
Investigating how ReLU-networks encode symmetries

Georg Bökman Fredrik Kahl
Chalmers University of Technology

{bokman, fredrik.kahl}@chalmers.se

Abstract

Many data symmetries can be described in terms of group equivariance and the
most common way of encoding group equivariances in neural networks is by
building linear layers that are group equivariant. In this work we investigate
whether equivariance of a network implies that all layers are equivariant. On the
theoretical side we find cases where equivariance implies layerwise equivariance,
but also demonstrate that this is not the case generally. Nevertheless, we conjecture
that CNNs that are trained to be equivariant will exhibit layerwise equivariance
and explain how this conjecture is a weaker version of the recent permutation
conjecture by Entezari et al. [2022]. We perform quantitative experiments with
VGG-nets on CIFAR10 and qualitative experiments with ResNets on ImageNet to
illustrate and support our theoretical findings. These experiments are not only of
interest for understanding how group equivariance is encoded in ReLU-networks,
but they also give a new perspective on Entezari et al.’s permutation conjecture
as we find that it is typically easier to merge a network with a group-transformed
version of itself than merging two different networks.

.

1 Introduction

Understanding the inner workings of deep neural networks is a key problem in machine learning and
it has been investigated from many different perspectives, ranging from studying the loss landscape
and its connection to generalization properties to understanding the learned representations of the
networks. Such an understanding may lead to improved optimization techniques, better inductive
biases of the network architecture and to more explainable and predictable results. In this paper, we
focus on ReLU-networks—networks with activation function ReLU(x) := max(0, x)—and how they
encode and learn data symmetries via equivariance.

Equivariances can be built into a neural network by design. The most classical example is of course
the CNN where translational symmetry is obtained via convolutional layers. Stacking such equivariant
layers in combination with pointwise ReLU activations results in an equivariant network. We will
pursue a different research path and instead start with a neural network which has been trained to be
equivariant and ask how the equivariance is encoded in the network. This approach in itself is not
new and has been, for instance, experimentally explored in [24] where computational methods for
quantifying layerwise equivariance are developed. We will shed new light on the problem by deriving
new theoretical results when network equivariance implies layerwise equivariance. We will also give
counterexamples for when this is not the case. Another insight is obtained via the recent conjecture
by Entezari et al. [13] which states that networks with the same architecture trained on the same data
are often close to each other in weight space modulo permutation symmetries of the network weights.
Our new conjecture 3.2 which we derive from the conjecture of Entezari et al. states that most SGD
CNN solutions will be close to group equivariant CNNs (GCNNs).

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Net A Net B

Figure 1: Illustration of how a VGG11 encodes the horizontal flipping symmetry. The 64 filters in the
first convolutional layer of two VGG11-nets trained on CIFAR10 are shown, where each filter is next
to a filter in the same net which after horizontally flipping the filter results in a similar convolution
output. The order of the filters in the right columns is a permutation of the original order in the left
columns. This permutation is obtained with the method in Figure 2, i.e., the columns here correspond
to 1. and 4. there. Net A is trained with an invariance loss to output the same logits for horizontally
flipped images. It has learnt very close to a GCNN structure where each filter in the first layer is
either horizontally symmetric or has a mirrored twin. Net B is trained with horizontal flipping data
augmentation. This net is quite close to a GCNN structure, but the mirrored filters are less close to
each other than in Net A. More details are given in Section 4.

1. 2. 3. 4. Figure 2: Permutation aligning horizontally flipped filters.
1. The three original filters in a convolutional layer.
2. The three filters flipped horizontally.
3. Permutation of the flipped filters to align them with the originals.
This permutation is found using activation matching following [25].
4. Flipping the filters back to their original form for illustration.

Our theoretical results and new conjecture are also validated with experiments. We focus exclusively
on the horizontal flipping symmetry in image classification, for the following three reasons: 1. Hori-
zontal flipping is ubiquitously assumed to not change the class of an image and horizontal flipping
data augmentation is in practice always used. 2. The group of horizontal flips (S2) is small and has
simple representation theory. 3. As we study ReLU as activation function, if a network is layerwise
equivariant, then the representations acting on the feature spaces must be permutation representations
as we shall prove later (cf. Section 2.1).

The experiments show that networks trained on CIFAR10 and ImageNet with horizontal flipping data
augmentation are close to GCNNs and in particular when we train networks with an invariance loss,
they become very close to GCNNs. This is illustrated in Figure 1 and also discussed in Section 4. As
further support of our main conjecture, we find that the interpolation barrier is lower for merging
a ResNet50 with a flipped version of itself than the barrier for merging two separately trained
ResNet50’s. In summary, our main contribution is a new conjecture on how ReLU-networks encode
symmetries which is supported by both theory and experiments.

1.1 Related work

Group equivariant neural networks. The most common approach to encoding group symmetries
into neural networks is by designing the network so that each layer is group equivariant [41, 14]. This
has been done for many groups, e.g., the permutation group [43, 27] and the 2D or 3D rotation group
[39, 34, 16, 4, 37]. Another possibility is to use symmetry regularization during training [32]. Group

2

equivariant nets have many possible applications, for instance estimating molecular properties [31] or
image feature matching [3]. For this paper, the most relevant group equivariant nets are so-called
GCNNs acting on images, which are equivariant to Euclidean transformations [10, 42, 2, 40, 38]. In
the experiments in Section 4 we will investigate how close to GCNNs ordinary CNNs are when they
are trained to be equivariant—either by using an invariance loss or by using data augmentation.

Measuring layerwise equivariance. [24] measure layerwise equivariance by fitting linear group
representations in intermediate feature spaces of networks. Our approach is similar but we restrict
ourselves to permutation representations and consider fitting group representations in all layers
simultaneously rather than looking at a single layer at a time. We explain in Section 2.1 why it is
enough to search for permutation representations, given that we have a network with ReLU activation
functions. [5] measure layerwise equivariance by counting how many filters in each layer have
group-transformed copies of themselves in the same layer. They find that often more layerwise
equivariance means better performance. Our approach explicitly looks for permutations of the
filters in each layer that align the filters with group-transformed versions of themselves. We are
thus able to capture how close the whole net is to being a GCNN. [29] find evidence for layerwise
equivariance using a qualitative approach of visualizing filters in each layer and finding which
look like group-transformed versions of each other. [20] measure local layerwise equivariance, i.e.,
layerwise robustness to small group transformations, by computing derivatives of the output of a
network w.r.t. group transformations of the input. They interestingly find that transformers can be
more translation equivariant than CNNs, due to aliasing effects in CNN downsampling layers.

Networks modulo permutation symmetries. [25] demonstrated that two CNNs with the same
architecture trained on the same data often learn similar features. They did this by permuting the
filters in one network to align with the filters in another network. [13] conjectured that it should be
possible to permute the weights of one network to put it in the same loss-basin as the other network
and that the networks after permutation should be linearly mode connected. I.e., it should be possible
to average (“merge”) the weights of the two networks to obtain a new network with close to the same
performance. This conjecture has recently gained empirical support in particular through [1], where
several good methods for finding permutations were proposed and [22] where the performance of a
merged network was improved by resetting batch norm statistics and batch statistics of individual
neurons to alleviate what the authors call variance collapse. In Section 3 we give a new version
of [13]’s conjecture by conjecturing that CNNs trained on group invariant data should be close to
GCNNs.

1.2 Limitations

While we are able to show several relevant theoretical results, we have not been able to give a
conclusive answer in terms of necessary and sufficient conditions to when equivariance of a network
implies layerwise equivariance or that the network can be rewritten to be layerwise equivariant. An
answer to this question would be valuable from a theoretical point of view.

In the experiments, we limit ourselves to looking at a single symmetry of images – horizontal
flipping. As in most prior work on finding weight space symmetries in trained nets, we only search for
permutations and not scaled permutations which would also be compatible with the ReLU-nonlinearity.
Our experimental results depend on a method of finding permutations between networks that is not
perfect [25]. Future improvements to permutation finding methods may increase the level of certainty
which we can have about Conjectures 3.1 and 3.2.

2 Layerwise equivariance

We will assume that the reader has some familiarity with group theory and here only briefly review a
couple of important concepts. Given a group G, a representation of G is a group homomorphism
ρ : G→ GL(V) from G to the general linear group of some vector space V . E.g., if V = Rm, then
GL(V) consists of all invertible m×m-matrices and ρ assigns a matrix to each group element, so
that the group multiplication of G is encoded as matrix multiplication in ρ(G) ⊂ GL(V).

A function f : V0 → V1 is called equivariant with respect to a group G with representations ρ0 on
V0 and ρ1 on V1 if f(ρ0(g)x) = ρ1(g)f(x) for all g ∈ G and x ∈ V0. An important representation
that exists for any group on any vector space is the trivial representation where ρ(g) = I for all g. If

3

a function f is equivariant w.r.t. ρ0 and ρ1 as above, and ρ1 is the trivial representation, we call f
invariant. A permutation representation is a representation ρ for which ρ(g) is a permutation matrix
for all g ∈ G. We will also have use for the concept of a group invariant data distribution. We say
that a distribution µ on a vector space V is G-invariant w.r.t. a representation ρ on V , if whenever X
is a random variable distributed according to µ, then ρ(g)X is also distributed according to µ.

Let’s for now1 consider a neural network f : Rm0 → RmL as a composition of linear layers
Wj : Rmj−1 → Rmj and activation functions σ:

f(x) =WLσ(WL−1σ(· · ·W2σ(W1x) · · ·)). (1)

Assume that f is equivariant with respect to a group G with representations ρ0 : G→ GL(Rm0) on
the input and ρL : G→ GL(RmL) on the output, i.e.,

f(ρ0(g)x) = ρL(g)f(x), for all x ∈ Rm0 , g ∈ G. (2)

A natural question to ask is what the equivariance of f means for the layers it is composed of. Do they
all have to be equivariant? For a layer Wj to be G-equivariant we require that there is a representation
ρj−1 on the input and a representation ρj on the output of Wj such that ρj(g)Wj =Wjρj−1(g) for
all g ∈ G. Note again that the only representations that are specified for f to be equivariant are ρ0
and ρL, so that all the other ρj : G → GL(Rmj) can be arbitrarily chosen. If there exists a choice
of ρj’s that makes each layer in f equivariant (including the nonlinearities σ), we call f layerwise
equivariant. In general we could have that different representations act on the input and output of the
nonlinearities σ, but as we explain in Section 2.1, this cannot be the case for the ReLU-nonlinearity,
which will be our main focus. Hence we assume that the the same group representation acts on the
input and output of σ as above.

The following simple example shows that equivariance of f does not imply layerwise equivariance.
Example 2.1. Let G = S2 = {i, h} be the permutation group on two indices, where i is the identity
permutation and h the transposition of two indices. Consider a two-layer network f : R2 → R,

f(x) =W2 ReLU(W1x),

where W1 = (1 0) and W2 = 0. f is invariant to permutation of the two coordinates of x (indeed,
f is constant 0). Thus, if we select ρ0(h) = (0 1

1 0) and ρ2(h) = 1, then f is equivariant (note
that a representation of S2 is specified by giving an involutory ρ(h) as we always have ρ(i) = I).
However, there is no choice of a representation ρ1 that makes W1 equivariant since that would require
ρ1(h)W1 = W1ρ0(h) = (0 1), which is impossible (note that ρ1(h) is a scalar). The reader will
however notice that we can define a network f̃ , with W̃1 = (0 0), W̃2 = 0 for which we have
f(x) = f̃(x) and then f̃ is layerwise equivariant when choosing ρ1(h) = 1.

In the example just given it was easy to, given an equivariant f , find an equivalent net f̃ which is
layerwise equivariant. For very small 2-layer networks we can prove that this will always be the case,
see Proposition D.1.

Example 2.1 might seem somewhat unnatural, but we note that the existence of “dead neurons” (also
known as “dying ReLUs”) with constant zero output is well known [26]. Hence, such degeneracies
could come into play and make the search for linear representations in trained nets more difficult. We
will however ignore this complication in the experiments in the present work.

From an intuitive point of view, equivariance of a neural network should mean that some sort of
group action is present on the intermediate feature spaces as the network should not be able to “forget”
about the equivariance in the middle of the net only to recover it at the end. In order to make this
intuition more precise we switch to a more abstract formulation in Appendix D.1. The main takeaway
will be that it is indeed possible to define group actions on modified forms of the intermediate feature
spaces whenever the network is equivariant, but this will not be very practically useful as it changes
the feature spaces from vector spaces to arbitrary sets, making it impossible to define linear layers
to/from these feature spaces.

An interesting question that was posed by Elesedy and Zaidi [12], is whether non-layerwise equivari-
ant nets can ever perform better at equivariant tasks than layerwise equivariant nets. In Appendix C,
we give a positive answer by demonstrating that when the size of the net is low, equivariance can hurt

1The main results in this section are generalized to networks with affine layers in Appendix E.

4

performance. In particular we give the example of cooccurence of equivariant features in C.1. This is
a scenario in image classification, where important features always occur in multiple orientations in
every image. It is intuitive that in such a case, it suffices for the network to recognize a feature in a
single orientation for it to be invariant on the given data, but a network recognizing features in only
one orientation will not be layerwise equivariant.

2.1 From general representations to permutation representations

We will now first sidestep the issue of an equivariant network perhaps not being layerwise equivariant,
by simply assuming that the network is layerwise equivariant with a group representation acting on
every feature space (this will to some degree be empirically justified in Section 4). Then we will
present results on 2-layer networks, where we can in fact show that layerwise equivariance is implied
by equivariance.

The choice of activation function determines which representations are at all possible. In this section
we lay out the details for the ReLU-nonlinearity. We will have use for the following lemma, which is
essentially the well known property of ReLU being “positive homogeneous”.

Lemma 2.2. [Godfrey et al. [18, Lemma 3.1, Table 1]] Let A and B be invertible matrices such that
ReLU(Ax) = B ReLU(x) for all x. Then A = B = PD where P is a permutation matrix and D is a
diagonal matrix with positive entries on the diagonal.

We provide an elementary proof in Appendix B.1. It immediately follows from Lemma 2.2 that if
ReLU is G-equivariant with respect to representations ρ0 and ρ1 on the input and output respectively,
then ρ0(g) = ρ1(g) = P (g)D(g) for all g ∈ G. I.e., the representations acting on the intermediate
feature spaces in a layerwise equivariant ReLU-network are scaled permutation representations. This
holds also if we add bias terms to the layers in (1).

We note that Godfrey et al. [18] consider more nonlinearities than ReLU, and that their results on
other nonlinearities could similarly be used to infer what input and output group representations
are admissible for these other nonlinearities. Also, Wood and Shawe-Taylor [41] derive in large
generality what nonlinearities commute with which finite group representations, which is very related
to our discussion. However, to apply the results from [41] we would have to first prove that the
representations acting on the inputs and outputs of the nonlinearity are the same.

For two-layer networks with invertible weight matrices we can show that equivariance implies
layerwise equivariance with a scaled permutation representation acting on the feature space on which
ReLU is applied. The reader should note that the invertibility assumption is strong and rules out cases
such as Example 2.1.

Proposition 2.3. Consider the case of a two-layer network f : Rm → Rm,

f(x) =W2 ReLU(W1x),

where ReLU is applied point-wise. Assume that the matrices W1 ∈ Rm×m, W2 ∈ Rm×m are
non-singular. Then f is G-equivariant with ρj : G → GL(Rm) for j = 0, 2 on the input and the
output respectively if and only if

ρ0(g) =W−1
1 P (g)D(g)W1 and ρ2(g) =W2P (g)D(g)W−1

2 ,

where P (g) is a permutation and D(g) a diagonal matrix with positive entries. Furthermore, the
network f is layerwise equivariant with ρ1(g) = P (g)D(g).

Proof. Invertibility of W1 and W2 means that f being equivariant w.r.t. ρ0, ρ2 is equivalent to ReLU

being equivariant w.r.t. ρ1(g) = W1ρ0(g)W
−1
1 and ρ̃1(g) = W−1

2 ρ2(g)W2. The discussion after
Lemma 2.2 now shows that ρ1(g) = ρ̃1(g) = P (g)D(g) and the proposition follows.

The set of group representations for which a two-layer ReLU-network can be G-equivariant is hence
quite restricted. It is only representations that are similar (or conjugate) to scaled permutations that
are feasible. In the appendix, we also discuss the case of two-layer networks that are G-invariant and
show that they have to be layerwise equivariant with permutation representations in Proposition B.1.

5

2.2 Permutation representations in CNNs—group convolutional neural networks

As explained in Section 2.1, for a ReLU-network to be layerwise equivariant, the representations must
be scaled permutation representations. We will now review how such representations can be used
to encode the horizontal flipping symmetry in CNNs. This is a special case of group equivariant
convolutional networks—GCNNs—which were introduced by [10]. An extensive reference is [38].
The reader familiar with [10, 38] can skip this section, here we will try to lay out in a condensed
manner what the theory of horizontal flipping equivariant GCNNs looks like.

Note first that horizontally flipping an image corresponds to a certain permutation of the pixels. Let’s
denote the action of horizontally flipping by τ . This is a permutation representation of the abstract
group S2. If a convolutional layer Ψ only contains horizontally symmetric filters, then it is immediate
that Ψ(τ(x)) = τ(Ψ(x)). It is however possible to construct more general equivariant layers.

Let’s assume that the representations acting on the input and output of Ψ split into the spatial
permutation τ and a permutation P of the channels. P0 on the input and P1 on the output. P0 and P1

need to have order maximum 2 to define representations of S2. One can show, using the so-called
kernel constraint [39, 38], what form the convolution kernel ψ of Ψ needs to have to be equivariant.
The kernel constraint says that the convolution kernel ψ ∈ Rc1×c0×k×k needs to satisfy

τ(ψ) = P1ψP
T
0 (= P1ψP0) , (3)

where τ acts on the spatial k × k part of ψ, P1 on the c1 output channels and P0 on the c0 input
channels. The last equality holds since P0 is of order 2. In short, permuting the channels of ψ with
P0 and P1 should be the same as horizontally flipping all filters. We see this in action in Figure 1,
even for layers that are not explicitly constrained to satisfy (3). An intuitive explanation of why (3)
should hold for equivariant layers is that it guarantees that the same information will be captured by
ψ on input x and flipped input τ(x), since all horizontally flipped filters in τ(ψ) do exist in ψ.

Channels that are fixed under a channel permutation are called invariant and channels that are
permuted are called regular, as they are part of the regular representation of S2. We point out three
special cases—if P0 = P1 = I , then ψ has to be horizontally symmetric. If P0 = I and P1 has no
diagonal entries, then we get a lifting convolution and if P0 and P1 both have no diagonal entries
then we get a regular group convolution [10]. In the following when referring to a regular GCNN,
we mean the “most generally equivariant” case where P has no diagonal entries.

3 The permutation conjecture by Entezari et al. and its connection to GCNNs

Neural networks contain permutation symmetries in their weights, meaning that given, e.g., a neural
network of the form (1), with pointwise applied nonlinearity σ, we can arbitrarily permute the inputs
and outputs of each layer

W1 7→ P1W1, Wj 7→ PjWjP
T
j−1, WL 7→WLP

T
L−1,

and obtain a functionally equivalent net. The reader should note the similarity to the kernel constraint
(3). It was conjectured by [13] that given two nets of the same type trained on the same data, it
should be possible to permute the weights of one net to put it in the same loss-basin as the other net.
Recently, this conjecture has gained quite strong empirical support [1, 22].

When two nets are in the same loss-basin, they exhibit close to linear mode connectivity, meaning
that the loss/accuracy barrier on the linear interpolation between the weights of the two nets will be
close to zero. Let the weights of two nets be given by θ1 and θ2 respectively. In this paper we define
the barrier of a performance metric ζ on the linear interpolation between the two nets by

1
2 (ζ(θ1) + ζ(θ2))− ζ

(
1
2 (θ1 + θ2)

)
1
2 (ζ(θ1) + ζ(θ2))

. (4)

Here ζ will most commonly be the test accuracy. Previous works [15, 13, 1, 22] have defined the
barrier in slightly different ways. In particular they have not included the denominator which makes
it difficult to compare scores for models with varying performance. We will refer to (4) without the
denominator as the absolute barrier. Furthermore we evaluate the barrier only at a single interpolation
point—halfway between θ1 and θ2—as compared to earlier work taking the maximum of barrier
values when interpolating between θ1 and θ2. We justify this by the fact that the largest barrier value

6

Network
initialization

SGD
path

Flipped
SGD path

Trained filters from flipped
initialization = flipped trained filters

Trained
filters

Filter
permutation

Flipped
initialization

Figure 3: For every CNN that is trained with hor-
izontal flipping data augmentation, there is a cor-
responding equally likely CNN that was initial-
ized with filters horizontally flipped and trained
on horizontally flipped images. This CNN is the
same as the original but with flipped filters, also
after training. According to the permutation con-
jecture [13], there should be a permutation of the
channels of the flipped CNN that aligns it close
to the original CNN. This implies that the CNN
is close to a GCNN. Lighter blue means a spot
in the parameter landscape with higher accuracy.

is practically almost always halfway between θ1 and θ2 (in fact [13] also only evaluate the halfway
point in their experiments). The permutation conjecture can now be informally stated as follows.

Conjecture 3.1 (Entezari et al. [13, Sec. 3.2]). Most SGD solutions belong to a set S whose elements
can be permuted in such a way that there is no barrier on the linear interpolation between any two
permuted elements in S.

Importantly, we note that when applied to CNNs, the conjecture should be interpreted in the sense that
we only permute the channel dimensions of the convolution weights, not the spatial dimensions. We
will now explain why applying Conjecture 3.1 to CNNs that are trained on invariant data distributions
leads to a conjecture stating that most SGD solutions are close to being GCNNs. For simplicity, we
discuss the case where G = horizontal flips of the input image, but the argument works equally well
for vertical flips or 90 degree rotations. The argument is summarised in Figure 3.

We will consider an image classification task and the common scenario where images do not change
class when they are horizontally flipped, and where a flipped version of an image is equally likely
as the original (in practice this is very frequently enforced using data augmentation). Let τ be the
horizontal flipping function on images. We can also apply τ to feature maps in the CNN, whereby we
mean flipping the spatial horizontal dimension of the feature maps.

Initialize one CNN Φ and copy the initialization to a second CNN Φ̂, but flip all filters of Φ̂
horizontally. If we let x0, x1, x2, . . . be the samples drawn during SGD training of Φ, then an equally
likely drawing of samples for SGD training of Φ̂ is τ(x0), τ(x1), τ(x2), After training Φ using
SGD and Φ̂ using the horizontally flipped version of the same SGD path, Φ̂ will still be a copy of Φ
where all filters are flipped horizontally.2 This means according to Conjecture 3.1 that Φ can likely
be converted close to Φ̂ by only permuting the channels in the network.

Let’s consider the j’th convolution kernel ψ ∈ Rcj×cj−1×k×k of Φ. There should exist permutations
Pj and Pj−1 such that τ(ψ) ≈ PjψP

T
j−1, where the permutations act on the channels of ψ and τ on

the spatial k× k part. But if we assume that the Pj’s are of order 2 so that they define representations
of the horizontal flipping group, this is precisely the kernel constraint (3), which makes the CNN
close to a GCNN! It seems intuitive that the Pj’s are of order 2, i.e. that if a certain channel should
be permuted to another to make the filters as close to each other as possible then it should hold the
other way around as well. However, degeneracies such as multiple filters being close to equal can
in practice hinder this intuition. Nevertheless, we conclude with the following conjecture which in
some sense is a weaker version of Conjecture 3.1, as we deduced it from that one.

Conjecture 3.2. Most SGD CNN-solutions on image data with a distribution that is invariant to
horizontal flips of the images will be close to GCNNs.

2This is not strictly true of networks that contain stride-2 convolutions or pooling layers with padding, as
they typically start at the left edge of the image and if the image has an even width won’t reach to the right edge
of the image, meaning that the operation is nonequivalent to performing it on a horizontally flipped input. Still it
will be approximately equivalent. We will discuss the implications of this defect in Section A.2.1.

7

Table 1: Types of VGG11 nets considered. All except “w/o aug” are trained with horizontal flipping
augmentation.

Name Description
CNN Ordinary VGG11 trained using cross-entropy loss (C.-E.). 9.23M parameters.
CNN w/o aug Ordinary VGG11 trained without horizontal flipping augmentation.
CNN + inv-loss Ordinary VGG11 trained using C.-E. and invariance loss (inv-loss).
CNN + late inv-loss Ordinary VGG11 trained using C.-E. and inv-loss after 20% of the epochs.
GCNN A regular horizontal flipping GCNN trained using C.-E. 4.61M parameters.
PGCNN A partial horizontal flipping GCNN trained using C.-E. The first two conv-layers

are G-conv-layers and the rest are ordinary conv-layers. 9.19M parameters.
PGCNN + late inv-loss The PGCNN trained using C.-E. and inv-loss after 20% of the epochs.

A measure for closeness to being a GCNN. To measure how close a CNN Φ is to being a GCNN
we can calculate the barrier, as defined in (4), of the linear interpolation between Φ and a permutation
of the flipped version of Φ. We call this barrier for the test accuracy the GCNN barrier.

4 Experiments

The aim of the experimental section is to investigate two related questions.

(Q1) If a CNN is trained to be invariant to horizontal flips of input images, is it a GCNN? This
question is related to the theoretical investigation of layerwise equivariance in Section 2.

(Q2) If a CNN is trained on a horizontal flipping-invariant data distribution, will it be close to a
GCNN? This is Conjecture 3.2.

To answer these two questions we evaluate the GCNN barrier for CNNs trained on CIFAR10 and
ImageNet. We look at CNNs trained with horizontal flipping data augmentation to answer (Q2) and
CNNs trained with an invariance loss on the logits to answer (Q1). In fact, for all training recipes
horizontal flipping data augmentation is used. The invariance loss applied during training of a CNN Φ
is given by ∥Φ(x)−Φ(τ(x))∥, where τ horizontally flips x. It is added to the standard cross-entropy
classification loss. To evaluate the invariance of a CNN Φ we will calculate the relative invariance
error ∥Φ(x)−Φ(τ(x))∥/(0.5∥Φ(x)∥+ 0.5∥Φ(τ(x))∥), averaging over a subset of the training data.
Another way to obtain invariance to horizontal flips is to use some sort of self-supervised learning
approach. We will investigate self-supervised learning of ResNets in Section 4.2.

To align networks we will use activation matching [25, 1]. In activation matching, the similarity
between channels in feature maps of the same layer in two different networks is measured over the
training data and a permutation that aligns the channels as well as possible between the networks
according to this similarity is found. Furthermore, we will use the REPAIR method by [22], which
consists of—after averaging the weights of two networks—reweighting each channel in the obtained
network to have the average batch statistics of the original networks. This reweighting can be merged
into the weights of the network so that the original network structure is preserved. REPAIR is a
method to compensate for the fact that when two filters are not perfect copies of each other, the
variance of the output of their average will be lower than the variance of the output of the original
filters. We will also report results without REPAIR.

Experimental details can be found in Appendix A. We provide code for merging networks with their
flipped selfs at https://github.com/georg-bn/layerwise-equivariance.

4.1 VGG11 on CIFAR10

We train VGG11 nets [33] on CIFAR10 [23]. We will consider a couple of different versions of
trained VGG11 nets, they are listed in Table 1.

We train 24 VGG11 nets for each model type and discard crashed runs and degenerate runs3 to obtain
18-24 good quality nets of each model type. In Figure 1 we visualize the filters of the first layer in two

3By degenerate run we mean a net with accuracy 10%. There was one GCNN and one CNN + late inv-loss
for which this happened.

8

https://github.com/georg-bn/layerwise-equivariance

Table 2: Statistics for VGG11 nets trained on CIFAR10.

Name Accuracy Invariance Error GCNN Barrier
CNN 0.901± 2.1 · 10−3 0.282± 1.8 · 10−2 4.00 · 10−2 ± 4.9 · 10−3

CNN w/o aug 0.879± 1.8 · 10−3 0.410± 4.0 · 10−2 4.98 · 10−2 ± 6.1 · 10−3

CNN + inv-loss 0.892± 2.3 · 10−3 0.0628± 6.7 · 10−3 1.90 · 10−3 ± 8.9 · 10−4

CNN + late inv-loss 0.902± 2.8 · 10−3 0.126± 1.6 · 10−2 1.33 · 10−2 ± 2.8 · 10−3

GCNN 0.899± 2.5 · 10−3 1.34 · 10−6 ± 1.5 · 10−7 8.92 · 10−4 ± 1.6 · 10−3

PGCNN 0.902± 3.7 · 10−3 0.274± 2.0 · 10−2 3.09 · 10−2 ± 7.8 · 10−3

PGCNN + late inv-loss 0.915± 2.3 · 10−3 0.124± 1.5 · 10−2 7.56 · 10−3 ± 1.8 · 10−3

Table 3: Results for ResNet50’s trained using various methods on ImageNet. The model with an
asterisk is trained by us. The last five are self-supervised methods. Flip-Accuracy is the accuracy of
a net with all conv-filters horizontally flipped. Halfway Accuracy is the accuracy of a net that has
merged the weights of the original net and the net of the net with flipped filters—after permuting the
second net to align it to the first. For the accuracy and barrier values w/o REPAIR we still reset batch
norm statistics after merging by running over a subset of the training data.

Training Method
Invariance
Error Accuracy

Flip-
Accuracy

Halfway
Accuracy,
no REPAIR

Halfway
Accuracy

GCNN
Barrier,
no REPAIR

GCNN
Barrier

Torchvision new 0.284 0.803 0.803 0.731 0.759 0.0893 0.0545
Torchvision old 0.228 0.761 0.746 0.718 0.725 0.0467 0.0384
*Torchvision old
+ inv-loss 0.0695 0.754 0.745 0.745 0.745 0.00636 0.0054
BYOL 0.292 0.704 0.712 0.573 0.624 0.19 0.118
DINO 0.169 0.753 0.744 0.611 0.624 0.184 0.166
Moco-v3 0.16 0.746 0.735 0.64 0.681 0.136 0.0805
Simsiam 0.174 0.683 0.667 0.505 0.593 0.252 0.121

VGG11 nets. More such visualizations are presented in Appendix A. We summarise the statistics of
the trained nets in Table 2. The most interesting findings are that the models with low invariance error
also have low GCNN barrier, indicating that invariant models are layerwise equivariant. Note that
the invariance error and GCNN barrier should both be zero for a GCNN. In order to have something
to compare the numbers in Table 2 to, we provide barrier levels for merging two different nets in
Table 4 in the appendix. Of note is that merging a model with a flipped version of itself is consistently
easier than merging two separate models. In Figure 4 in the appendix, we show the distribution of
permutation order for channels in different layers. The matching method sometimes fails to correctly
match GCNN channels (for which we know ground truth matches), but overall it does a good job.
In general, the unconstrained nets seem to learn a mixture between invariant and regular GCNN
channels. Preliminary attempts with training GCNN-VGG11s with such a mixture of channels did
however not outperform regular GCNNs.

4.2 ResNet50 on ImageNet

Next we look at the GCNN barrier for ResNet50 [21] trained on ImageNet [11]. We consider a
couple of different training recipes. First of all two supervised methods—the latest Torchvision
recipe [35] and the old Torchvision recipe [36] which is computationally cheaper. Second, four
self-supervised methods: BYOL [19], DINO [7], Moco-v3 [9] and Simsiam [8]. The results are
summarised in Table 3. There are a couple of very interesting takeaways. First, the GCNN barrier
for the supervised methods is unexpectedly low. When merging two separate ResNet50’s trained on
ImageNet, [22] report an absolute barrier of 20 percentage points, whereas we here see barriers of
4.4 percentage points for the new recipe and 2.9 percentage points for the old recipe. This indicates
that it easier to merge a net with a flipped version of itself than with a different net. However, we also
observe that for the self-supervised methods the barrier is quite high (although still lower than 20
percentage points). This is curious since they are in some sense trained to be invariant to aggressive
data augmentation—including horizontal flips. Finally we note that when training with an invariance
loss, the GCNN barrier vanishes, meaning that the obtained invariant net is close to being a GCNN.

9

The reader may have noticed that the “Flip-Accuracy”, i.e., accuracy of nets with flipped filters, is
markedly different than the accuracy for most nets in Table 3. This is a defect stemming from using
image size 224. We explain this and present a few results with image size 225 in Appendix A.2.1.

5 Conclusions and future work

We studied layerwise equivariance of ReLU-networks theoretically and experimentally. Theoretically
we found both positive and negative results in Section 2, showing that layerwise equivariance is
in some cases guaranteed given equivariance but in general not. In Section 3, we explained how
Entezari et al.’s permutation conjecture 3.1 can be applied to a single CNN and the same CNN with
horizontally flipped filters. From this we extrapolated Conjecture 3.2 stating that SGD CNN solutions
are likely to be close to being GCNNs, also leading us to propose a new measure for how close a
CNN is to being a GCNN—the GCNN barrier. In Section 4 we saw quite strong empirical evidence
for the fact that a ReLU-network that has been trained to be equivariant will be layerwise equivariant.
We also found that it is easier to merge a ResNet with a flipped version of itself, compared to merging
it with another net. Thus, Conjecture 3.2 might be a worthwhile stepping stone for the community
investigating Conjecture 3.1, in addition to being interesting in and of itself. If a negative GCNN
barrier is achievable, it would imply that we can do “weight space test time data augmentation”
analogously to how merging two separate nets can enable weight space ensembling.

Acknowledgements

This work was partially supported by the Wallenberg AI, Autonomous Systems and Software Program
(WASP) funded by the Knut and Alice Wallenberg Foundation. The computations were enabled by
resources provided by the National Academic Infrastructure for Supercomputing in Sweden (NAISS)
at the Chalmers Centre for Computational Science and Engineering (C3SE) partially funded by the
Swedish Research Council through grant agreement no. 2022-06725 and by the Berzelius resource
provided by the Knut and Alice Wallenberg Foundation at the National Supercomputer Centre.

References
[1] Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models

modulo permutation symmetries. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=CQsmMYmlP5T.

[2] Erik J. Bekkers, Maxime W. Lafarge, Mitko Veta, Koen A. J. Eppenhof, Josien P. W. Pluim, and
Remco Duits. Roto-Translation Covariant Convolutional Networks for Medical Image Analysis.
In Alejandro F. Frangi, Julia A. Schnabel, Christos Davatzikos, Carlos Alberola-López, and
Gabor Fichtinger, editors, Medical Image Computing and Computer Assisted Intervention –
MICCAI 2018, Lecture Notes in Computer Science, pages 440–448, Cham, 2018. Springer
International Publishing. ISBN 978-3-030-00928-1. doi: 10.1007/978-3-030-00928-1_50.

[3] Georg Bökman and Fredrik Kahl. A case for using rotation invariant features in state of the art
feature matchers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, 2022.

[4] Georg Bökman, Fredrik Kahl, and Axel Flinth. Zz-net: A universal rotation equivariant
architecture for 2d point clouds. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10976–10985, 2022.

[5] Robert-Jan Bruintjes, Tomasz Motyka, and Jan van Gemert. What affects learned equivariance
in deep image recognition models? In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, pages 4838–4846, June 2023.

[6] Lucas Brynte, Georg Bökman, Axel Flinth, and Fredrik Kahl. Rigidity preserving image
transformations and equivariance in perspective. In Scandinavian Conference on Image Analysis,
2023.

[7] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski,
and Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings
of the International Conference on Computer Vision (ICCV), 2021.

10

https://openreview.net/forum?id=CQsmMYmlP5T

[8] Xinlei Chen and Kaiming He. Exploring Simple Siamese Representation Learning. In 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 15745–
15753, June 2021. doi: 10.1109/CVPR46437.2021.01549.

[9] Xinlei Chen, Saining Xie, and Kaiming He. An Empirical Study of Training Self-Supervised
Vision Transformers. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 9640–9649, 2021.

[10] Taco Cohen and Max Welling. Group equivariant convolutional networks. In Maria Florina
Balcan and Kilian Q. Weinberger, editors, Proceedings of The 33rd International Conference on
Machine Learning, volume 48 of Proceedings of Machine Learning Research, pages 2990–2999,
New York, New York, USA, 20–22 Jun 2016. PMLR. URL https://proceedings.mlr.
press/v48/cohenc16.html.

[11] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR09, 2009.

[12] Bryn Elesedy and Sheheryar Zaidi. Provably strict generalisation benefit for equivariant models.
In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages 2959–
2969. PMLR, 2021. URL https://proceedings.mlr.press/v139/elesedy21a.html.

[13] Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation
invariance in linear mode connectivity of neural networks. In International Conference on
Learning Representations, 2022. URL https://openreview.net/forum?id=dNigytemkL.

[14] Marc Finzi, Max Welling, and Andrew Gordon Wilson. A practical method for constructing
equivariant multilayer perceptrons for arbitrary matrix groups. In International Conference on
Machine Learning, 2021.

[15] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode
connectivity and the lottery ticket hypothesis. In Hal Daumé III and Aarti Singh, editors,
Proceedings of the 37th International Conference on Machine Learning, volume 119 of Pro-
ceedings of Machine Learning Research, pages 3259–3269. PMLR, 13–18 Jul 2020. URL
https://proceedings.mlr.press/v119/frankle20a.html.

[16] Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max Welling. SE(3)-Transformers: 3D Roto-
Translation Equivariant Attention Networks. In Advances in Neural Information Processing
Systems, volume 33, pages 1970–1981. Curran Associates, Inc., 2020.

[17] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A. Wichmann,
and Wieland Brendel. Imagenet-trained CNNs are biased towards texture; increasing shape bias
improves accuracy and robustness. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=Bygh9j09KX.

[18] Charles Godfrey, Davis Brown, Tegan Emerson, and Henry Kvinge. On the symme-
tries of deep learning models and their internal representations. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neu-
ral Information Processing Systems, volume 35, pages 11893–11905. Curran Associates,
Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
4df3510ad02a86d69dc32388d91606f8-Paper-Conference.pdf.

[19] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
Bilal Piot, koray kavukcuoglu, Remi Munos, and Michal Valko. Bootstrap Your Own Latent -
A New Approach to Self-Supervised Learning. In Advances in Neural Information Processing
Systems, volume 33, pages 21271–21284. Curran Associates, Inc., 2020.

[20] Nate Gruver, Marc Anton Finzi, Micah Goldblum, and Andrew Gordon Wilson. The lie deriva-
tive for measuring learned equivariance. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=JL7Va5Vy15J.

11

https://proceedings.mlr.press/v48/cohenc16.html
https://proceedings.mlr.press/v48/cohenc16.html
https://proceedings.mlr.press/v139/elesedy21a.html
https://openreview.net/forum?id=dNigytemkL
https://proceedings.mlr.press/v119/frankle20a.html
https://openreview.net/forum?id=Bygh9j09KX
https://proceedings.neurips.cc/paper_files/paper/2022/file/4df3510ad02a86d69dc32388d91606f8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/4df3510ad02a86d69dc32388d91606f8-Paper-Conference.pdf
https://openreview.net/forum?id=JL7Va5Vy15J

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016. doi: 10.1109/CVPR.2016.90.

[22] Keller Jordan, Hanie Sedghi, Olga Saukh, Rahim Entezari, and Behnam Neyshabur. REPAIR:
REnormalizing permuted activations for interpolation repair. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=gU5sJ6ZggcX.

[23] Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images, 2009.

[24] Karel Lenc and Andrea Vedaldi. Understanding image representations by measuring their
equivariance and equivalence. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 991–999, 2015.

[25] Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and John Hopcroft. Convergent learning:
Do different neural networks learn the same representations? In Dmitry Storcheus, Afshin
Rostamizadeh, and Sanjiv Kumar, editors, Proceedings of the 1st International Workshop on
Feature Extraction: Modern Questions and Challenges at NIPS 2015, volume 44 of Proceedings
of Machine Learning Research, pages 196–212, Montreal, Canada, 11 Dec 2015. PMLR. URL
https://proceedings.mlr.press/v44/li15convergent.html.

[26] Lu Lu, Yeonjong Shin, Yanhui Su, and George Em Karniadakis. Dying relu and initialization:
Theory and numerical examples. Communications in Computational Physics, 28(5):1671–1706,
2020. ISSN 1991-7120. doi: https://doi.org/10.4208/cicp.OA-2020-0165.

[27] Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant
graph networks. In International Conference on Learning Representations, 2019.

[28] Mirgahney Mohamed, Gabriele Cesa, Taco S. Cohen, and Max Welling. A data and compute
efficient design for limited-resources deep learning, 2020.

[29] Chris Olah, Nick Cammarata, Chelsea Voss, Ludwig Schubert, and Gabriel Goh. Naturally
occurring equivariance in neural networks. Distill, 2020. doi: 10.23915/distill.00024.004.
https://distill.pub/2020/circuits/equivariance.

[30] David W. Romero, Erik J. Bekkers, Jakub M. Tomczak, and Mark Hoogendoorn. Attentive
group equivariant convolutional networks. In Proceedings of the 37th International Conference
on Machine Learning, ICML’20. JMLR.org, 2020.

[31] Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela, Alexandre
Tkatchenko, and Klaus-Robert Müller. Schnet: A continuous-filter convolutional neural network
for modeling quantum interactions. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Sys-
tems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/
paper_files/paper/2017/file/303ed4c69846ab36c2904d3ba8573050-Paper.pdf.

[32] Mehran Shakerinava, Arnab Kumar Mondal, and Siamak Ravanbakhsh. Structuring representa-
tions using group invariants. In Advances in Neural Information Processing Systems, volume 35,
pages 34162–34174. Curran Associates, Inc., 2022.

[33] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In International Conference on Learning Representations, 2015.

[34] Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
Riley. Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point
clouds. arXiv:1802.08219 [cs], May 2018. URL http://arxiv.org/abs/1802.08219.

[35] Torchvision. Improve the accuracy of Classification models by using SOTA recipes and
primitives · Issue #3995 · pytorch/vision. https://github.com/pytorch/vision/issues/
3995, 2023. (accessed 2023-05-16).

[36] Torchvision. Vision/references/classification at main · pytorch/vision. https://github.com/
pytorch/vision, 2023. (accessed 2023-05-16).

12

https://openreview.net/forum?id=gU5sJ6ZggcX
https://openreview.net/forum?id=gU5sJ6ZggcX
https://proceedings.mlr.press/v44/li15convergent.html
https://proceedings.neurips.cc/paper_files/paper/2017/file/303ed4c69846ab36c2904d3ba8573050-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/303ed4c69846ab36c2904d3ba8573050-Paper.pdf
http://arxiv.org/abs/1802.08219
https://github.com/pytorch/vision/issues/3995
https://github.com/pytorch/vision/issues/3995
https://github.com/pytorch/vision
https://github.com/pytorch/vision

[37] Soledad Villar, David W Hogg, Kate Storey-Fisher, Weichi Yao, and Ben Blum-Smith. Scalars
are universal: Equivariant machine learning, structured like classical physics. In Thirty-Fifth
Conference on Neural Information Processing Systems, 2021. URL https://openreview.
net/forum?id=ba27-RzNaIv.

[38] Maurice Weiler and Gabriele Cesa. General e(2)-equivariant steerable cnns. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 32. Curran As-
sociates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
45d6637b718d0f24a237069fe41b0db4-Paper.pdf.

[39] Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, and Taco S Cohen. 3D
Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data. In Advances
in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

[40] Maurice Weiler, Fred A. Hamprecht, and Martin Storath. Learning Steerable Filters for
Rotation Equivariant CNNs. In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 849–858, Salt Lake City, UT, June 2018. IEEE. ISBN 978-1-5386-6420-9.
doi: 10.1109/CVPR.2018.00095.

[41] Jeffrey Wood and John Shawe-Taylor. Representation theory and invariant neural networks.
Discrete Applied Mathematics, 69(1-2):33–60, August 1996. ISSN 0166218X. doi: 10/c3qmr6.
URL https://linkinghub.elsevier.com/retrieve/pii/0166218X95000753.

[42] Daniel E. Worrall, Stephan J. Garbin, Daniyar Turmukhambetov, and Gabriel J. Brostow.
Harmonic Networks: Deep Translation and Rotation Equivariance. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 5028–5037, 2017.

[43] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,
and Alexander J Smola. Deep Sets. In Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017.

13

https://openreview.net/forum?id=ba27-RzNaIv
https://openreview.net/forum?id=ba27-RzNaIv
https://proceedings.neurips.cc/paper/2019/file/45d6637b718d0f24a237069fe41b0db4-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/45d6637b718d0f24a237069fe41b0db4-Paper.pdf
https://linkinghub.elsevier.com/retrieve/pii/0166218X95000753

Figure 4: Number of channels of different permutation order that are found by activation matching
in different VGG11 versions. In the ideal case, for GCNNs all channels should have order ≤ 2.
The matching method fails this, but not extremely badly. The main reason for failure that we have
observed is that layers contain many zero-filters.

A Experimental details and more results

A.1 VGG11 on CIFAR10

We present the distribution of various channels types in Figure 4. We present statistics for merging
two different nets in Table 4.

In Figures 5, 6 we show the convolution kernels of the second convolution layers of the same nets as
in Figure 1. Figures 7, 8 show the filters of a GCNN-VGG11, which has hardcoded equivariance in
each layer.

There are some interesting takeaways from these filter visualizations. First of all, the number of
zero-filters in Figure 6 – second layer of an ordinary VGG11 – and Figure 8 – second layer of a
GCNN-VGG11 – is quite high and it is lower for the VGG11 trained using invariance loss – Figure 5.
Also, the GCNN has more zero-filters than the ordinary net. It would be valuable to investigate
why these zero-filters appear and if there is some training method that doesn’t lead to such apparent
under-utilization of the network parameters.

Second, naturally when enforcing maximally equivariant layers using a lifting convolution in the first
layer (recall Section 2.2), the network is forced to learn duplicated horizontal filters – see Figure 7
e.g. the all green filter. This could explain the worse performance of GCNN:s relative to ordinary
VGG11:s. The choice of representations to use in each layer of a GCNN remains a difficult problem,
and as we mentioned in the main text, in our initial experiments it did not seem to work to set the
representations similar to those observed in Figure 4. Further research on the optimal choice of
representations would be very valuable. However, as discussed in Section C.1, it may be the case that
no layerwise equivariant net outperforms nets which are not restricted to be equivariant in late layers.

A.1.1 Training details

The nets were trained on NVIDIA T4 GPUs on a computing cluster. We train 4 nets in parallel on
each GPU, each run taking between 1 and 2 hours, depending on net type. This yields less than
(24/4) · 6 · 2 = 72 compute hours in total.

14

Figure 5: Illustration of how a VGG11 encodes the horizontal flipping symmetry. The 128 filters in
the second convolutional layer of a VGG11-net trained on CIFAR10 are shown, where each filter is
next to a filter in a permuted version of the horizontally flipped convolution kernel. Both the input
and output channels of the flipped convolution kernel are permuted, as described in Section 3. The 64
input channels are projected by a random projection matrix to 3 dimensions for visualization as RGB.
The net is trained with an invariance loss to output the same logits for horizontally flipped images.
It has learnt very close to a GCNN structure where the horizontally flipped filters can be permuted
close to the original.

Figure 6: Illustration of how a VGG11 encodes the horizontal flipping symmetry. The 128 filters in
the second convolutional layer of a VGG11-net trained on CIFAR10 are shown, where each filter is
next to a filter in a permuted version of the horizontally flipped convolution kernel. Both the input
and output channels of the flipped convolution kernel are permuted, as described in Section 3. The 64
input channels are projected by a random projection matrix to 3 dimensions for visualization as RGB.
The net is trained with horizontal flipping data augmentation. This net is quite close to a GCNN
structure, but the permuted filters are less close to each other than in Figure 5

15

Table 4: Statistics for merging VGG11 nets that where trained in different manners.

Model 1 Model 2 Barrier
CNN CNN 5.08 · 10−2 ± 5.7 · 10−3

CNN CNN + inv-loss 4.87 · 10−2 ± 4.5 · 10−3

CNN GCNN 6.50 · 10−2 ± 8.9 · 10−3

CNN + inv-loss CNN + inv-loss 3.73 · 10−2 ± 4.1 · 10−3

CNN + inv-loss GCNN 7.53 · 10−2 ± 9.6 · 10−3

GCNN GCNN 6.59 · 10−2 ± 7.7 · 10−3

Figure 7: Illustration of how a GCNN-VGG11 encodes the horizontal flipping symmetry. The 64
filters in the first convolutional layer of a GCNN-VGG11-net trained on CIFAR10 are shown, where
each filter is next to a filter in a permuted version of the horizontally flipped convolution kernel.

Figure 8: Illustration of how a GCNN-VGG11 encodes the horizontal flipping symmetry. The 128
filters in the second convolutional layer of a GCNN-VGG11-net trained on CIFAR10 are shown,
where each filter is next to a filter in a permuted version of the horizontally flipped convolution kernel.
Both the input and output channels of the flipped convolution kernel are permuted, as described in
Section 3. The 64 input channels are projected by a random projection matrix to 3 dimensions for
visualization as RGB.

16

Figure 9: Left: Visualization of the filters in the first layer of a ResNet50. Right: The same filters but
horizontally flipped and permuted to align with the original filters to the right.

A.2 ResNet50 on ImageNet

We show the first layer filters of the torchvision new recipe ResNet50 in Figure 9.

A.2.1 The peculiarities of image size 224

As mentioned in footnote 2, a convolution layer with stride 2 can not be equivariant to horizontal
flipping if the input has even width. This problem has been discussed previously by [28, 30]. All the
methods in Table 3 except for the new Torchvision recipe use image size 224 for training and all use
it for testing. It so happens that 224 can be halved 5 times without remainder meaning that all feature
spaces in a ResNet50 will have even width. As luck would have it, if we use image size 225, then all
feature spaces have odd width instead. Therefore we report results for a few methods with image size
225 in Table 5, this table contains all numbers from Table 3 as well for convenience. We see that the
simple change of image size lowers the invariance score and GCNN barrier. However it does not
seem to influence the accuracy much, meaning that the networks seem to learn to compensate for the
non-equivariance with image size 224.

A.2.2 Training details

We train on NVIDIA A100 GPUs on a computing cluster. Each run was on either 4 or 8 parallel
GPUs. For the supervised net, training took around between 9 and 13 hours depending on image size
and whether invariance loss was applied. For the Simsiam training, the self-supervised pre-training
took 23 hours and training the supervised linear head took 15 hours. In total this gives an upper
bound of 13 · 8 · 3 + (15 + 23) · 8 = 616 GPU hours.

17

Table 5: Results for ResNet50’s trained using various methods on ImageNet. The models with an
asterisk are trained by us. The last five are self-supervised methods. Flip-Accuracy is the accuracy of
a net with all conv-filters horizontally flipped. For the accuracy and barrier values w/o REPAIR we
still reset batch norm statistics after merging by running over a subset of the training data.

Training
Method

Invariance
Error Accuracy

Flip-
Accuracy

Halfway
Accu-
racy
w/o RE-
PAIR

Halfway
Accu-
racy

GCNN
Barrier
w/o RE-
PAIR

GCNN
Barrier

Torchvision new 0.284 0.803 0.803 0.731 0.759 0.0893 0.0545
Torchvision old 0.228 0.761 0.746 0.718 0.725 0.0467 0.0384
*Torchvision old
+ inv-loss 0.0695 0.754 0.745 0.745 0.745 0.00636 0.0054
*Torchvision old
+ img size 225 0.162 0.764 0.764 0.714 0.722 0.0657 0.0558
*Torchvision old
+ inv-loss + img
size 225 0.00235 0.744 0.745 0.744 0.744

9.4 ·
10−5

6.72 ·
10−5

BYOL 0.292 0.704 0.712 0.573 0.624 0.19 0.118
DINO 0.169 0.753 0.744 0.611 0.624 0.184 0.166
Moco-v3 0.16 0.746 0.735 0.64 0.681 0.136 0.0805
Simsiam 0.174 0.683 0.667 0.505 0.593 0.252 0.121
*Simsiam + img
size 225 0.113 0.68 0.68 0.535 0.611 0.213 0.103

B Layerwise equivariance of ReLU-networks – proofs and further results

B.1 Proof of Lemma 2.2

Lemma 2.2. [Godfrey et al. [18, Lemma 3.1, Table 1]] Let A and B be invertible matrices such that
ReLU(Ax) = B ReLU(x) for all x. Then A = B = PD where P is a permutation matrix and D is a
diagonal matrix with positive entries on the diagonal.

We will use the following notation. For a scalar a, we can uniquely write it as a = a+ − a−,
where a+ ≥ 0 and a− ≥ 0, and either a+ = 0 or a− = 0. Similarly for matrices (elementwise),
A = A+ −A−.

Proof. As the equation ReLU(Ax) = B ReLU(x) should hold for all x, we can start by setting x =
−ek where ek is the canonical basis. Then, as ReLU(−ek) = 0, we get that ReLU(−Aek) = A−

k = 0.
Hence, A− = 0 and consequently A = A+. Inserting x = ek into the equation, we can conclude that
A = B = A+.

Now suppose that two elements on the same row are non-zero, sayAik > 0 andAik′ > 0 on row i for
some k ̸= k′. Let’s see what happens when we set x = Aikek′ −Aik′ek. On the left hand side, the
i:th element simply becomes ReLU(AikAik′ −Aik′Aik) = 0 whereas on the right hand side we get
A ReLU(Aikek′ − Aik′ek) = A ReLU(Aikek′) = AikAk′ , that is, the i:th element is AikAik′ ̸= 0,
which is a contradiction. Hence, we can conclude that each row has at most one positive element and
since the matrices A and B are non-singular, they will have exactly one positive element in each row
and we can conclude that they must be scaled permutation matrices.

B.2 A result on layerwise equivariance given an invariant network

Next we are going to look at two-layer networks f : Rm → R, which are invariant, that is,
G-equivariant with ρ2(g) = I . Now, if f(x) = W2 ReLU(W1x), one can without loss of general-
ity assume that it is only the signs of the elements in W2 that matter, and move the magnitudes
into W1 and write f(x) = [±1 . . . ±1] ReLU(W̃1x). Also, one can sort the indices such that
W2 = [1 . . . 1 -1 . . . -1]. This leads to a convenient characterization of invariant two-layer
networks.

18

Proposition B.1. Consider the case of a two-layer network f : Rm → R,

f(x) =W2 ReLU(W1x),

where ReLU is applied point-wise. Assume that the matrix W1 ∈ Rm×m is non-singular and
that W2 ∈ Rm×1 has the form [1 . . . 1 -1 . . . -1] with m+ positive elements and m−
negative elements (m = m+ +m−). Further, assume ρ2(g) = I for the output, that is, the trivial
representation. Then, f is G-equivariant with ρ0 : G→ GL(Rm) if and only if

ρ0(g) =W−1
1

[
P+(g) 0

0 P−(g)

]
W1,

where P+(g) is an m+ ×m+ permutation matrix and P−(g) an m− ×m− permutation matrix.

Furthermore, the network f is layerwise equivariant with ρ1(g) =
[
P+(g) 0

0 P−(g)

]
.

Proof. The condition for invariance is that the following equation should hold for all g ∈ G and all
x ∈ Rm,

W2 ReLU(W1x) =W2 ReLU(W1ρ0(g)x).

Now, let y =W1x and A =W1ρ0(g)W
−1
1 , we get that the following equivalent condition

W2 ReLU(y) =W2 ReLU(Ay)

should hold for all A = A(g) = W1ρ0(g)W
−1
1 . In particular, it should hold for y = ek − λek′ for

k ̸= k′ and λ > 0. For this choice, the left hand side is equal to ±1 and hence the right hand side
should also be independent of λ. The right hand side has m+ positive terms and m− negative terms,

m+∑
i=1

(Aik − λAik′)+ −
m∑

i=m++1

(Aik − λAik′)+.

One possibility is that one of the positive terms cancels out a negative one. However, this would imply
that A would contain two identical rows, making A singular, which is not feasible. Now, if Aik′ < 0,
then for sufficiently large λ, it would follow that (Aik − λAik′)+ = Aik − λAik′ which makes the
right hand side dependent on λ, a contradiction. Hence, all the elements of A must be positive. Now,
if both Aik > and Aik′ > 0, then for sufficiently small λ, we get (Aik − λAik′)+ = Aik − λAik′ ,
again a contradiction. Therefore, at most one element can be positive on each row. By also checking
y = ek, one can draw the conclusion that A must be a permutation matrix of the required form and
the result follows.

C Answer to an open question by Elesedy and Zaidi

A question which was proposed by Elesedy and Zaidi [12, Sec. 7.4] is whether non-layerwise
equivariant nets can ever be better at equivariant tasks than layerwise equivariant nets. We saw in
Example 2.1 that they can be equally good, but not whether they can be better.

We formulate the question as follows.

(C.Q) Given a G-invariant data distribution µ, and a ground truth equivariant function s : Rm0 →
RmL , can we ever have for neural networks of the form (1) that

inf
Wj∈Rmj−1×mj

Ex∼µ∥f{Wj}(x)− s(x)∥ < inf
Wj∈Rmj−1×mj ,

Wj equivariant

Ex∼µ∥f{Wj}(x)− s(x)∥?

Here we assume that the layer dimensions mj are fixed and equal on both hand sides. We
write f{Wj} to make the parameterisation of f in terms of the linear layers explicit.

We will now give a simple example showing that the answer to the question is yes.
Example C.1. Let µ be a distribution on R that is symmetric about the origin and let s : R → R be
given by s(x) = |x|. s is invariant to changing the sign of the input, i.e., equivariant to S2 = {i, h}

19

Class 1 Class 2

Figure 10: Illustration of what we term cooccurence of equiv-
ariant features. We imagine training a network to classify the
two depicted classes. Both classes consist of images containing
a shape and horizontally flipped copies of the same shape – in
particular, every image contains the shape in both orientations. On
this data, a network only recognising the existence of the shape

(in this orientation) will be invariant to horizontal flips of the
input. However, such a network is not invariant to horizontal
flips of general data and can hence not be written as a layerwise
equivariant network.

with representation choice ρ0(h) = −1 on the input and ρ2(h) = 1 on the output. Now, we consider
approximating s with a neural network f :

f(x) =W2 ReLU(W1x),

where W1 and W2 are both scalars. Recall (from Section 2.1) that for ReLU to be equivariant, the
representation acting on the output of W1 has to be a scaled permutation representation. The only
one-dimensional permutation representation is the trivial representation, but this means that W1 = 0
and so f is constant 0. Also consider the non-equivariant net f̃ with W̃1 = 1, W̃2 = 1. Since
f̃(x) = f(x) for x ≤ 0 and f̃(x) = s(x) for x > 0, it is clear that

Ex∼µ∥f̃(x)− s(x)∥ =
1

2
Ex∼µ∥f(x)− s(x)∥,

showing that in this example, non-equivariant nets outperform the layerwise equivariant f .

The reason that non-equivariant nets outperform equivariant ones in Example C.1 is that the ca-
pacity of the net is so low that requiring equivariance leads to a degenerate net. If we increase the
intermediate feature dimension from 1 to 2, then equivariant nets can perfectly fit s(x) = |x| (by
taking W1 = (1 −1)

T , W2 = (1 1)). In the next section we take this idea of insufficient capacity
for equivariance a step further and give a less rigorous but more practically relevant example of a
scenario where non-equivariant nets outperform equivariant nets on an equivariant task. The idea
is that when features cooccur with group transformed versions of themselves, it can suffice for a
network to recognize a feature in a single orientation. The network can then still be equivariant on
data which has such cooccurring features, but it can be smaller than a layerwise equivariant network
which would be forced to be able to recognize features in all group transformed orientations.

C.1 Cooccurence of equivariant features

Here we give a more practical example to answer the question (C.Q) by Elesedy and Zaidi [12].
Example C.2. This example is illustrated in Figure 10. We consider image classification using a CNN.
For simplicity we will consider invariance to horizontal flipping of the images, but the argument
works equally well for other transformations. For the sake of argument, assume that our CNN has
very limited capacity and can only pick up the existence of a single local shape in the input image.
The CNN might consist of a single convolution layer with one filter, followed by ReLU, and spatial
average pooling. As shown in Figure 10, if the identifiable features in the images always cooccur in
an image with horizontally flipped versions of themselves, then it suffices to recognise a feature in
a single orientation for the feature detector to be invariant to horizontal flips on the data. We refer
to this type of data as having cooccurence of equivariant features. Since a layerwise equivariant
CNN with a single filter has to have a horizontally symmetric filter, it can not be as good as the
non-equivariant CNN on this task.

The reader might consider Example C.2 to be somewhat artificial. However, we note that it has
been demonstrated [17] that CNN image classifiers often look at mostly textures to identify classes.
Textures such as the skin of an elephant will often occur in multiple orientations in any given image of
an elephant. A network might hence make better use of its limited capacity by being able to identify
multiple textures than by being able to identify a single texture in multiple orientations.

20

D Rewriting networks to be layerwise equivariant

The aim of this section is to investigate when we can, given an equivariant net, rewrite the net to be
layerwise equivariant. I.e., given an equivariant find a functionally equivalent layerwise equivariant
net with the same layer dimensions as the original. We first give a result for small two-layer
networks showing that for them we can always do this. Then we look at the problem more generally
in Section D.1. Unfortunately the conclusion there will not be as clear. While we can view an
equivariant network as a composition of equivariant functions in a certain sense, it remains unclear
whether we can rewrite it as a layerwise network with the same layer structure as the original.

Proposition D.1. Consider the case of two-layer networks

f(x) =W2 ReLU(W1x),

where ReLU is applied point-wise, the input dimension is 2, the output dimension 1 and the intermedi-
ate dimension 2 so that W1 ∈ R2×2, W2 ∈ R1×2. Any such f that is invariant to permutations of
the two input dimensions must be equivalent to a layerwise equivariant network with the same layer
dimensions as f .

Proof. Note that non-negative constants factor through ReLU so that

W2

(
α 0
0 β

)
ReLU(W1x) =W2 ReLU

((
α 0
0 β

)
W1x

)
,

for any α ≥ 0, β ≥ 0. Hence we can assume that W2 only contains elements 1,−1 by factoring the
non-negative constants into W1. So (WLOG) we will only have to consider W2 = (1 ±1).

Let

J =

(
0 1
1 0

)
be the permutation matrix that acts on the input. It will also be convenient to introduce the notation
f2(x) = W2 ReLU(x) for the last part of the network so that we can write the invariance condition
∀x ∈ R2 : f(Jx) = f(x) as ∀x ∈ R2 : f2(W1Jx) = f2(W1x).

We first consider the case when W1 has full rank. In this case ∀x ∈ R2 : f2(W1Jx) = f2(W1x) is
equivalent to

∀x ∈ R2 : f2(W1JW
−1
1 x) = f2(x). (5)

For convenience we set

W1JW
−1
1 = A =

(
a b
c d

)
which satisfies A2 = I (A is an involution)4. It is easy to show that this means that either

A =

(
a b
c −a

)
,

where
a2 + bc = 1, (6)

or A = ±I . However, the A = ±I case is easy to rule out since it implies

±W1 =W1J,

meaning that the columns of W1 are linearly dependent, but we assumed full rank. Explicitly writing
out (5) with W1JW

−1
1 = A, we get that for all x ∈ R2 we must have

W2 ReLU(Ax) =W2 ReLU(x). (7)

Now we divide into two cases depending on the form of W2. The strategy will be to plug in the
columns of A as x and use the fact that A2 = I .

4Here we note that since (W1JW
−1
1)2 = I , the map ρ(J) = W1JW

−1
1 actually defines a representation of

S2 on R2. We are hence now trying to find for which representations ρ of S2, f2 is invariant.

21

• Case I: W2 = (1 −1). By plugging x = (a c)
T into (7) we see that

1 = ReLU(a)− ReLU(c),

meaning that a ≥ 1. Similarly, plugging in x = (b −a)T we see that

−1 = ReLU(b)− ReLU(−a),

implying that a ≤ −1. We have reached a contradiction and can conclude W2 ̸= (1 −1).

• Case II: W2 = (1 1). This time we will need four plug-and-plays with (7).

1. x = (−a −c)T yields

0 = ReLU(−a) + ReLU(−c),

so a ≥ 0 and c ≥ 0.
2. x = (−b a)

T yields
0 = ReLU(−b) + ReLU(a),

so a ≤ 0 and b ≥ 0. From this and the previous we conclude a = 0.

3. x = (a c)
T yields

1 = ReLU(a) + ReLU(c),

which implies c ≤ 1.

4. x = (b −a)T yields
1 = ReLU(b) + ReLU(−a),

which implies b ≤ 1.

From a = 0 and (b, c) ∈ [0, 1]2 we conclude from (6) that b = c = 1. Thus, ifW2 = (1 1),
then A = J , which means that

W1JW
−1
1 = J.

But this is precisely the equivariance condition on W1, and since W2 is invariant we have a
layer-wise equivariant network.

Next, we consider the case when W1 has rank 1. We can then write W1 = uvT for some vectors u, v
in R2. If v contains two equal values, then W1 is row-wise constant, so permutation invariant, and
thus the network is layer-wise equivariant. If u contains a zero, then a row of W1 is zero and the
statement to prove reduces to the case of a network with W1 ∈ R1×2, W2 ∈ {−1, 1} in which case it
is easy to show that W1 has to be permutation invariant for the network to be invariant.

Finally if v contains two different values and u does not contain a zero, let WLOG v1 ̸= 0 and
consider the following two cases for the invariance equation below

W2 ReLU(uv
Tx) =W2 ReLU(uv

TJx).

• Case I: u contains two values with the same sign. We plug in x1 = v1 − v2, x2 = v2 − v1
and find that uvTx = (v1 − v2)

2u, while uvTJx = −(v1 − v2)
2u. One of those is mapped

to 0 by ReLU and the other one isn’t, implying that W2 has to map it to 0, so W2 = (1 −1)
and the two values in u are the same. This leads to a zero network which can be equivalently
written layer-wise equivariant.

• Case II: u1 and u2 have different signs. WLOG let u1 > 0. Plugging in the same values as
above, we find that W1 = (1 1) and u2 = −u1. Next, we plug in x1 = sign(v1), x2 = 0
yielding uvTx = |v1|u and uvTJx = sign(v1)v2u. Since v2 ̸= v1 we must now have that
v2 = −v1. However, u2 = −u1 and v2 = −v1 in fact yields an equivariant

W1 =

(
u1v1 −u1v1
−u1v1 u1v1

)
and since W2 is invariant, we have a layer-wise equivariant network.

22

D.1 Equivariant composition of functions

In this section we switch to a more abstract formulation of layerwise equivariance to see what it means
for individual functions ϕ and ψ if their composition ψ ◦ ϕ is equivariant. For a related discussion of
equivariance under general group actions we refer the reader to [32].
Definition D.2. Given a group G and a set X , a group action α of G on X is a function

α : G×X → X

such that for the identity element i of G and any x ∈ X we have

α(i, x) = x. (8)

and for any two g, h ∈ G and any x ∈ X we have

α(hg, x) = α(h, α(g, x)). (9)

First of all it is practical to recall that invertible functions transfer group actions from domain to
codomain and vice versa.
Lemma D.3. Given a group G and an invertible function ϕ : X → Y .

1. If there is a group action αX on X , then we can define a group action αY on Y by

αY (g, y) = ϕ(αX(g, ϕ−1(y)))

and ϕ is equivariant with respect to this group action. Furthermore, this is the unique group
action on Y that makes ϕ equivariant.

2. Similarly, if there is a group action αY on Y , then we can define a group action αX on X by

αX(g, x) = ϕ−1(αY (g, ϕ(x)))

and ϕ is equivariant with respect to this group action. Furthermore, this is the unique group
action on X that makes ϕ equivariant.

Proof. We prove 1., the proof of 2. is analogous. If there is a group action αY on Y making ϕ
equivariant, then we must have

αY (g, ϕ(x)) = ϕ(αX(g, x)),

for all x ∈ X . So by a change of variable x⇝ ϕ−1(t),

αY (g, t) = ϕ(αX(g, ϕ−1(t))),

for all t ∈ X . This proves uniqueness. Finally, αY is a group action as

αY (i, y) = ϕ(αX(i, ϕ−1(y))) = ϕ(ϕ−1(y)) = y

and

αY (hg, y) = ϕ(αX(hg, ϕ−1(y)))

= ϕ(αX(h, αX(g, ϕ−1(y))))

= ϕ(αX(h, ϕ−1 ◦ ϕ(αX(g, ϕ−1(y)))))

= αY (h, ϕ(αX(g, ϕ−1(y))))

= αY (h, αY (g, y)).

We can now state a proposition telling us that if a composite function is equivariant, then it must be a
composite of equivariant functions.
Proposition D.4. Assume that we are given a group G and two sets X and Z with group actions
αX and αZ . Assume also that we are given a further set Y and two functions ϕ : X → Y and
ψ : Y → Z such that their composition ψ ◦ ϕ : X → Z is G-equivariant w.r.t. αX and αZ .

23

1. If ψ is invertible we can define a group action αY on Y such that ϕ and ψ are G-equivariant
with respect to this action.

2. If ψ is not invertible, introduce Y ′ = ϕ(X)/ ∼ where ∼ is the equivalence relation
identifying elements of Y that map to the same element of Z, i.e.,

y1 ∼ y2 :⇐⇒ ψ(y1) = ψ(y2).

Then we can define a group action αY ′ on Y ′ such that ϕ and ψ are equivariant when seen
as functions to/from Y ′.

Proof. Assume first that ψ is invertible. From Lemma D.3 we get a group action αY on Y defined by

αY (g, y) = ψ−1(αZ(g, ψ(y))).

Lemma D.3 also states that ψ is equivariant with this choice of αY . Next we show that ϕ is equivariant,
which follows from the fact that ψ ◦ ϕ is equivariant:

αY (g, ϕ(x)) = ψ−1(αZ(g, ψ ◦ ϕ(x)))
= ψ−1(ψ ◦ ϕ(αX(g, x)))

= ϕ(αX(g, x)).

If ψ is not invertible, then ψ is anyway invertible as a map ψ : Y ′ → ψ ◦ ϕ(X). Note that the action
αZ is well defined even when restricting from Z to ψ ◦ ϕ(X), because by the equivariance of ψ ◦ ϕ,
αZ can’t move an element from ψ ◦ ϕ(X) to Z \ ψ ◦ ϕ(X):

αZ(g, ψ ◦ ϕ(x)) = ψ ◦ ϕ(αX(g, x)) ∈ ψ ◦ ϕ(X).

Hence the earlier argument for constructing αY works for constructing a group action αY ′ on Y ′

such that the maps ϕ and ψ (appropriately restricted) become equivariant.

Looking back at Example 2.1, with ϕ =W1, ψ =W2 ReLU(·), we see that Y ′ in that case would be
a single point space since W2 maps everything to 0. The action αY ′ would hence be trivial.

As mentioned before, the main problem with changing Y to Y ′ as above is that if X,Y, Z are feature
spaces in a neural network ψ ◦ ϕ, where ϕ and ψ themselves might be decomposable into multiple
linear layers and activation functions, there is no guarantee that Y ′ will be a vector space or that
ϕ and ψ can still be expressed as decompositions into linear layers and activation functions when
changing from Y to Y ′. Still, the intuition that the equivariance should be preserved layerwise holds
in the interpretation provided by Proposition D.4.

E Network layers with bias

In this section we generalize Proposition 2.3 to work for layers with bias, i.e. x 7→Wx+ t for some
bias vector t. The discussion up to Section 2.1 works with biases as well, as does Lemma 2.2 (as it
regards ReLU and not the layers themselves). For Proposition 2.3 it gets more complicated. What
makes the proof of easy is that given an invertible linear layer ℓ(x) =Wx, a group representation
ρ(g) on x is transferred to a group representation α(g, x) = ℓ(ρ(g)ℓ−1(x)) =Wρ(g)W−1x on ℓ(x)
w.r.t. which W is equivariant. If we consider an affine layer ℓ(x) =Wx+ t with bias vector t, then
we can play the same game, but ρ(g) is not transferred to a group representation (linear action) but
instead to the affine action α(g, x) =Wρ(g)W−1x+ (I −Wρ(g)W−1)t on ℓ(x). This means that
we can not apply Lemma 2.2. We can however find a generalization as follows:
Lemma E.1. If A, B are n× n invertible matrices and a and b are n-vectors, such that ReLU(Ax+
a) = BReLU(x) + b for all x ∈ R, then a = b = 0.

Proof. Inserting x = 0 yields ReLU(a) = b. Inserting x = A−1a yields ReLU(2a) =
BReLU(A−1a)+b so that b = BReLU(A−1a). Inserting x = −A−1a yields 0 = BReLU(−A−1a)+
b so b = −BReLU(−A−1a). Combined we have that B−1b = ReLU(A−1a) = −ReLU(−A−1a) so
that B−1b must be zero and hence so must b. Finally, inserting x = −2A−1a yields ReLU(−a) =
BReLU(−2A−1a) + b so that ReLU(−a) = −b = 0 which combined with ReLU(a) = b = 0 gives
a = 0.

24

This lemma shows that if ReLU commutes with affine actions, then the affine actions must in fact be
linear and so Lemma 2.2 applies. This shows that Proposition 2.3 holds with affine layers as well.
We thank the anonymous reviewer who prompted this generalization.

25

	Introduction
	Related work
	Limitations

	Layerwise equivariance
	From general representations to permutation representations
	Permutation representations in CNNs—group convolutional neural networks

	The permutation conjecture by Entezari et al. and its connection to GCNNs
	Experiments
	VGG11 on CIFAR10
	ResNet50 on ImageNet

	Conclusions and future work
	Experimental details and more results
	VGG11 on CIFAR10
	Training details

	ResNet50 on ImageNet
	The peculiarities of image size 224
	Training details

	Layerwise equivariance of ReLU-networks – proofs and further results
	Proof of Lemma 2.2
	A result on layerwise equivariance given an invariant network

	Answer to an open question by Elesedy and Zaidi
	Cooccurence of equivariant features

	Rewriting networks to be layerwise equivariant
	Equivariant composition of functions

	Network layers with bias

