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Abstract

Active learning (AL) methods have been proven to be an effective way to reduce the
labeling effort by intelligently selecting valuable instances for annotation. Despite
their great success with in-distribution (ID) scenarios, AL methods suffer from per-
formance degradation in many real-world applications because out-of-distribution
(OOD) instances are always inevitably contained in unlabeled data, which may lead
to inefficient sampling. Therefore, several attempts have been explored open-set
AL by strategically selecting pure ID instances while filtering OOD instances. How-
ever, concentrating solely on selecting pseudo-ID instances may cause the training
constraint of the ID classifier and OOD detector. To address this issue, we propose
a simple yet effective sampling scheme, Progressive Active Learning (PAL), which
employs a progressive sampling mechanism to leverage the active selection of
valuable OOD instances. The proposed PAL measures unlabeled instances by
synergistically evaluating instances’ informativeness and representativeness, and
thus it can balance the pseudo-ID and pseudo-OOD instances in each round to
enhance both the capacity of the ID classifier and the OOD detector. Extensive
experiments on various open-set AL scenarios demonstrate the effectiveness of the
proposed PAL, compared with the state-of-the-art methods. The code is available
at https://github.com/njustkmg/PAL.

1 Introduction

Deep learning has achieved great success in many tasks such as image classification [14], article
prediction [35], and graph classification [32]. The main factor underlying its excellent performance
lies in the availability of an extensive dataset with manual annotations, which can be costly in
real-world applications [16]. To reduce the high labeling cost, active learning is an effective approach
that involves iteratively selecting valuable instances from the unlabeled data pool and querying their
labels for model retraining [4].

The basic assumption shared by various existing active learning methods is that all unlabeled instances
are collected from the ID domain [1, 28], showing that the labeled and unlabeled instances share
the same distribution. However, this assumption is unrealistic in real-world scenarios as unlabeled
instances are primarily gathered from the open world, where massive instances belong to the OOD
domain. Taking the image classification task as an example, the goal is to classify mammals, but a
considerable proportion of the unlabeled instances consists of unknown classes (i.e., OOD domain),
such as bees, apples, and tables. Once these images are selected for labeling, it would be a waste of
the annotation budget since they are not used for training the ID classifier. Therefore, it is important
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to detect ID and OOD instances before the annotation in open-set AL, which is not applicable in
traditional active learning methods. Consequently, the main challenge in open-set AL revolves
around effectively selecting valuable ID instances for training classifier and distinguishing the OOD
instances.
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Figure 1: (a) the effectiveness of actively querying valuable pseudo-OOD instances. ID Selection
Recall (higher is better): the ratio of selected ID instances to the total number of ID instances. Acc:
testing accuracy; w/: with; w/o: without. Experiments are conducted on CIFAR-100 using the first
20 classes as seen classes. We employ (1) the traditional active learning method Coreset; (2) the
existing open-set AL approach LfOSA that only selects pseudo-ID instances; and (3) the proposed
PAL that actively queries pseudo-OOD instances to enhance the training of the detector and classifier.
(b) the distinction between the proposed PAL process and the traditional open-set AL process (in
the dashed rectangle). The proposed PAL includes an additional module (the process in red) that
carefully leverages detected OOD instances during the model training progress.

To address the challenges of open-set AL, a few studies have proposed [12, 22, 23], which commonly
attempt to effectively filter the OOD instances in the unlabeled pool by adopting an extra OOD
detector, thus increasing the ID purity of instances in the query set. Their goal is to optimize the
selection of ID instances while eliminating OOD instances during each query round, aiming to
exclusively add ID instances for model training. In other words, these methods mainly focus on
learning the ID classifier, consequently restraining the resolution of the OOD detector. In contrast,
we believe that not all OOD instances are harmful, and valuable OOD instances are also significant
for both the classifier and detector training. For example, as shown in Figure 1 (a), we observe that
actively selecting OOD instances based on their importance (i.e., PAL method) can achieve higher
classification accuracy and selection recall, which is attributed to the promotion of ID purity and
OOD filtering. Therefore, valuable OOD instances can promptly strengthen the boundary between
ID and OOD instances, and further improve the ID purity for classifier retraining.

To this end, we propose a simple yet effective Progressive Active Learning (PAL) scheme that
strategically introduces valuable pseudo-ID and pseudo-OOD instances for enhancing both the ID
classifier and OOD detector. Different from existing open-set AL methods that solely focus on
selecting pseudo-ID instances, our approach goes a step further by actively incorporating valuable
pseudo-OOD instances, which allows us to explicitly retrain the OOD detector in conjunction with ID
instances, resulting in a mutual promotion of the detector and classifier. The proposed PAL process is
illustrated in Figure 1(b). Besides, to comprehensively measure the unlabeled instances, we propose to
estimate the informativeness of instances by calculating entropy using the predictions from one-vs-all
(OVA) classifiers, while evaluating the representativeness of instances with the automatically learned
meta-weights.

2 Related Work

Active Learning. Active Learning aims to train a classifier by querying labels of the most valuable
instances in the unlabeled data, which can greatly reduce the manual labeling cost [7]. The core idea
of existing active learning approaches is to ensure that selected instances can significantly improve
model performance, and various effective sampling strategies are designed [9, 24, 31, 37]. The initial
sampling criteria is uncertainty-based sampling [4], which prefers to select instances that maximally
reduce the model uncertainty. For example, [9] proposed an uncertainty measure that generalizes
margin-based uncertainty; [37] employed the pairwise gradient length as a metric of informativeness.
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Furthermore, various representativeness-based methods are proposed, which prefer to select instances
that match the data distribution. For example, [24] estimated the expected reduction in error that
directly optimizes expected future error; [1] designed batch active learning with diverse gradient
embeddings, which sampled groups of instances that are disparate and high magnitude. However,
this family of approaches usually assumes in-distribution settings that the unlabeled instances are
drawn from the same distribution of labeled examples, which is not suitable for effectively filtering
OOD instances during the query round.

Several recent approaches have attempted to carry out the open-set AL [3, 12, 22, 23]. [3] introduced
a contrastive AL framework to learn two contrastive coding models for calculating informativeness
and representativeness of an example; [22] introduced an auxiliary network to model the per-example
max activation value distribution with a gaussian mixture model, which can dynamically select the
instances with the highest probability from known classes in the unlabeled set; [23] employed the
meta-learning technique to find the best trade-off between purity and informativeness; [12] selected a
set that maximize the distance on entire unlabeled data while minimizing the distance to the identified
OOD instances. However, we find that these attempts are limited in filtering OOD instances, as they
usually assign greater weight to maintain ID purity, thus causing the learning constraint of the ID
classifier and OOD detector. Consequently, it is vital to develop effective approaches that achieve a
comprehensive balance between the ID classifier and the OOD detector.

Out-of-distribution Detection. OOD detection aims to identify instances outside the target do-
main [27, 30, 39], i.e., ID domain, which is vital for securing the model’s safety and interpretabil-
ity [15, 34]. Existing methods always calculate instances’ confidence scores based on the predictions
of the classifier trained on ID instances such as the entropy of the prediction distribution [2, 18,
33]. For example, [18] detected OOD instances with softmax score by considering temperature
scaling and input pre-processing; [2] introduced a new model layer OpenMax, which used activation
vectors to estimate the probability of deep network failure. To build a more robust detector, several
approaches attempted to utilize the generative adversarial network to generate pseudo-OOD instances
for assisting learning. For example, [11] proposed task-aware variation adversarial AL that considered
data distribution of both label and unlabeled pools; [8] confirmed that generative model accuracy may
not always be positively correlated with OOD detection performance. Nonetheless, the advantage of
open-set AL lies in the existence of OOD instances within the unlabeled pool, making the fine-grained
usage of OOD instances possible.
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Figure 2: Framework of the proposed Progressive Active Learning (PAL). We initialized the ID
classifier and OOD detector with the ID labeled data. During the query rounds, we explicitly query
both pseudo-ID and pseudo-OOD instances with the designed sampling criterion to enhance the ID
classifier and OOD detector.
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3 Proposed Method

Problem Setting. We denote by the labeled data Dl = {(xl
i,y

l
i)}

Nl
i=1, where each xl

i belongs to the
C known labels yl

i ∈ RC and the unlabeled data Du = {xu
j }

Nu
j=1 = {DID

u ,DOOD
u }, where DID

u

denotes the ID unlabeled data and DOOD
u represents the OOD unlabeled data, DID

u ∩DOOD
u = ∅. In

other words, an unlabeled instance xu
j may belong to an unknown class. In active learning, a human

oracle is requested to label query set Dt
query at t-th query round, which consists of OOD query set

DOODt
query and ID query set DIDt

query (i.e., Dt
query = DOODt

query ∪ DIDt
query). Considering the restrictions on

the annotation budget, the task of traditional open-set AL is to construct the query set that contains
more ID instances for assisting ID classifier building.

Approach Overview. The framework of the proposed PAL is illustrated in Figure 2, including
two key components: 1) importance score considering both informativeness and representativeness;
2) progressive sampling mechanism that precisely manages the ID and OOD instances within the
query set. Diverging from traditional open-set AL attempts, we adopt a strategy of actively selecting
the valuable pseudo-ID and pseudo-OOD instances to enhance the capacities of the classifier and
detector simultaneously. In the following subsections, we first introduce the calculations of the
importance score and then give the details of progressive sampling. Finally, we present a theoretical
understanding of using OOD instances.

3.1 Sampling Criteria

Uncertainty weight. To investigate the informativeness, we employ the one-vs-all (OVA) classi-
fiers [26] to learn a boundary between ID and OOD instances. In detail, OVA classifiers include C
sub-classifiers, each one is to distinguish whether the instance belongs to the corresponding class or
not, e.g., the prediction of c-th sub-classifier can be denoted as pc(xl) = f c(g(xl)) ∈ R2, where
g represents the feature encoder, f c denotes the c-th classifier. That is to say, pc(xl) := (pc(p =
1|xl),pc(p = 0|xl)), where pc(p = 1|xl) and pc(p = 0|xl) denotes the probability of instance
being an ID and an OOD respectively for class c. The overall loss of the OVA classifiers can be
formulated as:

ℓOV A = −
Nl∑
i=1

(logp
y
xl
i (p = 1|xl

i) + min
c ̸=y

xl
i

logpc(p = 0|xl
i)), (1)

where yxl
i

denotes the class of instance xl
i. Following [26], we adopt the hard-negative sampling

technique for sub-classifiers. The core idea of OVA classifiers is that each sub-classifier outputs a
distance representing how far the input is from the corresponding class [26]. Therefore, the sub-
classifiers are effective in identifying OOD instances. To be specific, the probability of instance
xu to be an ID can be calculated by sID = 1 + pĉ(p = 1|xu) logpĉ(p = 1|xu), where ĉ =
argmax

c
pc(p = 1|xu). Actually, sID can express the informativeness of a given unlabeled instance,

and larger sID represents more likely the instance to be an ID instance.

Meta-weight. In addition to sID, we design a representativeness criterion by learning the meta-
weight of each unlabeled instance. Since the OOD instance in unlabeled set leads to a distribution
mismatch, inspired by [5], we aim to automatically learn the weight of each unlabeled instance
via tracking the effect of the supervised learning model to prevent OOD instances, which can be
formulated as the following bi-level optimization problem:

min
ω

Nl∑
i=1

ℓsup(x
l
i,y

l
i, Θ̂(ω)),

s.t. Θ̂(ω) = argmin
Θ

Nl∑
i=1

ℓsup(x
l
i,y

l
i,Θ) +

Nu∑
j=1

ωjℓun(x
u
j ,Θ),

(2)

where Θ = (Θ1,Θ2), ℓsup(x
l
i,y

l
i,Θ) = −

∑C
c=1 y

l
i log f

o,c
Θ1

(gΘ2(x
l
i)) is the supervised loss,

ℓun(x
u
j ,Θ) = −

∑C
c=1 f

o,c
Θ1

(gΘ2(x
u
j )) log f

o,c
Θ1

(gΘ2(x
u
j )) is the unsupervised loss, and fo denotes

the ID classifier. The problem (2) captures the process of learning the optimal model parameter Θ̂(ω)
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through empirical risk minimization using labeled and weighted unlabeled instances, the model is
then evaluated on Dl to optimize the weights, aiming to enhance the reliable performance. Thus, the
learned ω is considered as the measurement of representativeness, with higher values indicating that
ID instances are more representative.

3.2 Progressive Sampling

Open-set AL aims to precisely select as many ID instances as possible from the unlabeled pool. With
the sID and ω, we select the first b instances with the highest probability as the query set:

un(xu) = ω + µsID (3)

where µ is the hyper-parameter. However, unlike existing open-set AL attempts that only concern
ID selection, we empirically find that valuable OOD can enhance the detector and further boost ID
selection. Therefore, we propose a simple yet effective progressive sampling. To be specific, in each
round, we actively select b instances including N ID

query pseudo-ID instances and NOOD
query pseudo-OOD

instances, noting that we select OOD instances with the lowest un(xu
j ). At the first query, we set

NOOD
query ≫ N ID

query . After that, the OVA classifiers are extended to C + 1 classifiers, and the un(xu)
is given by

un(xu) =

{
ω + µ(1− sID), if ĉ = C + 1
ω + µsID, otherwise (4)

3.3 Classifier Training

Based on the newly labeled data Dt
query , we retrain both the ID classifier and OOD detector. In detail,

the current ID labeled data can be represented as Dt
l = Dt−1

l ∪ DIDt
query, where Dt−1

l denotes the
accumulated ID labeled data, DIDt

query denotes the ID labeled data from the detected ID data. The ID

classifier fo is learned by minimizing the supervised loss
∑|Dt

l |
i=1 ℓsup(x

l
i,y

l
i,Θ). On the other hand,

the current ID and OOD data for training OVA classifiers can be denoted as Dt
lall

= Dt−1
lall

∪ Dt
query ,

where Dt−1
lall

denotes the accumulated ID and OOD labeled data. Notably, in the first round, the
number of classes for detector f c is C, and we train f c with the initial Dl. In the subsequent rounds,
the number of classes for detector f c is expanded to C + 1 by actively adding the OOD data. In each
round, we retrain the f c according to loss ℓova. The final target of open-set AL is the ID classification,
and thereby we can adopt the fo.

3.4 Theoretical Understanding

To theoretically understand the use of detected OOD instances in the OOD detector, we first give
the following notations. Suppose that the samples (x, y) ∈ (X ,Y) follows a unknown distribution
P , where X = Rd is input space and Y = {0, 1} is output space. The label of ID instance is y = 0
and the label of OOD instance is y = 1. Let ℓ : R × Y −→ R+ be the loss of interest. With
the input x and its corresponding label y, the expected loss is L(f) = EP [ℓ(f(x), y)]. Suppose
we have a training dataset {(x1, y1), . . . , (xn, yn)} drawn from distribution P , then the empirical
loss is L̂(f) = 1

n

∑n
i=1 ℓ(f(xi), yi). Let C(F) be some proper complexity measure of the family

of hypothesis class F . We assume that the loss is Lipschitz with constant L and the Rademacher

complexity Rn(F) ≤
√

C(F)
n [10]. To simplify the analysis, we assume the distribution of ID and

OOD samples is balanced and the number of OOD samples is the same as the number of ID samples
in the training set. We suppose that the number of detected ID instances is m while the number of
detected OOD instances is n−m where m < n, and among the detected ID instances, the number
of real ID instances is m0 := αm while the number of real OOD instance is m1 := (1− α)m with
0 < α < 1. Then we present the following theorem, whose proof can be found in the supplementary
material.

Theorem 1 For a Lipschitz loss ℓ bounded by c, we have the following results with probability at
least 1− δ simultaneously. For the proposed PAL method, the generalization error bound is
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L(fPAL)− L̂(fPAL) ≤ 2L

√
C(F)

n
+ c

√
log(1/δ)

2n
≤ O

(
1√
n

)
. (5)

For the standard AL method, the generalization error bound is

L(fAL)− L̂(fAL) ≤L

√
C(F)

αm
+ L

√
C(F)

(1− α)m
+

c

2

√
log(2/δ)

2αm
+

c

2

√
log(2/δ)

2(1− α)m

≤O

(
1√
αm

+
1√

(1− α)m

)
. (6)

Remark. Since 0 < α < 1 and n < m, we know 1√
n

≤ 1√
αm

+ 1√
(1−α)m

, showing that the

generalization error bound for PAL method is better than the bound for standard AL method. That is
to say, the use of detected OOD instances can improve the effectiveness of the OOD detector.

4 Experiments

In this section, we aim to demonstrate the effectiveness of the proposed PAL. Due to the page
limitation, more experimental results and details can be found in the supplementary material.

4.1 Experimental Setups

Datasets. We evaluate the efficiency of PAL on several image classification benchmarks, i.e., CIFAR-
10, CIFAR-100 [13] and Tiny-Imagenet [36] datasets following standard open-set AL methods [12,
22]. The CIFAR-10 dataset consists of 50,000 training images and 10,000 test images, with 10
classes and 5,000 images per class in the training set. The CIFAR-100 dataset has 100 classes
and 50,000 training images and 5,000 test images, with 500 images per class in the training set.
The Tiny-Imagenet dataset consists of 100,000 training images and 10,000 validation images, with
200 classes and 500 images per class in the training set. To construct the open-set ALscenarios,
following [22], we set the proportion of ID classes as 20%, 30%, and 40% in experiments. For
example, when the proportion is set as 20% on CIFAR-10, CIFAR-100, and Tiny-Imagenet, the first
2, 20, and 40 classes are considered as ID classes and the last 8, 80, and 160 classes are considered as
OOD classes.

Table 1: Comparison of testing accuracy (%) on CIFAR-10, CIFAR-100, and Tiny-Imagenet datasets
with an ID proportion of 20%. The best results are highlighted in bold, and the second-best results
are underlined.

Datasets CIFAR-10 CIFAR-100 Tiny-Imagenet

Rounds 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9
Label Only 78.6 42.5 21.4

Random 88.1 93.1 95.9 96.9 97.4 44.6 49.2 52.2 54.5 56.7 22.9 26.8 32.7 37.8 39.2
Uncertainty 88.2 93.0 96.1 97.2 97.5 44.4 49.4 49.7 54.8 55.3 21.6 28.5 35.6 37.6 41.1
Certainty 88.1 90.8 91.6 92.4 93.0 45.0 50.7 53.1 54.4 54.9 21.7 27.9 35.4 39.8 44.7
Coreset 86.5 94.7 95.8 96.7 96.8 43.6 49.5 51.9 55.0 57.0 23.1 26.3 33.0 39.9 43.3
BALD 84.6 93.1 94.3 96.4 96.7 42.9 48.1 52.3 54.4 56.2 22.9 26.8 32.9 38.1 39.2

OpenMax 81.3 85.8 86.6 87.0 90.7 45.0 47.3 50.1 53.9 56.0 22.0 26.1 32.2 36.9 41.9
CCAL 88.9 94.3 96.2 97.4 97.7 45.1 50.9 53.4 57.2 60.4 23.2 28.5 35.6 40.6 44.9
MQnet 88.8 94.9 96.8 97.4 97.8 45.3 51.1 57.9 59.1 61.3 23.8 28.6 35.7 42.0 45.8
LfOSA 84.2 95.4 97.1 97.5 98.3 45.6 52.2 59.0 62.5 66.1 22.6 28.8 36.4 43.7 47.9

PAL 91.1 95.6 97.6 98.5 98.7 45.6 53.0 60.0 65.6 69.4 24.3 33.4 43.9 47.6 52.1

Baselines and Performance criteria. We compare PAL with three different types of methods: 1)
supervised method, i.e., Label Only. 2) traditional AL methods, i.e., Random, Uncertainty [17],
Certainty [20], Coreset [28], Openmax [2], and BALD [29]. 3) open-set AL methods, i.e., CCAL [3],
LfOSA [22] and MQnet [23]. We consider performance from two aspects: 1) ID classification, i.e.,
classification accuracy. 2) OOD detection during query round, i.e., precision and recall [22].
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Parameter setting. For all AL methods, following [22], we randomly sample 1%, 10% and 10%
of the examples as the initial labeled set on CIFAR-10, CIFAR-100, and Tiny-Imagenet datasets,
respectively. To ensure fairness, we employ WideResNet [38] as the backbone for training all methods.
Note that the labeled data only contains ID classes. In each AL round, we train the model for 100
epochs, using the SGD optimizer with the momentum parameter of 0.9. The learning rate is initialized
as 0.01 with a mini-batch size of 128, and the weight decay is set to be 5× 10−4. Additionally, the
annotation budget per query round is limited to 1500 following [22]. All experiments are implemented
on a single NVIDIA V100 GPU.

4.2 Performance Comparison

Table 1 and Figure 3 record the ID classification and OOD detection results of PAL and other AL
methods with the increasing number of queries, where the index {1, 3, 5, 7, 9} denotes the query
round.

ID classification. The results in Table 1 show that: 1) AL methods perform better than the supervised
method because the oracle will filter the OOD instances in the query set. However, the promotion
is limited due to decreased ID instances, especially in complex datasets such as CIFAR-100 and
Tiny-Imagenet. 2) CCAL, LfOSA, and MQnet outperform traditional active learning methods
because LfOSA selects a more purified set for querying, including more ID instances and fewer OOD
instances. LfOSA performs better than MQnet because MQnet maintains a balance between purity
and informativeness of the query set that contains several OOD. 3) PAL consistently exhibits the best
performance in each round on all datasets, especially on the Tiny-Imagenet dataset. Compared to
other open-set AL methods, PAL improvements about 7.5%, 3.9%, and 4.2% under the 5, 7, and 9
rounds respectively, indicating that PAL could better control the purity ID by constructing a more
robust OOD detector.
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(f) Tiny-Imagenet Recall

Figure 3: The precision and recall comparisons of OOD detection on CIFAR-10, CIFAR-100, and
Tiny-Imagenet datasets with ID proportion of 20%.

OOD detection. The results of Figure 3 reveal that PAL consistently outperforms other baselines in
terms of most selection precision and recall. For example, the proposed PAL achieves 15.9% higher
precision than LfOSA on Tiny-Imagenet dataset in the last round, which validates that PAL can
better eliminate the OOD instances by adopting the discriminative criteria and progressive sampling.
Moreover, note that the precision of open-set AL methods shows an initial increase followed by
a subsequent decrease, for the reason that we are taking an unreplaced query, so the remaining
unlabeled data is gradually reduced. Meanwhile, PAL can select more ID instances at the starting
several rounds on CIFAR-10, resulting in fewer ID instances left in the unlabeled set considering the
relatively smaller dataset size of CIFAR-10. Thereby, PAL achieves inferior precision compared to
LfOSA in later rounds.
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To further visualize the validity of pseudo-ID and pseudo-OOD instances, we compare the query
purity of PAL with LfOSA in query rounds on three datasets, as illustrated in Figure 4. Although
we actively select more OOD instances in the first round, the overall OOD instances are much fewer
than LfOSA. Specifically, under the CIFAR-10, LfOSA selected 52.2% OOD instances, whereas
PAL only selected 40.3%. Besides, we find that the purities of pseudo-ID and pseudo-OOD are better
than LfOSA, i.e., PAL achieves an overall 12.6% higher query purity compared to LfOSA on the
Tiny-Imagenet dataset, which validates the effectiveness of progressive building OOD detector.
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Figure 4: The query purity comparison between LfOSA and PAL. Query purity denotes the ratio
of ID_ID instances to the total number of the annotation budget. ID_ID denotes the true positive
in the pseudo-ID instances, while ID_OOD represents the false positive in the pseudo-ID instances.
Similarly, OOD_ID denotes the false negative in the pseudo-OOD instances, while OOD_OOD
represents the true negative in the pseudo-OOD instances. Note that LfOSA only queries the pseudo-
ID instances.

4.3 Influence of Different ID Class Proportions

In this subsection, we evaluate the influence of different numbers of ID classes. The average results
of accuracy, precision, and recall are presented in Figure 5, 6, and 7 respectively. In each figure, the
first, second, and third columns represent the results on CIFAR-10, CIFAR-100, and Tiny-Imagenet,
respectively, while the first and second rows represent the results with ID proportion as 30% and 40%.
Please note that the results of 20% are included in Table 1 and Figure 3. The results exhibit that the
proposed PAL always outperforms other methods in terms of ID classification and OOD detection for
all cases. For example, when ID proportion is set to 30%, PAL outperforms 3.6%, 3.3%, and 4.3%
than the state-of-the-art method, i.e., LfOSA, in terms of accuracy, precision, and recall in the last
round on CIFAR-100.
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Figure 5: Comparison of testing accuracy(%) on CIFAR-10 (first column), CIFAR-100 (second
column), and Tiny-Imagenet (third column) datasets, with an ID proportion of 30% (first row) and
40% (second row).
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(a) CIFAR-10 Precision
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(b) CIFAR-100 Precision
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(c) Tiny-Imagenet Precision

Figure 6: The precision comparison of OOD detection on CIFAR-10 (first column), CIFAR-100
(second column), and Tiny-Imagenet (third column) datasets, with an ID proportion of 30% (first
row) and 40% (second row).
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(a) CIFAR-10 Recall

1 3 5 7 9
Round

0.2

0.3

0.4

0.5

0.6

Se
le

ct
io

n 
Re

ca
ll

Random
Uncertainty
Certain
Coreset
BALD
Openmax
CCAL
MQnet
LfOSA
PAL

(b) CIFAR-100 Recall
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Figure 7: The recall comparison of OOD detection on CIFAR-10 (first column), CIFAR-100 (second
column) and Tiny-Imagenet (third column) datasets with ID proportion as 30% (first row) and 40%
(second row) .

4.4 Ablation Study

Each Component of PAL. To analyze the contribution of each component of PAL, we conduct
ablation study with ID proportion as 20%. The experimental results of classification accuracy are
plotted in Figure 8, where w/o ω denotes the PAL with only the informativeness criterion, and
w/o SID denotes the PAL with only the representativeness criterion. The results indicate that the
representativeness criterion has a greater impact on open-set AL in realistic scenarios, for the reason
that the representativeness criterion can better distinguish the challenge ID and OOD instances
considering the instances’ relationships.

Hyper-Parameter µ. Considering that sID and ω can capture different semantics (i.e., infor-
mativeness and representativeness) of unlabeled instances, we set µ with different values, i.e.,
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{0.2, 0.4, 0.6, 0.8, 1}, to empirically investigate the impact of sID and ω. Table 2 shows the final
round accuracy, precision, and recall on CIFAR-100 with ID proportion of 20%. PAL achieves the
best ID classification accuracy and OOD detection recall with µ = 0.8, which indicates that PAL can
leverage various semantic information of unlabeled instances and effectively improves ID selection by
measuring instances’ informativeness. Besides, representativeness can better ensure the true positivity
of ID instances, allowing PAL to achieve superior precision at µ = 0.2.
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Figure 8: Ablation study conducted on CIFAR-10, CIFAR-100, and Tiny-Imagenet datasets with an
ID proportion of 20%.

Table 2: Comparison of accuracy, precision, and recall across different values of µ in CIFAR-100,
with an ID proportion of 20%.

µ 0.2 0.4 0.6 0.8 1

Accuracy (%) 66.2 67.2 68.5 69.4 67.6

Precision (%) 32.4 27.3 25.6 25.4 17.6

Recall (%) 67.0 69.2 71.0 73.8 69.7

Sampling Criteria. To evaluate the effectiveness of the proposed sampling criteria, we compare
several classic metrics for evaluating representativeness and informativeness. Table 3 records the
results on CIFAR-10 and CIFAR-100 datasets, the PAL_Core denotes replacing meta-weight with
Coreset [28], which is a traditional metric method used for representativeness. PAL_MSP and
PAL_energy methods denote replacing the proposed informativeness criteria with MSP [6] and
energy-based [19] criteria respectively. The results exhibit that PAL achieves superior performance
on two datasets, revealing the effectiveness of meta-weight in selecting instances.

Table 3: Comparison of testing accuracy (%) for PAL_Core, PAL_MSP, PAL_energy, and PAL on
CIFAR-10 and CIFAR-100 with an ID proportion of 20%.

Datasets CIFAR-10 CIFAR-100
Rounds 1 3 5 7 9 1 3 5 7 9

PAL_Core 87.1 93.3 96.7 97.4 98.3 44.8 49.7 59.6 63.7 65.9
PAL_MSP 86.0 95.1 95.2 97.5 98.0 45.1 48.4 55.8 60.1 64.7

PAL_energy 85.6 93.7 94.7 97.0 97.9 45.32 52.5 58.6 64.5 66.2
PAL 91.1 95.6 97.6 98.5 98.7 45.6 53.0 60.0 65.6 69.4

5 Conclusion
In this paper, we have proposed PAL, a novel open-set AL method that employs a simple but effective
progressive sampling to enhance the performance of OOD detection by actively querying OOD
instances at the initial round. PAL included informativeness (i.e., predictions of OVA detector)
and representativeness (i.e., automatically learned meta-weights) to measure the importance of
unlabeled instances. A theoretical result from the perspective of learning theory revealed that the
detected OOD instances enhance the OOD detector. The effectiveness of PAL was demonstrated with
extensive empirical results across different scenarios, compared with the state-of-the-art methods.
The limitation of the proposed PAL is only applicable to the classification task. In the future, we
expect to extend PAL to other computer vision tasks such as object detection.

Broader Impact. PAL improves the efficacy of active learning in real-world scenarios. Similar to
other active learning methods, it effectively reduces the annotation cost for model training, while the
privacy protection issue associated with the practical use of AL on realistic datasets deserves more
attention.
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The Supplementary of Not All Out-of-Distribution
Data Are Harmful to Open-Set Active Learning

A Proof of Theorem 1

Firstly, we prove the generalization error of the proposed PAL method. Following Theorem 1 of [10],
we have

L(fPAL)− L̂(fPAL) ≤ 2LRn(F) + c

√
log(1/δ)

2n
, (7)

where Rn(F) is the Rademacher complexity of a function class F and n is the number of training

samples. With the Rademacher complexity Rn(F) ≤
√

C(F)
n , we give equation 5.

Next, we prove the generalization error of the standard AL method. To this end, we denote by
P = P(x|y = 0) the conditional probability for ID data and P1 = P(x|y = 1) the conditional
probability for OOD data. Let Lj(f) denote the loss from class j ∈ {0, 1}: Lj(f) = EPj

[ℓ(f(x), y)],
and let L̂j(f) denote its corresponding empirical loss. Then by applying the standard analysis for
each class j in Theorem 1 of [10], with probability 1− δ/2 we have

Lj(fAL)− L̂j(fAL) ≤ 2LRmj
(F) + c

√
log(2/δ)

2mj
, (j = 0, 1). (8)

Since the distribution of ID and OOD samples is balanced, we have L(fAL) =
1
2L0(fAL)+

1
2L1(fAL)

due to the definitions of the loss functions. Similarly, due to the number of OOD samples being the
same as the number of ID samples in the training set, we know L̂(fAL) =

1
2 L̂0(fAL) +

1
2 L̂1(fAL).

Finally, by applying the union bound, we have

L(fAL)− L̂(fAL) ≤ LRm0
(F) + LRm1

(F) +
c

2

√
log(2/δ)

2m0
+

c

2

√
log(2/δ)

2m1
. (9)

With the Rademacher complexity Rmj (F) ≤
√

C(F)
mj

for j = 0, 1, we complete the proof of equation
6 by plugging in m0 = αm and m1 = (1− α)m.

B Additional Implementation Details

Implementations. In the first round, to enhance the effectiveness of OOD detection, we set N ID
query =

300 and NOOD
query = 1200. To reduce the influence of the pseudo-OOD budget for the ID classifier, we

set N ID
query = 1450 and NOOD

query = 50 in the later rounds.

Table 4: Dataset Construction.

Dataset Number of ID
classes

ID : OOD
Ratio

Number of
labeled data

Number of
unlabeled data

Query size b

CIFAR-10 (20%) 2 2 : 8 100 49900 1500
CIFAR-10 (30%) 3 3 : 7 150 49850 1500
CIFAR-10 (40%) 4 4 : 6 200 49800 1500
CIFAR-100 (20%) 20 20 : 80 1000 49000 1500
CIFAR-100 (30%) 30 30 : 70 1500 48500 1500
CIFAR-100 (40%) 40 40 : 60 2000 48000 1500

Tiny-Imagenet (20%) 40 40 : 160 2000 48000 1500
Tiny-Imagenet (30%) 60 60 : 140 3000 47000 1500
Tiny-Imagenet (40%) 80 80 : 120 4000 46000 1500

Description for Datasets. In Section 4, we provide a brief introduction to the construction of the
open-set AL scenario. In order to provide a more detailed explanation of the dataset construction, we
use CIFAR-100 with the ID proportion of 20% as a specific example. We consider the first 20 classes
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as the ID classes. Then, we randomly sample 50 instances from each ID class to form the labeled set
Dl, while the remaining instances are unlabeled data Du. As a result, the labeled and unlabeled sets
comprise 1,000 and 49,000 instances respectively, as shown in Table 4.

Description for baselines. Here’s a brief introduction to the comparison methods in the experiment.

• Random introduced randomly selecting instances from the unlabeled pool for labeling.
• Uncertainty [17] employed entropy to evaluate the uncertainty of instances.
• Certainty [20] considered utilizing the weakly labeled data to query instances based on entropy

of local marginals.
• Coreset [28] proposed core-set selection with greedy k-center clustering to minimize the

maximum distance between labeled data and unlabeled data.
• BALD [29] employed dropout as an approximation for Bayesian inference to facilitate active

sampling.
• Openmax [2] introduced the activation vector to measure whether a instance belongs to the

known classes.
• CCAL [3] introduced a framework of contrastive active learning, with two contrastive coding

models employed to assess the informativeness and representativeness of each example.
• MQnet [23] utilized meta-learning techniques to discover an optimal balance between purity

and informativeness.
• LfOSA [22] leveraged an auxiliary network equipped with a gaussian mixture model to capture

the distribution of maximum activation values for each instance, enabling adaptive selection
of high-probability instances from known classes.

C Additional Experimental Results

Impact of the annotated OOD_ID data. Actually, the method of only adding additional data into
OOD Detector, leading the annotated OOD_ID data (the annotated ID data after selection of the
detected OOD data) not used in ID classifier of PAL. In this section, we aim to empirically investigate
the impact of annotated OOD_ID data. To this end, we modify the proposed PAL by adding the
annotated OOD_ID data into ID classifier and naming it as PAL+, which is illustrated in Figure 9.

OOD 
Detector

Unlabeled 
Data

Selection

Selection

ID Classifier

Annotation

Annotation

OOD 
data?

Yes

No

Traditional 
open-set AL

Figure 9: PAL+: PAL with the annotated OOD_ID data added to ID classifier (red dash line).

Considering experimental completeness, we present the classification and OOD detection performance
without and with using the OOD_ID instances (i.e. PAL and PAL+), respectively. Note that the
experiments are performed on three datasets with an ID proportion of 20%. The results in Figure 10
demonstrate that the proposed PAL and PAL+ are comparable, showing that the annotated OOD_ID
instances have minimal impact on the overall performance of the model.

In addition, Table 5 lists the number of annotated OOD_ID instances with their proportion in the
detected OOD data, for round 1, 3, 5, 7, and 9 on three data sets. The results in Table 5 show that the
annotated OOD_ID instances have a very small proportion in the detected OOD instances, and this
may also explain why the PAL and PAL+ are comparable.
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Table 5: The number (with its proportion) of annotated OOD_ID instances used in PAL+.

Seed Dataset
Round

1 3 5 7 9

seed=1
CIFAR-10 5 (10%) 1 (2%) 0 (0%) 0 (0%) 1 (2%)

CIFAR-100 5 (10%) 5 (10%) 1 (2%) 0 (0%) 0 (0%)
Tiny-Imagenet 3 (6%) 3 (6%) 2 (4%) 1 (2%) 0 (0%)

seed=2
CIFAR-10 3 (6%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

CIFAR-100 4 (8%) 2 (4%) 1 (2%) 1 (2%) 0 (0%)
Tiny-Imagenet 6 (12%) 3 (6%) 0 (0%) 0 (0%) 1 (2%)

seed=3
CIFAR-10 1 (2%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

CIFAR-100 1 (2%) 2 (4%) 1 (2%) 1 (2%) 0 (0%)
Tiny-Imagenet 2 (4%) 3 (6%) 2 (4%) 0 (0%) 2 (4%)
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Figure 10: Comparison of classification and OOD detection performance on CIFAR-10 (first row),
CIFAR-100 (second row) and Tiny-Imagenet (third row) with an ID proportion of 20%.

Visualization. To demonstrate the distribution of selected ID instances, we provide visual results of
the iterative query round. In detail, we visualize the feature representations of the labeled and queried
correct ID instances via t-SNE [21] on the CIFAR-10 dataset with an ID proportion of 40%. Note
that green crosses represent the queried ID instances. Figure 11 records the visualizations of PAL
and state-of-the-art methods, i.e., Coreset and LfOSA. The figures reveal that PAL selects more ID
instances than other methods, i.e., higher purity in different rounds. Moreover, from the perspective
of data distribution, PAL would balance the informativeness and representativeness criteria to select
meaningful ID instances for ID classifier training.
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Figure 11: The t-SNE visualizations of Coreset, LfOSA, and PAL, considering the 1st (top row), 5th
(middle row), and 9th (bottom row) rounds.

Compare with Open-Set Semi-Supervised Learning. Although both open-set/safe semi-supervised
learning and open-set AL aim to construct a more effective ID classifier by reasonably utilizing
unlabeled data, the essential difference lies in whether or not manual participation is necessary.
Open-set/Safe semi-supervised learning aims to use all the pseudo-ID instances in unlabeled data
according to the model’s prediction, whereas open-set AL aims to select the most valuable pseudo-ID
instances in unlabeled data for manual labeling to retrain the model without using all the unlabeled
data. To evaluate the classification performance of PAL and open-set semi-supervised learning
methods, we have compared PAL with two open-set semi-supervised learning methods, DS3L [5]
and OpenMatch [25] using the CIFAR-10 and CIFAR-100 datasets with an ID proportion of 20%.
As illustrated in Table 6, the results show the proposed PAL also performs better than the open-set
semi-supervised learning methods.

Table 6: Comparison of testing accuracy (%) for DS3L, OpenMatch, and PAL on CIFAR-10 and
CIFAR-100 with an ID proportion of 20%.

Method CIFAR-10 CIFAR-100
DS3L 74.2 48.1

OpenMatch 82.1 66.5
PAL 98.7 69.4

Runtime Cost. To verify the runtime cost of the proposed PAL, we evaluate it against several
baselines, including DS3L, OpenMatch, Coreset, and LfOSA on CIFAR-10 and CIFAR-100 with the
ID proportion of 20%. As demonstrated in Table 7, the results show that PAL has the second best
runtime cost, outperforming DS3L, OpenMatch, and LfOSA, but falling behind Coreset.
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Table 7: Comparison of runtime cost for PAL and other baselines on CIFAR-10 and CIFAR-100 with
an ID proportion of 20%.

Method CIFAR-10 CIFAR-100
DS3L 26.8h 43.4h

OpenMatch 37.7h 68.3h
Coreset 2.8h 3.6h
LfOSA 66.2h 77.8h

PAL 3.4h 4.4h
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