z) +
λ

2
||θ||22 + bT θ.

The objective perturbation mechanism (ObjPert) outputs θ̂P (Z) = argminθ∈Θ LP (θ;Z, b).
Theorem 2.8 (DP guarantees of objective perturbation (Kifer et al., 2012)). Let ℓ(θ; z) be convex and
twice-differentiable such that ||∇ℓ(θ; z)||2 ≤ L and ∇2ℓ(θ; z) ≺ βId for all θ ∈ Θ and z ∈ X × Y .

Then objective perturbation satisfies (ϵ, δ)-DP when λ ≥ 2β
ϵ and σ ≥ L

√
8 log(2/δ)+4ϵ

ϵ .

Differentially Private Gradient Descent DP-SGD is a differentially private version of stochastic
gradient descent which ensures privacy by clipping the per-example gradients at each iteration before
aggregating them and adding noise to the result. The update rule at iteration t is given by

θt+1 = θt − ηt

(∑
z∈Bt

clip
(
∇ℓ(θt; z)

)
+N (0, σ2Id)

)
,

where ηt is the learning rate at iteration t, Bt is the current batch at iteration t, σ is the noise scale,
and clip is a function that bounds the norm of the per-example gradients.

3 Analytical Tools

Existing privacy guarantees of the objective perturbation mechanism (Chaudhuri et al., 2011; Kifer
et al., 2012) pre-date modern privacy accounting tools such as Rényi differential privacy and privacy
profiles. In this section, we present two new privacy analyses of objective perturbation: an (ϵ, δ)-DP
bound based on privacy profiles, and an RDP bound.
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3.1 Approximate DP Bound

Theorem 3.1 (Approximate DP guarantees of objective perturbation for GLMs). Consider a loss
function ℓ(θ; z) = f(xT θ; y) with GLM structure. Suppose that f is β-smooth and ||∇ℓ(θ; z)||2 ≤ L

for all θ ∈ Θ and z ∈ X × Y . Fix λ > β. Let ϵ ≥ 0 and let ϵ̃ = ϵ − log
(
1− β

λ

)
, ϵ̂ =

ϵ − log
(
1− β

λ

)
− L2

2σ2 , and let P and Q be the density functions of N (L, σ2) and N (0, σ2),

respectively. Objective perturbation satisfies
(
ϵ,δ(ϵ)

)
-DP for

δ(ϵ) =

{
2 ·Heϵ̃

(
P ||Q

)
, if ϵ̂ ≥ 0,

(1− e ϵ̂) + e ϵ̂ · 2 ·H
e
L2

σ2

(
P ||Q

)
, otherwise. (3.1)

Notice that we can express (3.1) analytically using (B.1). To obtain the bound (3.1) we repeatedly
use the fact that the privacy loss random variable (PLRV) determined by the distributions N (1, σ2)
and N (0, σ2) is distributed as N ( 1

2σ2 ,
1
σ2 ). As the upper bound (3.1) is obtained using a PLRV that

is a certain scaled and shifted half-normal distribution, we can also find certain scaled and shifted
half-normal distributions P and Q which give the dominating pair of distributions for the objective
perturbation mechanism such that the hockey-stick divergence between P and Q is exactly the upper
bound (3.1) for all ϵ (shown in the appendix).

3.2 Rényi Differential Privacy Bound

If our sole objective is to obtain the tightest possible approximate DP bounds for objective perturbation,
we can stop at Theorem 3.1! Directly calculating the privacy profiles of objective perturbation using
the hockey-stick divergence, as in the previous section, will achieve this goal (until more privacy
accounting tools come along).

In this section we turn instead to Rényi differential privacy, a popular relaxation of pure differential
privacy (δ = 0) which avoids the “catastrophic privacy breach” possibility permitted by approximate
DP (δ > 0). Below, we present an RDP guarantee for objective perturbation.

Theorem 3.2 (RDP guarantees of objective perturbation for GLMs). Consider a loss function
ℓ(θ; z) = f(xT θ; y) with GLM structure. Suppose that f is β-smooth and ||∇ℓ(θ; z)||2 ≤ L for all
θ ∈ Θ and z ∈ X × Y . Fix λ > β. Objective perturbation satisfies (α, ϵ)-RDP for any α > 1 with

ϵ = − log

(
1− β

λ

)
+

L2

2σ2
+

1

α− 1
logE

X∼N
(
0,L

2

σ2

) [e(α−1)|X|
]
.

For α = 1, the RDP bound holds with

ϵ = − log

(
1− β

λ

)
+

L2

2σ2
+ logE

X∼N
(
0,L

2

σ2

) [e|X|
]
.

One of our main motivations for improving the privacy analysis of objective perturbation comes from
the observation that it can be competitive to DP-SGD when the privacy cost of hyperparameter tuning
is included in the privacy budget. As the tightest results for DP hyperparameter tuning are stated
in terms of RDP (Papernot & Steinke, 2022), in our experiments we use RDP bounds of objective
perturbation to get a clear understanding of the differences in the privacy-utility trade-offs between
these two approaches.
Remark 3.3. Privacy profile and RDP bounds (such as Theorems 3.1 and 3.2) are unified in the sense
that they are both based on a certain bound of the PLRV ϵZ,Z′ (Definition K.4) for a fixed pair of
datasets Z,Z ′. From Definitions 2.2 and 2.7 we see that for ϵ ∈ R, the hockey-stick divergence is

He ϵ

(
M(Z) || M(Z ′)

)
= Eθ∼M(Z)

[
1− e ϵ−ϵZ,Z′ (θ)

]
+
,

and for α > 1 we have that the Rényi divergence is

Dα

(
M(Z) || M(Z ′)

)
=

1

α− 1
logEθ∼M(Z)

[
eα ϵZ,Z′ (θ)

]
.
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3.3 Distance to Optimality

How close to optimal are the bounds of Theorems 3.1 and 3.2 ? We can in fact show that the Gaussian
mechanism is a special case of the objective perturbation mechanism — thereby providing a lower
bound on its approximate DP and RDP.
Example 3.4. Consider the loss function ℓ(θ;x) = xT θ and choose neighboring datasets X = {x}
and X ′ = ∅, for some x ∈ Rd. Fix λ > 0 and sample b ∼ N (0, σ2Id). Then the objective
perturbation mechanism solves

θ̂P (X) = argmin
θ∈Rd

xT θ +
λ

2
||θ||22 + bT θ = − 1

λ
(x+ b),

θ̂P (X ′) = argmin
θ∈Rd

λ

2
||θ||22 + bT θ = − 1

λ
b.

Observe that θ̂P (X) ∼ N (− 1
λx,

σ2

λ2 Id) and θ̂P (X ′) ∼ N (0, σ2

λ2 Id). Following the problem set-
ting described in Theorem 2.8, we have that ||x||2 = ||∇ℓ(θ;x)||2 ≤ L. In this case, objective
perturbation reduces directly to the Gaussian mechanism with sensitivity ∆f = L

λ and noise scale σ
λ .

Corollary 3.5. As a consequence of Example 3.4 and the scaling invariance of the hockey-stick
divergence, for all α > 1 we have the following:

Hα

(
θ̂P (Z) || θ̂P (Z ′)

)
≥ Hα

(
N (0, σ2

λ2 ) || N (Lλ ,
σ2

λ2 )
)
= Hα

(
N (0, σ2) || N (L, σ2)

)
.

The argument works the same for the Rényi divergence Dα which is similarly scaling-invariant.
Corollary 3.5 implies that we can measure the tightness of the bounds given in Theorems 3.1 and 3.2
by comparing them to the tight bounds of the Gaussian mechanism (B.1) with sensitivity ∆f = L
and noise scale σ.

This means that in Figure 1, the hockey-stick divergence of the Gaussian mechanism is a lower
bound on the hockey-stick divergence for objective perturbation. While our hockey-stick divergence
bound is unsurprisingly a bit tighter than the RDP bound for objective perturbation, we see that both
significantly improve over the classic (ϵ, δ)-DP bounds of Kifer et al. (2012).
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10 11

10 9

10 7
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10 3

10 1
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Kifer et al.
RDP for ObjPert
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Figure 1: Comparison of different (ϵ, δ)-bounds for objective perturbation: the (ϵ, δ)-bound by Kifer
et al. (2012) given in Thm. 2.8, the RDP bound of Thm. 3.2, the approximate DP bound of Thm. 3.1
using the hockey-stick divergence and the approximate DP lower bound obtained using the hockey-
stick divergence and Cor. 3.5. Left: σ = 5.0, β = 1.0 and λ = 20.0. Right: σ = 10.0, β = 1.0 and
λ = 5.0.

Remark 3.6. The RDP and approximate DP bounds in this section require a careful analysis of the
dependence between the noise vector b and the private minimizer θP . In the appendix, we show how
the GLM assumption simplifies this issue.

4 Computational Tools

In this section we present Algorithm 1, which extends the Approximate Minima Perturbation of
Iyengar et al. (2019) to handle loss functions with unbounded gradient.
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Approximate minima The privacy guarantees of objective perturbation hold only when its output is
an exact minimizer of the perturbed objective. Approximate Minima Perturbation (AMP) (Iyengar
et al., 2019) addresses this issue by finding an approximate minimizer to the perturbed objective, then
privately releases this approximate minimizer with the Gaussian mechanism.

Gradient clipping DP-SGD requires no a priori bound on the gradient of the loss function; at each
iteration, the algorithm clips the per-example gradients above a pre-specified threshold in order to
bound the gradient norms. We extend this same technique to objective perturbation.

Given a loss function ℓ(θ; z) and a clipping threshold C, we can transform the gradient of ℓ(θ; z) as
follows:

∇ℓC(θ; z) =

{
∇ℓ(θ; z) if ||∇ℓ(θ; z)||2 ≤ C,

C
||∇ℓ(θ;z)||2∇ℓ(θ; z) if ||∇ℓ(θ; z)||2 > C.

Then we can define the aggregation of clipped gradients as∇LC(θ;Z) =
∑
z∈Z

∇ℓC(θ; z).

The aggregation of clipped gradients ∇LC(θ;Z) corresponds to an implicit "clipped-gradient"
objective function LC(θ;Z). For convex GLMs, Song et al. (2020) define this function precisely and
show that it retains the convexity and GLM structure of the original objective function L(θ;Z). We
furthermore demonstrate that this function retains the same bound β on the Lipschitz smoothness
(Theorem E.3).

Algorithm 1 extends the privacy guarantees of AMP (Iyengar et al., 2019) to loss functions with
unbounded gradient. Notice that for smooth loss functions with gradient norm bounded by L, we can
set C = L in order to recover Approximate Minima Perturbation.

Algorithm 1 Computational Objective Perturbation

Input: dataset Z; noise levels σ, σout; β-smooth loss function ℓ(·) ; regularization strength λ;
gradient norm threshold τ ; clipping threshold C.
1. Construct the set of clipped-gradient loss functions {ℓC(θ; z) : z ∈ Z}.
2. Sample b ∼ N (0, σ2Id).
3. Let LP

C(θ;Z, b) =
∑

z∈Z ℓC(θ; z) +
λ
2 ||θ||

2
2 + bT θ.

4. Solve for θ̃ such that ||∇LP
C(θ̃;Z)||2 ≤ τ .

Output: θ̃P = θ̃ +N (0, σ2
outId).

Theorem 4.1 (RDP guarantees of Algorithm 1). Consider a loss function ℓ(θ; z) = f(xT θ; y) with
GLM structure, such that f is β-smooth. Fix λ > β. Algorithm 1 satisfies (α, ϵ)-RDP for any α > 1
with

ϵ ≤ − log

(
1− β

λ

)
+

C2

2σ2
+

1

α− 1
logE

X∼N
(
0,C

2

σ2

) [e(α−1)|X|
]
+

2τ2α

σ2
outλ

2
.

Remark 4.2. Gradient clipping aside, our proof of Theorem 4.1 takes a different tack than the proof
of Theorem 1 (for AMP) in Iyengar et al. (2019). We observe that Algorithm 1 is essentially an
adaptive composition of the objective perturbation mechanism and the Gaussian mechanism. We can
write θ̃ = θP + (θ̃− θP ) to see that we are releasing two quantities: θP (with objective perturbation)
and the difference θ̃ − θP (with the Gaussian mechanism). Algorithm 1 stops iterating only after the
gradient norm ||∇LP

C(θ̃;Z)||2 is below the threshold τ . This along with the λ-strong convexity of
the objective function ∇LP

C(θ;Z) ensures a bound on the ℓ2-sensitivity of the difference θ̃ − θP , so
that we can apply the Gaussian mechanism.

4.1 Computational Guarantee

To achieve the optimal excess risk bounds for DP-ERM in the convex setting, DP-SGD clocks in at a
hefty O(n2) gradient evaluations (Bassily et al., 2014). It has been an open problem to obtain optimal
DP-ERM algorithms that runs in subquadratic time (Kulkarni et al., 2021). One of our contributions
is to show that when we further restrict to smooth GLM-losses (so ObjPert is applicable) Algorithm 1
can achieve the same optimal rate with only O(n log n) gradient evaluations.
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A formal claim and proof that Algorithm 1 — with appropriately chosen parameters — achieves
the optimal rate is deferred to Appendix H. The analysis is largely the same as those in (Kifer et al.,
2012) but with the bug fixed (details in Appendix G) by adding a GLM assumption.

The improved computational complexity is due to that we can apply any off-the-shelf optimization
algorithms to solve Step 4 of Algorithm 1. Observe that LP (θ;Z, b) has a finite-sum structure, we
can employ the Stochastic Averaged Gradient (SAG) method (Schmidt et al., 2017) which halts in
O(n log n) with high probability. Details are provided in Appendix F.

5 Empirical Evaluation

In this section we evaluate Algorithm 1 against two baselines: “dishonest” DP-SGD and “honest”
DP-SGD. Dishonest DP-SGD does not account for the privacy cost of hyperparameter tuning; honest
DP-SGD follows the private selection algorithm and RDP bounds from Papernot & Steinke (2022).

Our experimental design includes some guidelines in order to make it a fair fight. One of the strengths
of Algorithm 1 that we advocate for is its blackbox optimization. Whereas DP-SGD consumes
privacy budget for testing each set of hyperparameter candidates, an advantage of approximate
minima perturbation is that the privacy guarantees are independent of the choice of optimizer used to
solve for θ̃. We can therefore test out any number of optimization hyperparameters for Algorithm 1 at
no additional privacy cost, provided that these parameters are independent of the privacy guarantee
(e.g. learning rate, batch size). More specifically, once the loss function is perturbed with the noise b
in Algorithm 1, any θ̃ that satisfies the convergence guarantees with the tolerance parameter τ will
have the RDP-guarantees of Theorem 4.1 and therefore we are free to also carry out tuning of the
optimization algorithm without an additional privacy cost.

Because we are interested in measuring the effect of the privacy cost of hyperparameter tuning, we
tune only the learning rate which does not affect the privacy guarantee of the base algorithm. This
isolates the effect of hyperparameter tuning as we will need to appeal to Papernot & Steinke (2022)
to get valid DP bounds for DP-SGD, but Algorithm 1 enjoys hyperparameter tuning “for free”.

The following table summarizes the optimization-related parameters for all three methods.

Dishonest DP-SGD Honest DP-SGD Algorithm 1

clipping C =
√
2 C =

√
2 C =

√
2

learning rate log(10−8, 10−1) log(10−8, 10−1) linear(.08, .5)

grid size s = 10 K ∼ Poisson(µ) s.t. Pr [K > s] = 0.9 s = 10

optimizer Adam Adam L-BFGS

convergence after T iterations after T iterations ||∇L(θ̃)||2 ≤ τ

The choice of C =
√
2 is a natural value for logistic regression in that ||∇ℓ(θ, z)|| ≤

√
2 for all

θ, z due to data-preprocessing and the bias term. Dishonest DP-SGD selects s = 10 learning rate
candidates evenly log-spaced from the range of values between 10−8 and 10−1. Honest DP-SGD
selects learning rate candidates from the same range of values, but with granularity determined by a
random variable K sampled from the Poisson distribution Poisson(µ). We select µ so that with 90%
probability, K is larger than the grid size s used for dishonest DP-SGD, resulting in µ ≈ 15.4.

We use the Adam optimizer for both honest and dishonest DP-SGD. For Algorithm 1 we use the
L-BFGS optimizer whose second-order behavior allows us to get within a smaller distance to optimal
(as required by Algorithm 1).

For DP-SGD we set the subsampling ratio such that the expected batch size is 256 and we run for 60
"epochs". We calculate the number of iterations as T = 60 · num_batches, where num_batches is
the number of batches in the training dataset (we pass the train loader through the Opacus privacy
engine, so the size of each batch is random). To calibrate the scale of the noise for DP-SGD, we use
the analytical moments accountant (Wang et al., 2019) with Poisson sampling (Zhu & Wang, 2019;
Mironov et al., 2019).
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The parameters specific to AMP are σout, the noise scale for the output perturbation step; and τ ,
the gradient norm bound. A larger τ will improve our computational cost, though our approximate
minimizer θ̃ will be farther away from the true minimizer θP . We can achieve a smaller τ by choosing
a larger σout, but this will mean that our release of θ̃ will be noisier. In our experiments we fix
τ = 0.01 and σout = 0.15.

The privacy parameters of objective perturbation are the noise scale σ and the regularization strength
λ. Balancing these parameters is a classic exercise in bias-variance trade-off. A larger σ will allow us
to use less regularization, but if σ is too large then we risk adding too much noise to the objective
function and hurting utility.

Our strategy is to find the smallest possible λ such that σ isn’t too large. To quantify when σ is
“too large”, we use the Gaussian mechanism as a reference point: the noise scale σ for objective
perturbation shouldn’t be too much larger than the noise scale σG for the Gaussian mechanism.
Let’s say that the Gaussian mechanism with noise scale σG satisfies (ϵ, δ)-DP, then we want our σ
for (ϵ, δ)-DP objective perturbation to satisfy σ ≤ fσG for some small constant factor f . In our
experiments, we set f = 1.3.

For objective perturbation, we can thus select the privacy parameters σ and λ using fixed values
(e.g., ϵ, δ, σG) that are independent of the data. Likewise, the choices of σout and τ are fixed across
all datasets. This is noteworthy since σ, λ, σout and τ each have an effect on the privacy guarantee,
outside of the blackbox algorithm. Tuning these parameters on the data would require us to use the
private selection algorithm.
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Figure 2: Comparison of Algorithm 1 against honest and dishonest DP-SGD baselines, varying
ϵ ∈ {0.025, 0.05, 0.1, 0.25, 0.5, 1.0, 2.0, 4.0, 8.0} and fixing δ = 10−5. On all three methods, we
train the model for each learning rate on its grid (see Table 5) and report the test accuracy for the best
learning rate on the grid. Results are averaged over 10 trials and the error bars on both sides of the
mean values depict 1.96 times the standard error, giving the asymptotic 95% coverage.

We evaluate our methods for binary classification on the Adult, Synthetic-L, Synthetic-H and Gisette
datasets provided by Iyengar et al. (2019). We normalize each row xi to have unit ℓ2-norm. Note
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that the assignment xi ← xi

||xi||2 doesn’t require expending any privacy budget as each data point is
transformed only by its own per-sample norm.

Table 1: Synthetic-L
Dishonest Alg 1 Honest

ϵ = 0.1 93.85% 90.05% 77.34%

ϵ = 1 95.25 94.50% 93.15%

ϵ = 8 95.43% 95.30% 95.17 %

Table 2: Adult
Dishonest Alg 1 Honest

ϵ = 0.1 81.61% 81.37% 78.32%

ϵ = 1 83.54% 83.18% 82.40%

ϵ = 8 84.19% 83.99% 83.66%

Results from Figure 5 in numerical format for the low-dimensional datasets, Synthetic-L and Adult.
For ϵ = 0.1, these can be cross-referenced with the results in Fig. 3 from (Iyengar et al., 2019).

The experimental results shown in Figure 5, Table 1 and Table 2 paint a consistent picture. While
dishonest DP-SGD is clearly the best-performing algorithm, when we account for the cost of
hyperparameter tuning then Algorithm 1 can typically best honest DP-SGD. This effect is especially
pronounced under small ϵ, for which diverting some of the limited privacy budget to hyperparameter
tuning could be more impactful.

Is it fair? Our experimental design aims to fairly compare ObjPert to DP-SGD. One limitation,
however, is that the state-of-the-art tools for private hyperparameter tuning from Papernot & Steinke
(2022) are RDP bounds — and RDP is not state-of-the-art for DP-SGD privacy accounting. At
this moment, the tighest privacy accounting tool for DP-SGD is the PRV accountant from Gopi
et al. (2021), which is the counterpart to our privacy profiles analysis for ObjPert (Theorem 3.1).
Unfortunately, even though dishonest DP-SGD would benefit from using the PRV accountant, for
private hyperparameter tuning we would then have to use the sub-optimal private selection bounds
for approximate DP from Liu & Talwar (2019). In our experiments we therefore use RDP-based
privacy accounting for both ObjPert and DP-SGD. Comparing DP-SGD with numerical composition
against ObjPert with Theorem 3.1 will have to wait until more private selection tools are available.

One might also object that by tuning only the learning rate for DP-SGD, we didn’t explore the full
range of hyperparameters relevant to DP-SGD’s performance. While tuning additional hyperparame-
ters such as the batch size and number of epochs could benefit dishonest DP-SGD, it would likely
worsen the privacy-utility tradeoff for honestly-tuned DP-SGD due to the increased privacy cost of
the hyperparameter tuning algorithm from Papernot & Steinke (2022).

6 Conclusion

One point that we really wanted to drive home is that while DP-SGD works extraordinarily well
across a wide variety of problem settings, it’s not necessarily the best solution for every problem
setting. But at the same time, DP-SGD has received the benefit of an enormous amount of attention
that other DP learning algorithms haven’t received. A goal of our paper was to hone in on a particular
problem setting and give a different algorithm the same star treatment.

Objective perturbation now boasts two new privacy analyses. One is an improved (ϵ, δ)-DP analysis
based on bounding the hockey-stick divergence. The other is an RDP analysis which allows us to fairly
compare objective perturbation against DP-SGD — the workhorse of differentially private learning
— with honest hyperparameter tuning. We’ve also expanded the approximate minima perturbation
algorithm of Iyengar et al. (2019) in order to encompass a broader range of loss functions which
need not have bounded gradient. Our algorithm moreover can be used in conjunction with SVRG to
guarantee a running time of O(n log n) to achieve the optimal excess risk bounds, improving on the
O(n2) computational guarantee of DP-SGD.
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A Notation

Denote the following:

• L(θ) =
n∑

i=1

ℓi(θ),

• Lλ(θ) = L(θ) + λ
2 ||θ||

2
2,

• LP (θ) = L(θ) + λ
2 ||θ||

2
2 + bT θ, b ∼ N (0, σ2Id),

• θ∗ = argmin
θ∈Rd

L(θ),

• θ∗λ = argmin
θ∈Rd

Lλ(θ),

• θP = argmin
θ∈Rd

LP (θ),

• θ̃ satisfies ||∇LP (θ̃)||2 ≤ τ ,

• θ̃P = θ̃ + b2 , b2 ∼ N (0, σ2
outId).

We take ||X || to be the size of the data domain X , i.e. ||X || = supx∈X ||x||. For conciseness of
presentation we sometimes drop the dataset Z from the notation, e.g. we abbreviate L(θ;Z) as L(θ).
Sometimes (especially in the proofs that follow) we will abuse notation by overloading a function
with its output, e.g. θP is the output of objective perturbation and θP (Z) is the objective perturbation
mechanism.

B Warm-up: Gaussian Mechanism

We will get started by reviewing the RDP and privacy profile bounds for the Gaussian mechanism.
Once warmed up, we then present the RDP and privacy profile bounds for objective perturbation in
Sections C and D.

Consider the Gaussian mechanism defined byM(Z) = f(Z) +N (0, σ2Id), for a function f : Z →
Rd with global sensitivity ∆f = maxZ≃Z′ ||f(Z)− f(Z ′)||2.

B.1 Privacy profile of the Gaussian Mechanism

Analytic Gaussian mechanism (Balle & Wang, 2018).

Let P and Q be the density functions of N (∆f , σ
2) and N (0, σ2), respectively. Then (P,Q) is a

dominating pair of distributions forM, andM is tightly (ϵ, δ(ϵ))-DP for

δ(ϵ) = Heϵ
(
P ||Q

)
= Φ

(
− ϵσ

∆f
+

∆f

2σ

)
− eϵΦ

(
− ϵσ

∆f
− ∆f

2σ

)
, (B.1)

where Φ denotes the CDF of the standard univariate Gaussian distribution.

We can analytically express a tight upper bound for the Gaussian mechanism above, but in general
numerical methods are needed to evaluate the hockey-stick divergence for dominating pairs of
distributions. This is discussed with more detail in Section D.

B.2 RDP Analysis of the Gaussian Mechanism

Theorem B.1 (RDP guarantees of the Gaussian mechanism). The Gaussian mechanismM satisfies

(α, ϵ)-RDP for α > 1 and ϵ =
∆2

fα

2σ2 .
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C RDP analysis of objective perturbation

In this section we present the proof of Theorem 3.2, one of our main privacy results: an RDP bound
on the objective perturbation mechanism.

Proof of Theorem 3.2. Recall from Definition 2.7 that the objective perturbation mechanism θ̂P :
Z∗ → Rd satisfies ϵ(α)-Rényi differential privacy if for all neighboring datasets Z and Z ′,

Dα

(
θ̂P (Z) || θ̂P (Z ′)

)
≤ ϵ(α).

Assume that Z ∈ Zn and construct Z ′ ∈ Zn+ by adding a datapoint z to Z. Note that this convention
(while convenient for writing down the PLRV of objective perturbation) comes with loss of generality.
As a consequence of asymmetry3, the upper bound on the RDP must satisfy

max

(
Dα

(
θ̂P (Z) || θ̂P (Z ′)

)
, Dα

(
θ̂P (Z ′) || θ̂P (Z)

))
≤ ϵ(α).

We will calculate the Rényi divergence Dα

(
θ̂P (Z) || θ̂P (Z ′)

)
of objective perturbation under a

change of measure:

Dα(P ||Q) =
1

α− 1
logEx∼Q

[(
P (x)

Q(x)

)α ]
=

1

α− 1
logEx∼P

[(
P (x)

Q(x)

)α−1
]
.

Let R(θP ) :=
Pr[θ̂P (Z)=θP ]
Pr[θ̂P (Z′)=θP ]

be shorthand for the probability density ratio at output θP . Then

Dα(θ̂
P (Z) || θ̂P (Z ′)) =

1

α− 1
logEθP∼θ̂P (Z)

[
R(θP )(α−1)

]
=

1

α− 1
logEθP∼θ̂P (Z)

[
elog[R(θP )(α−1)]

]
=

1

α− 1
logEθP∼θ̂P (Z)

[
e(α−1) logR(θP )

]
≤ 1

α− 1
logEθP∼θ̂P (Z)

[
e(α−1)|logR(θP )|

]
.

Denote J(θ;Z) =
∑

z∈Z ℓ(θ; z) + λ
2 ||θ||

2
2 and µ(θ, Z, z) = xT

(
∇2J(θ;Z)

)−1
x.

From Lemma K.9 and the λ-strong convexity of J(θ;Z), we can bound µ(θ, Z, z) by ||x||22
λ ≤ 1

λ .

We also know from the L-Lipschitzness of ℓ(θ; z) and the β-smoothness of f(xT θ; y) that
||∇ℓ(θ; z)||2 ≤ L and f ′′(xT θ; y) ≤ β for all θ ∈ Rd and z = (x, y) ∈ Z .

Then using the GLM assumption, from Redberg & Wang (2021) we can bound the absolute value of
the log-probability ratio for any θP as∣∣∣∣∣∣log

Pr
[
θ̂P (Z) = θP

]
Pr
[
θ̂P (Z ′) = θP

]
∣∣∣∣∣∣ ≤

∣∣∣∣− log
(
1− f ′′(xT θ; y)µ(θP , Z, z)

)
− 1

2σ2
||∇ℓ(θP ; z)||22 −

1

σ2
∇J(θP ;Z)T∇ℓ(θ; z)

∣∣∣∣
≤
∣∣− log

(
1− f ′′(xT θP ; y)µ(θP , Z, z)

)∣∣+ 1

2σ2
||∇ℓ(θP ; z)||22 +

1

σ2

∣∣∇J(θP ;Z)T∇ℓ(θP ; z)
∣∣

≤
∣∣∣∣− log

(
1− β

λ

)∣∣∣∣+ L2

2σ2
+

1

σ2

∣∣∇J(θP ;Z)T∇ℓ(θP ; z)
∣∣ .

It is more challenging to find a data-independent bound for the third term due to the the shared
dependence on θP .

3This is in contrast to the symmetry of the Gaussian mechanism M(Z) = f(Z) + N (0, σ2Id),

in which case ϵ(α) can be calculated exactly as Dα

(
N (0, σ2Id) || N (∆f , σ

2Id)
)

=
α∆2

f

2σ2
=

Dα

(
N (∆f , σ

2Id) || N (0, σ2Id)
)
.
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Recall that b ∼ N (0, σ2Id) is the noise vector in the perturbed objective. By first-order conditions at
the minimizer θP ,

b = −∇J(θP ;Z).

If θP were fixed (or if θP were independent to b), the quantity ∇J(θP ;Z)T∇ℓ(θP ; z) =
−bT∇ℓ(θP ; z) would have been distributed as a univariate Gaussian N (0, σ2||∇ℓ(θP ; z)||22). Unfor-
tunately in our case θP is a random variable, and consequently we don’t have the tools to understand
the distribution of∇J(θP ;Z)T∇ℓ(θP ; z) for an arbitrary loss function.

But using the GLM assumption on the loss function, we can write

∇J(θ;Z)T∇ℓ(θ; z) = −bTxf ′(xT θ, y).

Observe that x is fixed w.r.t. b so that −bTx ∼ N (0, σ2∥x∥22), and f ′(xT θ, y) is a scalar. So while
this scalar is a random variable that still depends on b in a complicated way, the worst possible
dependence can be more easily quantified without incurring additional dimension dependence.

By the L-Lipschitz assumption and |ab| ≤ |a||b|, we obtain the following bound:

∣∣∇J(θP ;Z)T∇ℓ(θP ; z)
∣∣ = ∣∣f ′(xT θP ; y)∇J(θP ;Z)Tx

∣∣
≤ L

∣∣∇J(θP ;Z)Tx
∣∣ .

This is much better! By first-order conditions we can then see

L
∣∣∇J(θP ;Z)Tx

∣∣ = L
∣∣bTx∣∣ = |N (0, σ2∥x∥2L2)| ∼ Half-Normal(σL∥x∥).

Now we can bound

∣∣logR(θP )
∣∣ ≤ ∣∣∣∣− log

(
1− β

λ

)∣∣∣∣+ L2

2σ2
+

1

σ2

∣∣∇J(θP ;Z)T∇ℓ(θP ; z)
∣∣

≤
∣∣∣∣− log

(
1− β

λ

)∣∣∣∣+ L2

2σ2
+

L

σ2

∣∣∇J(θP ;Z)Tx
∣∣ .

Plugging in this bound on
∣∣logR(θP )

∣∣,
Dα(θ̂

P (Z) || θ̂P (Z ′)) ≤ 1

α− 1
logEθP∼θ̂P (Z)

[
e(α−1)|logR(θP )|

]
≤ 1

α− 1
logEθP∼θ̂P (Z)

[
e
(α−1)

[
|− log(1− β

λ )|+ L2

2σ2

]
e(α−1)· L

σ2 |∇J(θP ;Z)T x|
]

=

∣∣∣∣− log

(
1− β

λ

)∣∣∣∣+ L

2σ2
+

1

α− 1
logEθP∼θ̂P (Z)

[
e(α−1)· L

σ2 |∇J(θP ;Z)T x|
]
.

Let pσ be the probability density function of b ∼ N (0, σ2Id), and pΘ the probability density

function of θP ∼ θ̂P (Z). We know from Lemmas K.6 and K.7 that ∂θ =

∣∣∣∣det ∂θ∂b
∣∣∣∣ ∂b, and

pΘ(θ) =

∣∣∣∣det ∂b∂θ
∣∣∣∣ pσ(b).

We also know from Lemma K.8 that
∣∣∣∣det ∂θ∂b

∣∣∣∣ · ∣∣∣∣det ∂b∂θ
∣∣∣∣ = 1.
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Using the change of variables b = −∇J(θP ;Z) and bTx = u ∼ N (0, σ2||x||22), we have

EθP∼θ̂P (Z)

[
e(α−1)· L

σ2 |∇J(θP ;Z)T x|
]
=

∫
Rd

e(α−1)· L
σ2 |∇J(θP ;Z)T x|pΘ

(
θP
)
∂θ

=

∫
Rd

e(α−1)· L
σ2 |bT x|

∣∣∣∣det ∂b∂θ
∣∣∣∣ pσ(b) ∣∣∣∣det ∂θ∂b

∣∣∣∣ ∂b
=

∫
Rd

e(α−1)· L
σ2 |bT x|pσ(b)∂b

= Eb∼N (0,σ2Id)

[
e(α−1)· L

σ2 |bT x|
]

= Eu∼N (0,σ2||x||22

[
e(α−1)| L

σ2 u2|
]

≤ E
ζ∼N

(
0,L

2

σ2

) [e(α−1)|ζ|
]
.

In the last line, we applied our assumption that ∥x∥ ≤ 1 and the fact that the MGF of a half-normal
R.V. increases monotonically when its scale parameter gets larger.

The above bound holds for the reverse Rényi divergence Dα(θ̂
P (Z ′) || θ̂P (Z)). Observe that

Dα(θ̂
P (Z ′) || θ̂P (Z)) ≤ 1

α− 1
logEθP∼θ̂P (Z′)

[
e(α−1)|logR(θP )|

]
.

This is because log
Pr[θ̂P (Z′)=θP ]
Pr[θ̂P (Z)=θP ]

= − logR(θP ) ≤ | logR(θP )|. If we use the change of variables

b = −∇J(θP ;Z ′) for the reverse direction, the above calculation works out identically (the difference
is that pΘ and the bijection between b and θP are different under Z and Z ′ — but the determinant of
the mapping cancels out with its inverse just the same).

We’ve shown max

(
Dα

(
θ̂P (Z) || θ̂P (Z ′)

)
, Dα

(
θ̂P (Z ′) || θ̂P (Z)

))
≤ ϵ(α) for any neighboring

datasets Z and Z ′, where

ϵ(α) = − log

(
1− β

λ

)
+

L

2σ2
+ E

[
e
(α−1)

∣∣∣N(
0,L

2

σ2

)∣∣∣]
.

C.1 Linearized RDP Bound for Objective Perturbation

In our calculation of the RDP for objective perturbation, we needed to take an absolute value of
the privacy loss random variable in order to handle negative values. But in doing so we end up
with a quantity that depends on the moments of the half-normal distribution rather than those of the
normal distribution, which gives us a looser bound. Can we avoid having to make this compromise?
In this section we demonstrate that a linearization of the first-order conditions on the perturbed
and unperturbed objective functions provides a more precise analysis of the PLRV of objective
perturbation, translating to a tighter RDP bound in some regimes.

Recall that the objective perturbation mechanism is given by

θ̂P (Z) =

n∑
i=1

ℓ(θ; zi) +
λ

2
||θ||22 + bT θ, (C.1)

where b ∼ N (0, σ2Id).

From the non-linearized RDP calculation, we know that for any neighboring datasets Z and Z ′,

Dα

(
θ̂P (Z) || θ̂P (Z ′)

)
≤
∣∣∣∣− log

(
1− β

λ

)∣∣∣∣+ L2

2σ2
+

1

α− 1
logEb∼N (0,σ2Id)

[
e(α−1)bT∇ℓ(θP )

]
,

where θP is the output of the objective perturbation mechanism given the noise vector b. We can
write

bT∇ℓ(θP ) = bT∇ℓ(θ∗λ) + bT
[
∇ℓ(θP )−∇ℓ(θ∗λ)

]
.
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The first term t1 = bT∇ℓ(θ∗λ) is a univariate Gaussian t1 ∼ N (0, σ2||∇ℓ(θ∗λ)||22) because θ∗λ is fixed
w.r.t. b. We can bound the second term t2 = bT

[
∇ℓ(θP )−∇ℓ(θ∗λ)

]
using our assumptions on the

loss function ℓ(θ).

By assumption, the loss function has GLM structure ℓ(θ; z) = f(xT θ; y). We can therefore write

bT
[
∇ℓ(θP )−∇ℓ(θ∗λ)

]
= bT

[
f ′(xT θP ; y)x− f ′(xT θ∗λ; y)x

]
= bTx

(
f ′(xT θP ; y)− f ′(xT θ∗λ; y)

)
We have furthermore assumed that the function f is β-smooth, so that for any z = (x, y) and
θP , θ∗λ ∈ Rd we have ∣∣f ′(xT θP ; y)− f ′(xT θ∗λ; y)

∣∣ ≤ β
∣∣xT θP − xT θ∗λ

∣∣
= β

∣∣xT
[
θP − θ∗λ

]∣∣ .
We will next apply Taylor’s Theorem to rewrite θP − θ∗λ.

Recall that θP is the minimizer of the perturbed objective:

θP = argmin

(
n∑

i=1

ℓ(θ; zi) +
λ

2
||θ||22 + bT θ

)
; (C.2)

and θ∗λ is the minimizer of the (non-private) regularized objective:

θ∗λ = argmin

(
n∑

i=1

ℓ(θ; zi) +
λ

2
||θ||22

)
. (C.3)

Parameterize the line segment between θP and θ∗λ by t ∈ [0, 1], i.e. the line segment is t(θP−θ∗λ)+θP .
By Taylor’s Theorem, there exists θ′ = t′(θP − θ∗λ) + θP for some t′ ∈ [0, 1] such that

∇ℓ(θP )−∇ℓ(θ∗λ) = ∇2ℓ(θ′)(θP − θ∗λ).

By first-order conditions on Equations C.2 and C.3,

∇L(θP ) + λθP + b = 0; (C.4)
∇L(θ∗λ) + λθ∗λ = 0. (C.5)

Then subtracting Equation C.5 from Equation C.4, we have that

∇L(θP )−∇L(θ∗λ) + λ(θP − θ∗λ) + b = 0. (C.6)

Again applying Taylor’s theorem, there exists θ′′ = t′′(θP − θ∗λ) + θP for some t′′ ∈ [0, 1]) such that

∇L(θP )−∇L(θ∗λ) = ∇2L(θ′′)(θP − θ∗λ). (C.7)

Putting together Equations C.6 and C.7 we then have

θP − θ∗λ = −
(
∇2L(θ

′′
) + λId

)−1

b. (C.8)

So we now have

bT
[
∇ℓ(θP )−∇ℓ(θ∗λ)

]
≤ β

∣∣bTx∣∣ ∣∣xT
(
θP − θ∗λ

)∣∣
≤ β

∣∣bTx∣∣ ∣∣∣xT
(
∇2L(θ∗λ) + λId

)−1
b
∣∣∣ . (C.9)

Note that since ex > 0 for all x ∈ R, we have that E [|ex|] = E [ex].

Let a := 1
σ2 b

T∇ℓ(θ∗) and c := 1
σ2 b

T
[
∇ℓ(θP )−∇ℓ(θ∗)

]
. Then by Holder’s inequality,
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E
[
e(α−1)ae(α−1)c

]
= E

[∣∣∣e(α−1)ae(α−1)c
∣∣∣]

≤ E
[∣∣∣e(α−1)a

∣∣∣p] 1
p

E
[∣∣∣e(α−1)c

∣∣∣q] 1
q

= E
[
e(pα−p)a

] 1
p E
[
e(qα−q)c

] 1
q

.

By the GLM assumption, bT∇ℓ(θ∗λ; z) = f ′(xT θ∗λ; y)b
Tx. Then

Eb∼N (0,σ2Id)

[
e(pα−p) 1

σ2 bT∇ℓ(θP )
]
= Eb∼N (0,σ2Id)

[
e(pα−p) 1

σ2 f ′(xT θ∗
λ;y)b

T x
]

= Eu1∼N(0,f ′(xT θ∗
λ;y)

2||x||22
1
σ2 )

[
e(pα−p)u1

]
≤ E

u2∼N
(
0,L

2

σ2

) [e(pα−p)u2

]
.

Above, we’ve applied the assumption that ||x||2 ≤ 1 and the fact that the MGF of a normal R.V.
increases monotonically when its scale parameter gets larger (Lemma K.11). By Lemma K.9, we

have that xT
(
∇2L(θ∗λ) + Id

)−2
x ≤ ||x||

2
2

λ2
. From C.9 we also have

Eb∼N (0,σ2Id)

[
e(qα−q) 1

σ2 bT [∇ℓ(θP )−∇ℓ(θ∗
λ)]
]
≤ Eb∼N (0,σ2Id)

[
e
(qα−q)β

∣∣bT x
∣∣ ∣∣∣xT (∇2L(θ∗)+λId)

−1
b
∣∣∣]

Define z1 := bTx and z2 := xT
(
∇2L(θ∗λ) + λId

)−1
b, and observe

z1 ∼ N
(
0, σ2||x||22

)
,

z2 ∼ N
(
0, σ2xT

(
∇2L(θ∗λ) + Id

)−2
x
)
.

Note that our approach below is agnostic to the relationship between |z1| and |z2|; in reality, they
depend on each other through the noise vector b. Again applying the assumption ||x||22 ≤ 1 and
Lemma K.11 (while not forgetting that the random variables z1 and z2 depend on each other through
b), we get

Eb∼N (0,σ2Id)

[
e
(qα−q)β

∣∣bT x
∣∣ ∣∣∣xT (∇2L(θ∗

λ)+λId)
−1

b
∣∣∣]

= Ez1,z2

[
e(qα−q)β|z1| |z2|

]
≤ E

z3∼N (0,σ2),z4∼N (0,σ
2

λ2 )

[
e(qα−q)β|z3| |z4|

]
= Ez3∼N (0,σ2),z5∼N (0,σ2)

[
e(qα−q) β

λ |z3| |z5|
]

≤ Ez∼N (0,σ2)

[
e(qα−q) β

λ z2
]
.

So altogether, for p, q such that 1
p + 1

q = 1, we get

Dα

(
θ̂P (Z) || θ̂P (Z ′)

)
≤

− log

(
1− β

λ

)
+

L2

2σ2
+

1

α− 1
logE

u∼N (0,L
2

σ2 )

[
e(pα−p)u

] 1
p Ez∼N (0,σ2)

[
e(qα−q) β

λ z2
] 1

q

.

D Hockey-stick Divergence Analysis of Objective Perturbation

D.1 Further Details on Hockey-stick Divergence Analysis

Using dominating pairs of distributions (Def. 2.5) for all the individual mechanisms in an adaptive
composition, we can obtain accurate (ϵ, δ)-bounds for the whole composition. For this end we need
the following result.
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Theorem D.1 (Zhu et al. 2022). If (P,Q) dominatesM and (P ′, Q′) dominatesM′ for all inputs of
M′, then (P × P ′, Q×Q′) dominates the adaptive compositionM◦M′.

To get the hockey-stick divergence from P × P ′ to Q×Q′ into an efficiently computable form, we
express it using so called privacy loss random variables (recall Def. K.4). If P and Q are probability
density functions, the privacy loss function LP/Q is defined as

LP/Q(x) = log
P (x)

Q(x)

and the privacy loss random variable (PLRV) ωP/Q as

ωP/Q = LP/Q(x), x ∼ P (x).

The δ(ϵ)-bounds can be represented using the following representation that involves the PLRV.
Theorem D.2 (Gopi et al. 2021). We have:

He ϵ(P ||Q) = E
x∼P

[
1− e ϵ−LP/Q(x)

]
+
= E

s∼ωP/Q

[
1− e ϵ−s

]
+
. (D.1)

Moreover, if ωP/Q is the PLRV for the pair of distributions (P,Q) and ωP ′/Q′ the PLRV for the pair
of distributions (P ′, Q′), then the PLRV for the pair of distributions (P × P ′, Q×Q′) is given by
ωP/Q + ωP ′/Q′ .

By Theorem D.2, to computing accurate (ϵ, δ)-bounds for compositions, it suffices that we can
evaluate integrals of the form Es∼ω1+...+ωk

[1− e ϵ−s]+. For this we can use the Fast Fourier
Transform (FFT)-based method by Koskela et al. (2021), where the distribution of each PLRV is
truncated and placed on an equidistant numerical grid over an interval [−L,L], where L > 0 is a
pre-defined parameter. The distributions for the sums of the PLRVs are given by convolutions of the
individual distributions and can be evaluated using the FFT algorithm. By a careful error analysis
the error incurred by the numerical method can be bounded and an upper δ(ϵ)-bound obtained. For
accurately carrying out this numerical computation one could also use, for example, the FFT-based
method proposed by Gopi et al. (2021).

D.2 Proof of Theorem 3.1

Before giving a proof to Thm. 3.1, we first give the following bound which is a hockey-stick equivalent
of the moment-generating function bound given in Thm. 3.2.

Lemma D.3. Let ϵ ∈ R and let the objective perturbation mechanism θ̂P be defined as in Section 2.2.
Let ||∇ℓ(θ; z)||2 ≤ L and∇2ℓ(θ; z) ≺ βId for all θ ∈ Θ and z ∈ X ×Y . Then, for any neighboring
datasets Z and Z ′, we have:

Heϵ
(
θ̂P (Z)||θ̂P (Z ′)

)
≤ Es∼ω[1− eϵ−s]+, (D.2)

where ω ∼
∣∣∣log (1− β

λ

)∣∣∣+ L2

2σ2 +
∣∣∣N (∥x∥2L2

σ2

)∣∣∣.
Proof. The proof goes analogously to the proof of Thm. 3.2. Let Z and Z ′ be any neighboring
datasets. Following the proof of Thm. 3.2, denote the privacy loss

R(θ) :=
Pr
[
θ̂P (Z) = θ

]
Pr
[
θ̂P (Z ′) = θ

] .
By Thm. D.2 and by using the reasoning of the proof of Thm. 3.2 for the moment-generating function,
we have

Heϵ
(
θ̂P (Z)||θ̂P (Z ′)

)
= Eθ∼θ̂P (Z)[1− eϵ−logR(θ)]+

≤ Eθ∼θ̂P (Z)[1− eϵ−|logR(θ)|]+

≤ E
s∼

∣∣∣N (
∥x∥2L2

σ2 )
∣∣∣[1− eϵ−|log(1−

β
λ )|− L2

2σ2 −s]+,

(D.3)

where the inequalities follow from the fact that the function f(s) = [1 − eϵ−s]+ is monotonically
increasing function w.r.t. s for all ϵ ∈ R and from the bound for |R(θ)| used in the proof of
Thm. 3.2.
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Proof of Theorem 3.1. We use Lemma D.3 and simply upper bound the right-hand side of the in-
equality (D.2).

We first show that if ∥x∥ ≤ 1, then for all ϵ ∈ R
E

s∼|log(1− β
λ )|+ L2

2σ2

∣∣∣N (0,
∥x∥2L2

σ2 )
∣∣∣[1− eϵ−s]+ ≤ E

s∼|log(1− β
λ )|+ L2

2σ2

∣∣∣N (0,L
2

σ2 )
∣∣∣[1− eϵ−s]+. (D.4)

Denote ϵ̂ = ϵ−
∣∣∣log (1− β

λ

)∣∣∣− L2

2σ2 . Consider first the case ϵ̂ ≥ 0. Then, we have:

E
s∼

∣∣∣N (0,
∥x∥2L2

σ2 )
∣∣∣[1− eϵ−|log(1−

β
λ )|− L2

2σ2 −s]+ = 2 ·E
s∼N (0,

∥x∥2L2

σ2 )
[1− eϵ̂−s]+

≤ 2 ·E
s∼N (0,L

2

σ2 )
[1− eϵ̂−s]+

= E
s∼

∣∣∣N (0,L
2

σ2 )
∣∣∣[1− eϵ−|log(1−

β
λ )|− L2

2σ2 −s]+,

(D.5)
where the first equality follows from the fact that for s ≥ ϵ̂, the density function of the half-normal
random variable is positive and 2 times the density of the corresponding normal distribution. The
inequality follows from Lemma D.8, as

E
s∼N (0,

∥x∥2L2

σ2 )
[1− eϵ̂−s]+ =

∫ ∞

ϵ̂

f
0,

∥x∥2L2

σ2

(x)(1− e ϵ̂−x) dx.

Next, consider the case ϵ̂ < 0. Then:

E
s∼

∣∣∣N (0,
∥x∥2L2

σ2 )
∣∣∣[1− eϵ−|log(1−

β
λ )|− L2

2σ2 −s]+ = 2 ·
∫ ∞

0

f
0,

∥x∥2L2

σ2

(x)(1− eϵ−|log(1−
β
λ )|− L2

2σ2 −x) dx

≤ 2 ·
∫ ∞

0

f
0,L

2

σ2
(x)(1− eϵ−|log(1−

β
λ )|− L2

2σ2 −x) dx

= E
s∼

∣∣∣N (0,L
2

σ2 )
∣∣∣[1− eϵ−|log(1−

β
λ )|− L2

2σ2 −s]+.

(D.6)
where the inequality follows from Lemma D.8. Inequalities (D.5) and (D.6) together give (D.4).

Then, we show that for all ϵ ∈ R,

E
s∼|log(1− β

λ )|+ L2

2σ2

∣∣∣N (0,L
2

σ2 )
∣∣∣[1− eϵ−s]+ =

{
2 ·Heϵ̃

(
P ||Q

)
, if ϵ̂ ≥ 0,

(1− e ϵ̂) + e ϵ̂ · 2 ·H
e
L2

σ2

(
P ||Q

)
, otherwise.

Continuing from (D.5), by change of variables, we see that for ϵ̂ ≥ 0,

2 ·E
s∼N (0,L

2

σ2 )
[1− eϵ−|log(1−

β
λ )|− L2

2σ2 −s]+ = 2 ·E
s∼N ( L2

2σ2 ,L
2

σ2 )
[1− eϵ−|log(1−

β
λ )|−s]+

= 2 ·Heϵ̃
(
P ||Q

)
,

where ϵ̃ = ϵ−
∣∣∣log (1− β

λ

)∣∣∣, P is the density function of N (L, σ2) and Q the density function of

N (0, σ2). This follows from the fact that the PLRV determined by the pair (P,Q) is distributed as
N ( L2

2σ2 ,
L2

σ2 ).

Continuing from (D.6), by change of variables (used after the third equality sign), we see that for ϵ̂z0,

2·
∫ ∞

0

f
0,L

2

σ2
(x)(1− eϵ−|log(1−

β
λ )|− L2

2σ2 −x) dx

= 2 ·
∫ ∞

0

f
0,L

2

σ2
(x) dx− 2 ·

∫ ∞

0

f
0,L

2

σ2
(x)(1− eϵ̂−x) dx

= (1− e ϵ̂) · 2 ·
∫ ∞

0

f
0,L

2

σ2
(x) dx+ e ϵ̂ · 2 ·

∫ ∞

0

f
0,L

2

σ2
(x)(1− e−x) dx

= (1− e ϵ̂) + e ϵ̂ · 2 ·
∫ ∞

L2

2σ2

f L2

2σ2 ,L
2

σ2
(x)(1− e

L2

2σ2 −x) dx

= (1− e ϵ̂) + e ϵ̂ · 2 ·E
s∼N ( L2

2σ2 ,L
2

σ2 )
[1− e

L2

2σ2 −s]+

= (1− e ϵ̂) + e ϵ̂ · 2 ·H
e

L2

2σ2

(
P ||Q

)
,
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where we again use the fact that the PLRV of the Gaussian mechanism with sensitivity L and noise
scale σ is distributed as N ( L2

2σ2 ,
L2

σ2 ).

D.3 Dominating Pairs of Distributions for the Objective Perturbation Mechanism

From Lemma D.3 and the inequality (D.4) we have that for all ϵ ∈ R

Heϵ
(
θ̂P (Z)||θ̂P (Z ′)

)
≤ E

ω∼|log(1− β
λ )|+ L2

2σ2 +
∣∣∣N (0,L

2

σ2 )
∣∣∣[1− eϵ−ω]+.

Thus, if we have distributions P and Q such that for all ϵ ∈ R

Heϵ
(
P ||Q

)
= E

ω∼|log(1− β
λ )|+ L2

2σ2 +
∣∣∣N (0,L

2

σ2 )
∣∣∣[1− eϵ−ω]+,

then the pair (P,Q) is a dominating pair of distributions for the objective perturbation mechanism.
Then, by Theorem D.2, we can use this distribution ω also to compute (ϵ, δ)-bounds for compositions
involving the objective perturbation mechanism. We give such a pair of distribution (P,Q) explicitly
in Lemma D.6 below.

In the following, we denote the density of a discrete probability mass by a Dirac delta function and use
the indicator function for the continuous part of the density. The following result is a straightforward
calculation.

Lemma D.4. Let σ > 0. Let P be the density function of
∣∣N (0, σ2

)∣∣, i.e.,

P (x) =
2√
2πσ2

e
−x2

2σ2 1[0,∞)](x), (D.7)

where 1A(x) denotes the indicator function, i.e., 1[0,∞)](x) = 1 if x ≥ 0, else 1[0,∞)](x) = 0. Let
L > 0 and let Q be a density function, where part of the mass of P is shifted to −∞:

Q(x) = Q(−∞) · δ−∞(x) +
2√
2πσ2

e
−(t+L)2

2σ2 1[0,∞)](x), (D.8)

where

Q(−∞) = 1−
∫ ∞

0

2√
2πσ2

e
−(t+L)2

2σ2 dx.

Then, we have that the PLRV ω,

ω = log
P (x)

Q(x)
, x ∼ P, (D.9)

is distributed as

ω ∼ L2

2σ2
+

∣∣∣∣N (0, L2

σ2

)∣∣∣∣ .
Proof. As P has its support on [0,∞), we need to consider the values of the privacy loss function
log P (x)

Q(x) only on [0,∞). We have, for all x ≥ 0,

log
P (x)

Q(x)
=

L

σ2
· x+

L2

2σ2
.

Since x ∼ P , we see that L
σ2 · x ∼

∣∣∣N (0, L2

σ2

)∣∣∣ and the claim follows.

Remark D.5. In Lemma D.4, instead of shifting part of the mass of P to −∞ when forming Q, we
could place this mass anywhere on the negative real axis. This would not affect the PLRV ω.

We can shift the PLRV ω given by Lemma D.4 by scaling the distribution Q. We get the following.

Lemma D.6. Let σ > 0 and L > 0. Suppose P is the density function given in Eq. (D.7) and Q the
density function

Q(x) = Q(−∞) · δ−∞(x) + e−|log(1−
β
λ )| · 2√

2πσ2
e

−(t−L)2

2σ2 1[0,∞)](x), (D.10)
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where

Q(−∞) =

(
1− e−|log(1−

β
λ )| ·

∫ ∞

0

2√
2πσ2

e
−(t−L)2

2σ

2

dx

)
.

Then, the PLRV ω determined by P and Q is distributed as

ω ∼
∣∣∣∣log(1− β

λ

)∣∣∣∣+ L2

2σ2
+

∣∣∣∣N (0, L2

σ2

)∣∣∣∣ .
Proof. Showing this goes as the proof of Lemma D.4. We just now have that for all x ≥ 0:

log
P (x)

Q(x)
=

∣∣∣∣log(1− β

λ

)∣∣∣∣+ L2

2σ2
+

L

σ2
· x.

As a corollary of Lemma D.6 and Thm. 2.4, we have:

Lemma D.7. Let k ∈ Z+ and let for each i ∈ [k]

ωi ∼
∣∣∣∣log(1− β

λ

)∣∣∣∣+ L2

2σ2
+

∣∣∣∣N (0,
L2

σ2
)

∣∣∣∣ ,
such that ωi’s are independent. Then, the k-wise adaptive composition of θ̂(Z) is (ϵ, δ(ϵ))-DP for

δ(ϵ) = Es∼ω1+...+ωk
[1− eϵ−s]+. (D.11)

D.3.1 Numerical Evaluation of (ϵ, δ)-Bounds for Compositions

Figure 3 shows the result of applying the FFT-based numerical method of Koskela et al. (2021) for
evaluating the expression (D.11). We compare the resulting approximate DP bounds to those obtained
from the RDP bounds combined with standard composition results (Mironov, 2017).

Notice that we could also carry out tighter accounting of the approximative minima perturbation
(Section 4) by adding the PLRVs of the Gaussian mechanism to the total PLRV, similarly as RDP
parameters of the Gaussian mechanism are added to the RDP guarantees of the objective perturbation
mechanism (Theorem 4.1). Adding the Gaussian PLRV to the total PLRV using convolutions is
straightforward using the method of Koskela et al. (2021).

D.4 Auxiliary Lemma

For Theorem 3.1, we need the following auxiliary result.

Lemma D.8. Denote fµ,σ2(x) the density function of the normal distributionN (µ, σ2) and let c ≥ µ.
Let g(x) be a non-negative differentiable non-decreasing function on [c,∞). Then, if σ1 ≤ σ2,∫ ∞

c

fµ,σ2
1
(x) · g(x) dx ≤

∫ ∞

c

fµ,σ2
2
(x) · g(x) dx.

Proof. By integration by parts, we have∫ ∞

c

fµ,σ2(x) · g(x) dx = −Φµ,σ2(c) · g(c)−
∫ ∞

c

Φµ,σ2(x) · g′(x) dx, (D.12)

where Φµ,σ2(x) denotes the cdf of N (µ, σ2). A simple calculation shows that for all x ∈ R,

∂

∂σ
Φµ,σ2(x) = −x− µ

σ2
fµ,σ2(x).

Thus, Φµ,σ2(c) is a non-increasing function of σ for all c ≥ µ. Furthermore, the first term in (D.12)
is a non-decreasing function of σ since g(c) is non-negative and the second term is a non-decreasing
function of σ, since g′(x) is non-negative for all x ∈ [c,∞).
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Figure 3: Comparison of our RDP bound (implied (ϵ, δ)-DP bound) and our numerical PLRV
bound (D.11) for different numbers of compositions k, when σ = 8.0, β = 1.0 and λ = 10.0.

E RDP guarantee of Algorithm 1

In what follows, we will present a (corrected) privacy guarantee for Approximate Minima Perturbation
(i.e., Algorithm 1 without gradient clipping). We will then demonstrate that the “clipped-gradient”
function ℓC(θ) not only bounds the per-example gradient norm by C, but also preserves other
properties (i.e., β-smoothness and GLM structure) required for the privacy guarantees stated in
Theorem 3.2.

E.1 Privacy Guarantee for Approximate Minima Perturbation

The proof of the privacy guarantee for Approximate Minima Perturbation (Iyengar et al., 2019),
i.e. Algorithm 1 without gradient clipping, falls prey to the same trap as previous work on objective
perturbation. In particular, we see that there is a mistake in Lemma IV.1, with the assertion that “we
get the statement of the lemma from the guarantees of the Gaussian mechanism.” The Gaussian
mechanism is inapplicable in Lemma IV.1 for similar reasons as discussed in Section G.

The proof of Theorem E.1 corrects this issue. We state it in terms of RDP, but it can also extend to
approximate DP and other DP variants.

Algorithm 2 Approximate Minima Perturbation (Iyengar et al., 2019)

Input: dataset Z; noise levels σ, σout; β-smooth loss function ℓ(·) with Lipschitz constant L;
regularization strength λ; gradient norm threshold τ .
Sample b ∼ N (0, σ2Id).
Let LP (θ;Z) =

∑
z∈Z ℓ(θ; z) + λ

2 ||θ||
2
2 + bT θ.

Solve for θ̃ such that ||∇LP
C(θ̃;Z)||2 ≤ τ .

Output θ̃P = θ̃ +N (0, σ2
outId).

Theorem E.1 (RDP guarantees of Approximate Minima Perturbation). Consider the Approximate
Minima Perturbation algorithm which satisfies (α, ϵ)-RDP for any α > 1 with

ϵ ≤ − log

(
1− β

λ

)
+

L2

2σ2
+

1

α− 1
logE

X∼N
(
0,L

2

σ2

) [e(α−1)|X|
]
+

(
2τ
λ

)2
α

2σ2
out

.
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Proof. Sample b ∼ N (0, σ2Id) and let LP (θ;Z, b) :=
∑

z∈Z ℓ(θ; z) + λ
2 ∥θ∥

2
2 + bT θ, i.e., the

perturbed and regularized objective function used by ObjPert.

Let θP = argminLP (θ;Z, b). From Chaudhuri et al. (2011); Kifer et al. (2012) we know that there
is a bijection b(θP ;Z) from the output θP to the noise vector b.

Consider a blackbox algorithm θA(Z, b) which returns θ such that ||∇LP (θ;Z, b)|| ≤ τ . Define
query

q(Z, θP ) = θA(Z)− θP .

where θA(Z) is an abbreviation for θA(Z, b(θP ;Z)).

We assume that q can recover b from the input θP via the bijection b(θP ;Z), and hence has access to
the perturbed objective function LP (θ;Z, b).

Notice that since LP is λ-strongly convex, by applying the Cauchy-Schwarz inequality and by
Definition K.3 we see that for any θ1, θ2,∣∣∣∣∇LP (θ1)−∇LP (θ2)

∣∣∣∣
2
||θ1 − θ2||2 ≥

(
∇LP (θ1)−∇LP (θ2)

)T
(θ1 − θ2) ≥ λ||θ1 − θ2||22.

Algorithm θA(Z, b) guarantees that its output θ satisfies ||∇LP (θ)||2 ≤ τ and by first-order condi-
tions on the perturbed objective function, ∇LP (θP ;Z, b) = 0. It follows that for any dataset Z and
θP , ∣∣∣∣θA(Z)− θP

∣∣∣∣
2
≤ τ

λ
,

Since the algorithm θA(Z, b) guarantees that ∥θA − θP ∥2 ≤ γ/λ, then conditioning on θP , q(Z, θP )
has a global sensitivity bounded by 2γ/λ since

∥q(Z, θP )−q(Z ′, θP )∥ ≤ ∥(θA(Z)−θP )−(θA(Z ′)−θP )∥2 ≤ ∥(θA(Z)−θP )∥+∥(θA(Z ′)−θP )∥ ≤ 2γ

λ
.

Now, the algorithm that first draws b then outputs θA(Z, b) +N (0, σ2Id) is equivalent to

• First run ObjPert that returns θP .

• Release ∆̂ = q(Z, θP ) +N (0, σ2Id).

• Return θP + ∆̂.

This is adaptive composition of ObjPert with the Gaussian mechanism. The third step is post
processing.

The privacy guarantee stated in Theorem E.1 is thus achieved by combining the results of Theorem 3.2
(RDP of ObjPert), Theorem B.1 (RDP of the Gaussian mechanism) with ∆q = 2τ

λ , and Lemma K.5
(adaptive composition for RDP mechanisms).

E.2 The “Clipped-Gradient” Function

The RDP guarantees of objective perturbation (stated in Theorem 3.2) require several assumptions on
the loss function ℓ(θ;Z). If we can demonstrate that these properties are satisfied by the “clipped-
gradient” loss function ℓC(θ;Z), then the rest of the proof of Theorem 4.1 (the privacy guarantee of
Algorithm 1) will follow directly from that.

In particular, we need to show:

1. That ℓC(θ; z) retains the convex GLM structure of the original function ℓ(θ; z).

2. That ℓC(θ; z) satisfies ||∇ℓC(θ; z)||2 ≤ C for any θ, z.

3. That ℓC(θ; z) has the same β-smoothness parameter as the original function ℓ(θ; z).
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4. That even though ℓC(θ; z) is not twice-differentiable everywhere, the privacy guarantees of
objective perturbation (whose proof involves a Jacobian mapping) still hold.

We will begin by stating a result from Song et al. (2020).
Theorem E.2 (Song et al., 2020, Lemma 5.1). Let f : R→ R be any convex function and let C ∈ R+

be any positive value. For any non-zero x ∈ Rd, define

UL =

{
u : g < − C

||x||2
∀g ∈ ∂f(u)

}
,

UH =

{
u : g >

C

||x||2
∀g ∈ ∂f(u)

}
.

If UL is non-empty, let uL = supUL; otherwise uL = −∞. If UH is non-empty, let uH = inf UH ;
otherwise uH =∞. For any non-zero x ∈ Rd, let

fC(u) =


− C

||x||2 (u− uL) , for u ∈ (−∞, uL)

f(u; y), for u ∈ (uL, uH)
C

||x||2 (u− uH) , for u ∈ (uH ,∞)

Define ux(θ) = xT θ. Then the following holds.

1. fC is convex.

2. Let ℓ(θ; (x, y)) = f(ux(θ); y) for any θ, z = (x, y). Then we have

∂θℓC(θ; z) =

{
min

{
1,

C

||ux(θ)||2)

}
· u : u ∈ ∂θℓ(θ; z)

}
.

The first two desired properties of ℓC(θ; z), i.e. GLM structure and gradient norm bound C, follow
directly from the above theorem. Next, we will prove the third property of β-smoothness.
Theorem E.3. For a data point z = (x, y), consider a function f such that ℓ(θ; z) = f(xT θ; y).
Suppose that f(xT θ; y) satisfies β-smoothness. Then the “clipped-gradient” function fC(x

T θ; y)
defined in Lemma 5.1 of Song et al. (2020) also satisfies β-smoothness.

Proof. Because f is β-smooth by assumption, we know that f(u) satisfies β-smoothness for all
u ∈ (uL, uH). When u ∈ (−∞, uL) or when u ∈ (uH ,∞), the function fC(u) is linear in u and
thus is 0-smooth (hence satisfying β-smoothness).

Lastly, the proof of objective perturbation (see, e.g., Theorem 9 of Chaudhuri et al. (2011)) requires
that the loss function be twice-differentiable. Even though ℓC(θ; z) is not twice-differentiable
everywhere, the privacy guarantees of objective perturbation still hold. To show this, we can invoke
Corollary 13 of Chaudhuri et al. (2011). This corollary assumes the Huber loss; for brevity, we will
leave it as an exercise for the reader to verify that the proof also carries through for the “clipped-
gradient” loss.

F Computational Guarantee of Algorithm 1

In this section, we provide a computational guarantee to Algorithm 1 in terms of the number of
gradient evaluations on individual loss functions to compute the approximate minimizer for achieving
(up to a constant) the information-theoretical limit.

Let f(θ) :=
∑

i ℓi(θ) +
λ
2 ∥θ∥

2 + bT θ, i.e., the perturbed and regularized objective function used by
ObjPert. Let θ∗∗ be the output returned by the blackbox algorithm θA(·) described in Section E. Note
the deviation from the notation used in the previous section.

Iyengar et al. (2019) proposed a procedure that keeps checking the gradients in an iterative op-
timization algorithm and stops when the gradient is smaller than τ . This always ensures that
∥∇f(θ∗∗)∥ ≤ τ .

And using tools from the next section, it can be proven that it implies that ∥θ∗∗ − θ∗∥2 ≤ τ/λ as was
previously stated. But how many iterations it takes for this to happen for specific algorithms was not
explicitly considered.
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F.1 Tools from convex optimization

We will need a few tools from convex optimization.

Firstly, under our assumption that ℓi is β-smooth, f is nβ + λ-smooth and λ-strongly convex. Let
L := nβ + λ as a shorthand.

By L-smoothness (gradient Lipschitzness), and the optimality of θ∗, we have that for any θ

∥∇f(θ)∥ = ∥∇f(θ)−∇f(θ∗)∥ ≤ L∥θ − θ∗∥2. (F.1)

By λ-strong convexity, we get

f(θ)− f∗ ≥ λ

2
∥θ − θ∗∥2 ≥ λ

2L2
∥∇f(θ)∥2 (F.2)

By strong convexity also implies that

∥∇f(θ)∥ ≥ λ∥θ − θ∗∥ (F.3)

which is the quantity used to establish the global sensitivity of q(D, θ∗) as we talked about earlier.

(F.2) and (F.3) sandwich ∥θ − θ∗∥ in between by

∥∇f(θ)∥
L

≤ ∥θ − θ∗∥ ≤ ∥∇f(θ)∥
λ

.

F.2 Computational bounds for Stopping at small gradient

(F.1) and (F.2) together provides bounds for ∥∇f(θ)∥ using either objective function or argument
convergence (in square ℓ2.)

∥∇f(θ)∥2 ≤ min

{
2L2

λ
(f(θ)− f∗), L2∥θ − θ∗∥2

}
.

Standard convergence results are often parameterized in terms of either suboptimality f(θ) − f∗

or argument ∥θ − θ∗∥2. In the following we instantiate specific convergence bounds for deriving
computation guarantees.

Gradient Descent. If we run gradient descent with learning rate 1/L for T iterations from θ0, then

∥θT − θ∗∥2 ≤ (1− λ

L
)T ∥θ0 − θ∗∥2

which implies that

∥∇f(θT )∥2 ≤ L2(1− λ

L
)T ∥θ0 − θ∗∥2

This happens deterministically (with no randomness, or failure probability).

One may ask why are we not running a fixed number of iterations and directly applying the bound to
∥θT −θ∗∥ in order to control the ℓ2 sensitivity. That works fine, except that we have an unconstrained
problem and θ∗ can be anywhere, thus there might not be a fixed parameter T to provide a required
bound for all input θ∗. We also do not know where θ∗ is during the actual execution of the algorithm
and thus cannot compute ∥θ0 − θ∗∥ directly.

The “gradient-norm check” as a stopping condition from Iyengar et al. (2019) is nice because it
always ensures DP for any θ∗ (at a price of sometimes running for a bit longer).

To ensure ∥∇f(θ)∥ ≤ γ, the number of iterations

T =
log(L

2∥θ0−θ∗∥2

γ2 )

log(1 + λ
L−λ )

≤ 2(L− λ)

λ
log(

L2∥θ0 − θ∗∥2

γ2
) =

2nβ

λ
log(

(nβ + λ)2∥θ0 − θ∗∥2

γ2
)

Since each gradient computation requires n incremental gradient evaluation, under the regime that λ
is independent of n, under the choice that λ = 1/ϵ independent to n from the standard calibration,
the total number of is therefore O(n2 log n) for achieving γ ≤ n−v for any constant v > 0.
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The quadratic runtime is not ideal, but it can be improved using accelerated gradient descent which
gives a convergence bound of

f(θT )− f∗ ≤ (1−
√

λ

L
)T ∥θ0 − θ∗∥2.

This would imply a computational guarantee of O(n1.5 log n). The overall computation bound
depends on ∥θ∗∥ which is random (due to objective perturbation). The dependence on ∥θ∗∥ is only
logarithmic though.

Finite Sum and SAG. The result can be further improved if we uses stochastic gradient methods.
However, the sublinear convergence of the standard SGD or its averaged version makes the application
of the above conversion rules somewhat challenging.

By taking advantage of the finite sum structure of f(θ) one can obtain faster convergence.

First of all, the finite sum structure says that f(θ) =
∑n

i=1 fi(θ). In our case, we can split the
regularization and linear perturbation to the n data points, i.e.,

fi(θ) = ℓi(θ) +
λ

2n
∥θ∥2 + bT θ

n
.

Check that it satisfies β + λ/n smoothness.

There is a long list of methods that satisfy the faster convergence for finite sum problems, e.g., SAG,
SVRG, SAGA, SARAH and so on (see, e.g., Nguyen et al., 2022, for a recent survey). Specifically,
Stochastic Averaged Gradient (Schmidt et al., 2017) (and similarly others with slightly different
parameters) satisfies

E
[
f(θT )− f∗] ≤ (1−min{ λ

16L
,
1

8n
})T · (3n

2
(f(θ0)− f∗) + 4L∥θ0 − θ∗∥2).

Therefore, by (F.2), we have

E
[
∥∇f(θT )∥2

]
≤ (1−min{ λ

16L
,
1

8n
})T · L

2

λ
(
3n

2
(f(θ0)− f∗) + 4L∥θ0 − θ∗∥2).

Note that each iteration costs just one incremental gradient evaluation, so to ensure E[∥∇f(θT )∥2] ≤
γ2, the computational complexity is on the order of

max{n, L
λ
} log

(
nLmax{f(θ0)− f∗, ∥θ0 − θ∗∥2}

λγ

)
This is O(n log n) runtime to any γ = n−s for a constant s > 0.

On the other hand, the main difference from the gradient descent result is that we only get convergence
in expectation. By Markov’s inequality

P
[
∥∇f(θT )∥2 > γ2

]
≤

(1−min{ λ
16L ,

1
8n})

T · L
2

λ ( 3n2 (f(θ0)− f∗) + 4L∥θ0 − θ∗∥2)
γ2

:= δ,

which implies high probability convergence naturally.
Theorem F.1. Assume λ ≥ β. The algorithm that runs SAG and checks the stopping condition
∥∇f(θT )∥ ≤ γ after every n iteration will terminate with probability at least 1− δ in less than

Cmax{n, nβ
λ
} log

(
nβmax{∥θ0 − θ∗∥, (f(θ0)− f∗)}

γδ

)
incremental gradient evaluations, where C is a universal constant.

How to set γ to achieve information-theoretic limit? The lower bounds for convex and smooth
losses in differentially private ERM are well-known (Bassily et al., 2014) and it is known that among
GLMs, θ∗ from ObjPert achieves the lower bound with appropriate choices of λ, σ. Notably, λ ≍ d/ϵ
for achieving an (ϵ, δ)-DP.

E[
∑
i

ℓi(θ
∗)]−min

θ

∑
i

ℓi(θ) ≤ MinimaxExcessEmpirialRisk
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Let θ̂ = θT +N(0, γ2

2λ2ρI) be the final output.

By the nG Lipschitzness of
∑

i ℓi, with high probability over the Gaussian mechanism, we have that

E[
∑
i

ℓi(θ̂)]−
∑
i

ℓi(θ
∗) ≤ nG(∥θT − θ∗∥+ ∥θ̂ − θT ∥) ≤ nGγ(1 +

√
d log d

ρ

λ
)

where ρ is the zCDP parameter for the Gausssian mechanism chosen to match the large α part of the
ObjectivePerturbation’s RDP bound, which increases the overall RDP by αρ.

Thus, it suffices to take γ = MinimaxExcessEmpirialRisk/(nG(1 +

√
d log d/ρ

λ )).

To conclude, the above results imply that the computationally efficient objective perturbation achieves
the optimal rate under the same RDP guarantee with an algorithm that terminates in O(n log n) time
with high probability.

G The GLM Bug

G.1 Discussion

Limiting our main results to generalized linear models might appear restrictive — but we argue
that the GLM assumption is not specific to our paper, but rather has been lurking in the objective
perturbation literature for some time now.

Let’s first take a look at Section 3.3.2 of Chaudhuri et al. (2011): Lemma 10 requires that the matrix
E have rank at most 2, but this is not necessarily true without assuming GLM structure. This is
used to bound the determinant of the Jacobian, and corresponds to the first term of our bound in
Theorem 3.2.

It is a similar story for bounding the log ratio / difference between the noise vector densities under
neighboring datasets, corresponding to the second and third terms of our bound in Theorem 3.2.
Let’s also revisit this line from the proof of Lemma 17 of the Kifer et al. (2012) paper: "Note that
Γ is independent of the noise vector." This is not true without assuming GLM structure! (In their
proof, Γ is the difference between the noise vectors under neighboring distributions. From first-order
conditions at the minimizer of the perturbed objective, we can see that Γ = ∇ℓ(θP ) , where θP is a
function of the noise vector b.

In fact, to our knowledge, Iyengar et al. (2019) was the first work to acknowledge the GLM assumption
on objective perturbation. But their privacy proof also fails to handle the dependence on the noise
vector! In Theorems 3.2 and 3.1, we have included a careful analysis including a discussion on how
the GLM assumption removes this dependence.

G.2 RDP bound for non-GLMs

In this section we generalize the RDP bound for objective perturbation to a general class of smooth
convex losses.

We first state the following bound from Theorem 6
Theorem G.1.

ϵ1(θ̂
P , D,D±z) =

∣∣∣∣∣∣− log

d∏
j=1

(
1∓ µj

)
+

1

2σ2
||∇ℓ(θ̂P ; z)||22 ±

1

σ2
∇J(θ̂P ;D)T∇ℓ(θ̂P ; z)

∣∣∣∣∣∣ ,
where µj = λju

T
j

(
∇b(θ̂P ;D) ∓

∑j−1
k=1 λkuku

T
k

)−1

uj according to the eigendecomposition

∇2ℓ(θ; z) =
∑d

k=1 λkuku
T
k .

Theorem G.2 (RDP bound for non-GLMS.). Let ||∇ℓ(θ; z)||2 ≤ L and ∇2ℓ(θ; z) ≺ βId for all
θ ∈ Θ and z ∈ X × Y . Objective perturbation satisfies (α, ϵ)-RDP for any α > 1 with

ϵ = −d log
(
1− β

λ

)
+

L

2σ2
+

1

α− 1
logEZ∼χd

[
e(α−1)L2

σ2 Z
]
,
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where Z ∼ χd if Z =
√∑d

i=1 X
2
i and Xi ∼ N (0, 1) for all i ∈ [d].

Proof. The above follows from Theorem 6 in (Redberg & Wang, 2021) applied to the analysis of
Theorem 3.2. We find that∣∣∣∣∣∣− log

d∏
j=1

(1∓ µj)

∣∣∣∣∣∣ =
∣∣∣∣∣∣−

d∑
j=1

log(1∓ uj)

∣∣∣∣∣∣ ≤ −
d∑

j=1

log(1− uj) ≤ −d log
(
1− β

λ

)
.

We now need to bound
1

α− 1
logE

[
e(α−1) 1

σ2 ∇J(θP )T∇ℓ(θP )
]
.

Recall that b ∼ N (0, σ2Id). Using the first-order condition ∇J(θP ) = −b and the Cauchy-Schwarz
inequality, we have

−bT∇ℓ(θP ) ≤
∣∣−bT∇ℓ(θP )∣∣ ≤ L||b||2.

So
1

α− 1
logE

[
e(α−1) 1

σ2 ∇J(θP )T∇ℓ(θP )
]
≤ 1

α− 1
logEZ∼χd

[
e(α−1) L

σ2 Z
]
.

H Excess Empirical Risk of Algorithm 1

Our goal in this section is to find a bound on the excess empirical risk:

E
[
L(θ̃P ;Z)

]
− L(θ∗;Z).

Theorem H.1. Let θ̃P be the output of Algorithm 1 and θ∗ = argminL(θ) the minimizer of the loss
function L(θ) =

∑n
i=1 ℓ(θ; zi). Denote ||X || as the diameter of the set X . We have

E
[
L(θ̃P ;Z)

]
− L(θ∗;Z) ≤ nL

( τ
λ
+ σout

√
d
)
+

(nβ||X ||22 + λ)dσ2

2λ2
+

λ

2
||θ∗||22.

Proof. Following the proof of Theorem 2 from Iyengar et al. (2019) (itself adapted from Kifer et al.
(2012)), we write

L(θ̃P )− L(θ∗) =
(
L(θ̃P )− L(θP )

)
+
(
L(θP )− L(θ∗)

)
.

By the λ-strong convexity of LP , for any θ̃, θ∗ we have(
∇LP (θ̃)−∇LP (θP )

)T (
θ̃ − θP

)
≥ λ||θ̃ − θP ||22.

By first-order conditions, ∇LP (θP ) = 0. Applying the Cauchy-Schwarz inequality along with our
stopping criteria on the gradient norm, we then have

||θ̃ − θP ||2 ≤
1

λ
||∇LP (θ̃)||2 ≤

τ

λ
.

Let b2 ∼ N (0, σ2
outId). Because L is nL-Lipschitz continuous, we have(

L(θ̃P )− L(θP )
)
≤ nL||θ̃P − θP ||2
= nL||θ̃ + b2 − θP ||2

≤ nL
(
||θ̃ − θP ||2 + ||b2||2

)
≤ nL

( τ
λ
+ ||b2||2

)
.
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By Lemma K.10,

E
[
nL
( τ
λ
+ ||b2||2

)]
≤ nL

( τ
λ
+ σout

√
d
)
.

To bound the expectation of L(θP )− L(θ∗), we can write

L(θP )− L(θ∗) =
(
L(θP )− Lλ(θ

P )
)
+
(
Lλ(θ

P )− Lλ(θ
∗
λ)
)
+ (Lλ(θ

∗
λ)− Lλ(θ

∗)) + (Lλ(θ
∗)− L(θ∗)) .

Observe that

L(θP )− Lλ(θ
P ) = −λ

2
||θP ||22 ≤ 0,

and that by optimality
(
θ∗λ = argmin

θ∈Rd

Lλ(θ)

)
, we have

Lλ(θ
∗
λ)− Lλ(θ

∗) ≤ 0.

Observe also that

Lλ(θ
∗)− L(θ∗) = λ

2
||θ∗||22.

So

L(θP )− L(θ∗) ≤ Lλ(θ
P )− Lλ(θ

∗
λ) +

λ

2
||θ∗||22.

By Taylor’s Theorem, for some θ′ ∈
[
θP , θ∗λ

]
we can write

Lλ(θ
P )− Lλ(θ

∗
λ) = ∇Lλ(θ

∗
λ)
(
θP − θ∗λ

)T
+

1

2
||θP − θ∗λ||2∇2Lλ(θ′)

=
1

2
||θP − θ∗λ||2∇2Lλ(θ′). (H.1)

The last equality is due to optimality conditions. We can then bound

1

2
||θP − θ∗λ||2∇2Lλ(θ′) ≤

1

2
||∇2Lλ(θ̃)||op||θP − θ∗λ||22

≤ 1

2

(
nβ||X ||22 + λ

) ||b||22
λ2

,

where b ∼ N (0, σ2Id). Then taking the expectation,

E
[
Lλ(θ

P )
]
− E [Lλ(θ

∗
λ)] ≤

(nβ||X ||22 + λ)dσ2

2λ2
.

Altogether we then have

E
[
L(θ̃P ;Z)

]
− L(θ∗;Z) ≤ nL

( τ
λ
+ σout

√
d
)
+

(nβ||X ||22 + λ)dσ2

2λ2
+

λ

2
||θ∗||22.

The optimal choice of λ would then be λ ≍ dL
||θ∗||2ϵ . The optimal choice of τ is discussed in

Section F.

H.1 Generalized Linear Model

With some additional assumptions and restrictions, we can get a tighter bound on E
[
Lλ(θ

P )
]
−

Lλ(θ
∗
λ).

We will assume GLM structure on ℓ(·), i.e. ℓ(θ; z) = f(xT θ; y). We will further assume boundedness:
c ≤ f(xT θ; y) ≤ C for some universal constants c, C ∈ R. Applying Taylor’s Theorem (in an
argument similar to Equation C.8), we can show that for some θ′′ ∈

[
θP , θ∗λ

]
θP − θ∗λ = ∇2Lλ(θ

′′)−1b.
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Note that by the GLM assumption, the eigendecomposition of∇2L∗
λ(θ) can be written as XTΛ(θ)X .

Then plugging in from Equation H.1 and using the boundedness assumption on the loss f ,

Lλ(θ
P )− Lλ(θ

∗
λ) =

1

2
||θP − θ∗λ||2∇2Lλ(θ′)

= bT
(
∇2Lλ(θ

′′)
)−1∇2Lλ(θ

′)
(
∇2Lλ(θ

′′)
)−1

b

= bT
(
XTΛ(θ′′)X + λId

)−1 (
XTΛ(θ′′)X + λId

) (
XTΛ(θ′)X + λId

)−1
b

≤ bT c−1
(
XTX + λId

)−1
C
(
XTX + λId

)
c−1

(
XTX + λId

)−1
b

≤ C

c2
||b||2

(XTX+λId)
−1

Then in expectation,

E
[
Lλ(θ

P
]
− Lλ(θ

∗
λ) ≤

Cσ2

c2
tr
((

XTX + λId
)−1
)
.

I Distance to Optimality

Consider the mechanismM(Z) = f(Z) +N (0, σ2Id), for a function f : Z → Rd with sensitivity
∆f = L. From Balle & Wang (2018), we know that for any neighboring datasets Z and Z ′, the

privacy loss random variable of this mechanism is distributed as N
(

∆2
Z,Z′

2σ2 ,
∆2

Z,Z′

σ2

)
. Maximizing

the Rényi divergence Dα (M(Z) || M(Z ′)) over all neighboring datasets Z ≃ Z ′ shows that the
RDP for the Gaussian mechanism can be written as

ϵ(α) =
1

α− 1
logE

[
e(α−1)N

(
L2

2σ2
,
L2

σ2

)]
=

L2

2σ2
+

1

α− 1
logE

[
e(α−1)N

(
0,

L2

σ2

)]
.

Thus the main deviations between the RDP bound for objective perturbation and that of the Gaussian
mechanism are 1) the leading term (a function of β and λ that vanishes as we increase the regulariza-
tion) and 2) the moment-generating function of the half-normal (instead of normal) distribution.

Figure I plots the Rényi divergence ϵ(α) := Dα(M(Z) || M(Z ′)) for the Gaussian mechanism
("normal"), the objective perturbation mechanism ("ObjPert"), and the mechanism 4 obtained by
adding noise from the half-normal distribution ("half-normal").

We consider several different regimes of interest by varying the noise scale σ and the regularization
strength λ. There are several takeaways to observe:

1. The difference between the RDP for the half-normal mechanism and the RDP for the
objective perturbation mechanism is due entirely to the leading term of the bound given in
Theorem 3.2, which vanishes as λ increases (Figures 4b and 4c). For smaller λ there is a
constant "start-up" gap between the half-normal and Objpert RDP curves (best displayed in
Figure 4b) which disappears for larger α, where the moments of the half-normal distribution
overwhelm the contribution of the leading term of the objective perturbation RDP.

2. As σ increases (e.g. between Figures 4c and 4a, and between Figures 4d and 4b), the
half-normal curve – and therefore also the ObjPert curve – doesn’t converge with the normal
curve until larger α.

J Bridging the Gap between Objective Perturbation and DP-SGD

J.1 RDP of Objective Perturbation vs DP-SGD

DP-SGD (for example, n2 rounds of sampled Gaussian mechanism with Poisson sampling probability
1/n) is known to experience a phase transition in its RDP curve: for smaller α, amplification by

4More formally, we say that the "half-normal" mechanism is M(Z) = f(Z) +
∣∣N (0, σ2)

∣∣, where f : Z →
R is the function we wish to release.
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sampling is effective, and the RDP of a DP-SGD mechanism behaves like a Gaussian mechanism
with ϵ(α) = O( α

2σ2 ), then it leaps up at a certain α and begins converging to ϵ(α) = O(n
2α

2σ2 )
that does not benefit from sampling at all (Wang et al., 2019; Bun et al., 2018). In contrast, the
RDP curve for objective perturbation defined by Theorem 3.2 converges to the RDP curve of the
Gaussian mechanism ϵ(α) = O( α

2σ2 ) after a certain point. Whereas DP-SGD offers stronger privacy
parameters for small α, objective perturbation is stronger for large α, which offers stronger privacy
protection for lower-probability events (see, e.g., Mironov, 2017, Proposition 10).
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Figure 5: RDP curves of objective perturbation and DP-SGD.

33



J.2 A Spectrum of DP Learning Algorithms

We can also connect Algorithm 1 to differentially private follow-the-regularized-leader (DP-FTRL)
(Kairouz et al., 2021), which uses a tree-based aggregation algorithm to privately release the gradients
of the loss function as a prefix sum. This approach provides a competitive privacy/utility tradeoff
without relying on privacy amplification or shuffling, which is often not possible in distributed settings.
DP-FTRL differs from DP-SGD by adding correlated rather than independent noise at each iteration;
Algorithm 1, in contrast, differs from both by adding identical noise at each iteration.

K Technical Lemmas & Definitions

K.1 Convex Optimization

We will give a short review of relevant concepts from convex optimization.
Definition K.1 (ℓ2-Lipschitz continuity). A function f : Θ → R is L-Lipschitz w.r.t. the ℓ2-norm
over Θ ⊆ Rd if for all θ1, θ2 ∈ Θ, the following holds: |f(θ1)− f(θ2)| ≤ L||θ1 − θ2||2.
Definition K.2 (β-smoothness). A differentiable function f : Θ→ R is β-smooth over Θ ⊆ Rd if its
gradient∇f is β-Lipschitz, i.e. |∇f(θ1)−∇f(θ2)| ≤ β||θ1 − θ2||2 for all θ1, θ2 ∈ Θ.
Definition K.3 (Strong convexity). A differentiable function f : Θ→ R is λ-strongly convex over
Θ ⊆ Rd if for all θ1, θ2 ∈ Θ: f(θ1) ≥ f(θ2) +∇f(θ2)T (θ1 − θ2) +

λ
2 ||θ1 − θ2||22.

K.2 Differential Privacy

Definition K.4 (Privacy loss random variable). Let Pr [M(Z) = θ] denote the probability density of
the random variableM(Z) at output θ. For a fixed pair of neighboring datasets Z and Z ′, the privacy
loss random variable (PLRV) of mechanismM : Z → Θ is defined as

ϵZ,Z′(θ) = log
Pr [M(Z) = θ]

Pr [M(Z ′) = θ]
,

for the random variable θ ∼M(Z).
Lemma K.5 (Adaptive composition (RDP) (Mironov, 2017)). LetM1 : Z → R1 be (α, ϵ1)-RDP and
M2 : R1 × Z → R2 be (α, ϵ2)-RDP. Then the mechanismM = (m1,m2), where m1 ∼ M1(Z)
and m2 ∼M2(Z,m1), satisfies (α, ϵ1 + ϵ2)-RDP

Lemma K.6 (Change of coordinates). Consider the map g : X → Y between X ⊆ Rd and Y ⊆ Rd

that transforms y = g(x). Then

∂y =

∣∣∣∣det ∂y∂x
∣∣∣∣ ∂x,

where
∣∣∣∣det ∂y∂x

∣∣∣∣ is the absolute value of the determinant of the Jacobian of the map g:

∂y

∂x
=

∂y1/∂x1 . . . ∂y1/∂xd

...
. . .

...
∂yd/∂x1 . . . ∂yd/∂xd

 .

Lemma K.7 (Change of variables for probability density functions.). Let g be a strictly monotonic
function. Then for y = g(x),

pX(x) =

∣∣∣∣det ∂y∂x
∣∣∣∣ pY (y).

Lemma K.8. Let A be an invertible matrix. Then detA−1 = 1
detA .

Lemma K.9 (Maximum Rayleigh quotient). For any symmetric matrix A ∈ Rd×d,

max
v∈Rd

vTAv

vT v
= λmax,

where λmax is the largest eigenvalue of A.
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Lemma K.10 (Bound on the expected norm of multivariate Gaussian with mean 0.).
Let x = N (0, σ2Id). Then

E [ ||x||2 ] ≤ σ
√
d.

Lemma K.11 (Gaussian MGF). Let X ∼ N (µ, σ2) for µ ∈ R, σ ∈ R>0. The moment generating
function of order t is then MGFX(t) = eµt+

1
2σ

2t2 . So for any t ∈ R≥0 and σ1 < σ2,

MGFX1(t) ≤ MGFX2(t),

where X1 ∼ N (µ, σ2
1) and X2 ∼ N (µ, σ2

2).

Definition K.12 (Holder’s Inequality). Let X,Y be random variables satisfying E [|X|p] < ∞,
E [|X|q] <∞ for p > 1 and 1

p + 1
q = 1. Then

E [|XY |] ≤ E [|X|p]
1
p E [|X|q]

1
q .

Definition K.13 (Rényi Divergence). Let P,Q be distributions with probability density functions
P (x), Q(x). The Rényi divergence of order α > 1 between P and Q is given by

Dα(P ||Q) =
1

α− 1
logEx∼Q

[(
P (x)

Q(x)

)α ]
=

1

α− 1
logEx∼P

[(
P (x)

Q(x)

)α−1
]
.

Lemma K.14 (MGF inequality for identical distributions). Let x, y, z ∼ N (0, σ2). Then

Ex,y

[
et|z1| |z2|

]
≤ Ez

[
etz

2
]
.

Proof. Observe that for any a, b ∈ R, it holds that 2ab ≤ a2 + b2. Applying this along with the
Cauchy-Schwarz inequality,

Ex,y

[
et|x| |y|

]
≤ E

[
e

t
2x

2

e
t
2y

2
]

≤
√
Ex

[
e

t
2x

2
]
Ey

[
e

t
2y

2
]

= Ez

[
etz

2
]
.
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