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Abstract

We present PrimDiffusion, the first diffusion-based framework for 3D human
generation. Devising diffusion models for 3D human generation is difficult due to
the intensive computational cost of 3D representations and the articulated topology
of 3D humans. To tackle these challenges, our key insight is operating the denois-
ing diffusion process directly on a set of volumetric primitives, which models the
human body as a number of small volumes with radiance and kinematic informa-
tion. This volumetric primitives representation marries the capacity of volumetric
representations with the efficiency of primitive-based rendering. Our PrimDiffusion
framework has three appealing properties: 1) compact and expressive parameter
space for the diffusion model, 2) flexible 3D representation that incorporates human
prior, and 3) decoder-free rendering for efficient novel-view and novel-pose synthe-
sis. Extensive experiments validate that PrimDiffusion outperforms state-of-the-art
methods in 3D human generation. Notably, compared to GAN-based methods,
our PrimDiffusion supports real-time rendering of high-quality 3D humans at a
resolution of 512× 512 once the denoising process is done. We also demonstrate
the flexibility of our framework on training-free conditional generation such as
texture transfer and 3D inpainting.

1 Introduction

Generating 3D humans with high-resolution and 3D consistency is a central research focus in
computer vision and graphics. It has wide-ranging applications in virtual reality, telepresence, and
the film industry. These applications are becoming increasingly important as technology advances
and the demand for realistic virtual experiences grows. Consequently, a flexible and high-quality 3D
human generation system possesses not only immense scientific merit but also practical relevance.

For a high-quality and versatile 3D human generative model, we argue that there are two key factors:
1) high-capacity generative modeling, and 2) efficient 3D human representation. Recent advances
in 3D-aware generative models [5, 18, 35, 37] have made significant progress. By learning from
2D images using generative adversarial networks (GAN) [14], these methods can synthesize images
across different viewpoints in a 3D-aware manner. However, their results still leave significant
gaps w.r.t. rendering quality, resolution, and inference speed. Besides, these GAN-based methods
often require task-specific adaptations to be conditioned on a particular task, limiting their scope of
application. Meanwhile, diffusion-based models [17, 51] have recently surpassed GANs on generative
tasks with unprecedented quality, suggesting their great potential in 3D generation. Several recent
works [1, 33, 57] have made initial attempts to generate 3D rigid objects based on the diffusion model.
Nevertheless, how to integrate the denoising and diffusion processes into a generation framework of
articulated 3D humans remains an open problem.
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Figure 1: PrimDiffusion is the first diffusion model for 3D human generation. (Left) We perform
the diffusion and denoising process on a set of primitives which compactly represent 3D humans.
(Right) This generative modeling enables explicit pose, view, and shape control, with the capability
of modeling off-body topology in well-defined depth. Moreover, our method can generalize to novel
poses without post-processing and enable downstream human-centric tasks like 3D texture transfer.

Specifically, applying diffusion models to 3D human generation is a non-trivial task due to the
articulated topology, diverse poses, and various identities, among which an efficient human represen-
tation is the most important. Unlike human faces [23] and rigid objects [6, 22] where most existing
3D-aware generative models [1, 5, 15, 33] succeed, the human body exists within the vast expanse
of 3D space, occupies only a sparse portion of it, characterized by an intricate, articulated topology.
An ideal representation should compactly model the human body without wasting parameters on
modeling empty space while also enabling explicit view and pose control. The most widely used
representation for 3D-aware generative models is based on neural radiance field (NeRF) [32], which
can be parameterized by coordinate-based MLP [15, 37] and hybrid representation like tri-plane [5],
voxel grids [50] or compositional subnetworks [18]. However, these methods model humans as
coarse volumes or planes, which limits their generation quality. In addition, they also suffer from
slow inference speeds due to the need for dense MLP decoder queries during rendering.

In this paper, we propose PrimDiffusion, the first diffusion model for 3D human generation. Our
key insight is that the denoising and diffusion process can be directly operated on a set of volumetric
primitives, which models the 3D human body as a number of tiny volumes with radiance and
kinematic information. Each volume parameterizes the spatially-varied color and density with
six degrees of freedom. This representation fuses the capacity of volumetric representations with
the efficiency of primitive-based rendering, which enables: 1) compact and expressive parameter
space for the diffusion model, 2) flexible representation that inheres human prior, and 3) efficient
and straightforward decoder-free rendering. Furthermore, these primitives naturally capture dense
correspondence, facilitating downstream human-centric tasks such as texture transfer and inpainting
with 3D consistency. Notably, previous GAN-based methods [18, 61] implicitly encode control
signals (e.g., view directions, poses) as inputs, indicating that they need extra forward passes upon
condition changes (e.g., novel view/pose synthesis). In contrast, PrimDiffusion supports real-time
rendering of high-quality 3D humans at a resolution of 512× 512 once the denoising process is done.

Extensive experiments are conducted both qualitatively and quantitatively, demonstrating the superi-
ority of PrimDiffusion over state-of-the-art methods for 3D human generation. We summarize our
contributions as follows: 1) To the best of our knowledge, we introduce the first diffusion model for
3D human generation. 2) We propose to represent 3D humans as volumetric primitives in a generative
context, which enables efficient training and high-performance rendering. 3) We design an encoder
tailored with cross-modal attention, which accounts for learning volumetric primitives from images
across identities without per-subject optimization. 4) We demonstrate applications of PrimDiffusion,
including texture transfer and 3D inpainting, which can be naturally done without retraining.

2 Related Work

3D-aware Generation. With recent advances in neural radiance field (NeRF) [32], many studies [5,
9, 11, 15, 18, 35, 37, 49, 50, 59] have incorporated NeRF as the key inductive bias to make GANs be
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Figure 2: Overview of PrimDiffusion. We represent the 3D human as K primitives learned
from multi-view images. Each primitive Vk has independent kinematic parameters {Tk,Rk, sk}
(translation, rotation, and per-axis scales, respectively) and radiance parameters {ck, σk} (color and
density). For each time step t, we diffuse the primitives V0 with noise ϵ sampled according to a fixed
noise schedule. The resulting Vt is fed to gΦ(·) which learns to predict the denoised Ṽ0.

3D-aware, which enables GANs to learn 3D-aware representations from 2D images. Researchers
have proposed to use efficient representations like voxel grids [50] and triplanes [5] to improve the
spatial resolution of the scene representation, which is a crucial factor for the quality of geometry
and images. However, these techniques necessitate an implicit decoder (e.g., a Multilayer Perceptron
(MLP) or Convolutional Neural Network (CNN)) following the 3D representation to obtain the
rendered images, which results in substantial computational overheads associated with neural volume
rendering. Consequently, neither the image quality nor the rendering speed are satisfactory.

Diffusion Model. Despite the remarkable success of GAN-based models, diffusion-based mod-
els [17, 51, 52] have recently exhibited impressive performance in various generative tasks, especially
for 2D tasks like text-to-image synthesis [34, 41, 44, 46]. However, their potential for 3D generation
remains largely unexplored. A few attempts have been made on shape [25, 30, 60], point cloud [65],
and text-to-3D [39] generation. Recently, some works have succeeded in learning diffusion models
from 2D images for unconditional 3D generation [1, 33, 57] of human faces and objects. Still, given
the articulated topology of the human body, efficiently training 3D diffusion models is challenging.

Human Generation. Extensive efforts have been made to generate human-centric assets [8, 19,
47, 62, 64], especially for 2D human images [12, 13, 21, 24, 48]. For 3D human generation, initial
attempts have been made to generate human shapes [7, 56] using scanned data. Several works
learn 3D-aware GANs from 2D image collections driven by differentiable rendering. However,
they are either in low-resolution [36] or rely on super-resolution module [3, 61] which does not
guarantee 3D consistency. EVA3D [18] succeeds in high-resolution 3D human generation within
a clean framework. As a concurrent work, HumanGen [20] leverages explicit image priors from
strong pretrained 2D human image generators and 3D geometry priors from PIFu [47]. However,
these 3D-aware GAN-based methods implicitly condition the viewpoints and poses, which causes
additional forward calls when conditions change, preventing high-resolution real-time performance.

3 Methodology

The goal of PrimDiffusion is learning to generate 3D humans from multi-view images built upon
denoising and diffusion probabilistic models. It learns to revert the diffusion process that gradually
corrupts 3D human representations by injecting noise at different scales. In this paper, 3D humans are
represented as volumetric primitives, facilitating feasible training of diffusion models and efficient
rendering. We first introduce this 3D human representation and corresponding rendering algorithm
(Sec. 3.1). Then, a generalizable encoder is employed to robustly fit primitive representations from
multi-view images across identities without per-subject optimization (Sec. 3.2). Once the volumetric
primitives are learned from images, the problem of 3D human generation is reduced to learning the
distribution of 3D representations. We thereby present our denoising and diffusion modeling operated
on the parameter space of volumetric primitives to generate high-quality 3D humans (Sec.3.3). An
overview of PrimDiffusion is presented in Fig. 2.
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3.1 Primitive-based 3D Human Representation

To learn a denoising and diffusion model with explicit 3D supervision, we need an expressive and
efficient 3D human representation that accounts for 1) compact parameter space for diffusion models,
2) articulated topology and motion of 3D humans, and 3) fast rendering with explicit 3D controls.

Volumetric Primitives. Inspired by previous work [28, 43] in reconstructing dynamic human heads
and actors, we propose to represent 3D humans as a set of volumetric primitives which acts as the
target space for diffusion models. Note that, whereas previous research has centered on the per-subject
reconstruction, we enable learning volumetric primitives across multiple identities. This paves the
way for a shared latent space conducive to generative modeling. In specific, this representation
consists of a set of K primitives that jointly parameterize the spatially varied color and density:

V = {Vk}Kk=1, where Vk = {Tk,Rk, sk, ck, σk}. (1)

Each primitive Vk is a tiny volume, parameterized by a translation vector Tk ∈ R3, an orientation
Rk ∈ SO(3), a three-dimensional scale factor sk ∈ R3, a spatially-varied color ck ∈ R3×S×S×S ,
and density σk ∈ RS×S×S , where S is the per-axis base resolution. In practice, we set the base
resolution of one primitive to S = 8, which we find the best to strike a balance between reconstruction
quality and memory consumption.

To model humans with articulated topology and motion, we attach primitives to the vertices of
SMPL [29]. SMPL is a parametric human model, defined as M(β, θ) ∈ R6890×3, where β ∈ R10

controls body shapes and θ ∈ R72 controls body poses. In this paper, we leverage this parametric
human model for the purposes of 1) serving as a geometry proxy to weakly constrain volumetric
primitive representations, 2) offering geometry cues for 3D representation fitting, and 3) generalizing
to novel poses through linear blending skinning (LBS) algorithm tailored with decoder-free rendering.

Specifically, the kinematic parameters of primitives are modeled relative to the base transformation
from SMPL. Namely, we generate a W ×W 2D grid in the UV space of SMPL. The 3D positions of
primitives are initialized by uniformly sampling UV space and mapping each primitive to the closest
surface point on SMPL that corresponds to the UV coordinates of the grid points. The orientation of
each primitive is set to the local tangent frame of the 3D surface point. The per-axis scale is calculated
based on the gradient of the UV coordinates at the corresponding grid point. All primitives are given
an initial scale that is proportional to the distances between them and their neighbors. Furthermore,
to model off-body topologies like loose clothes and fluffy hair, the scale of primitives is allowed
to deviate from the base scale ŝk. The scale factor is defined as sk = ŝk · δsk, where ŝk is the
aforementioned initialized base scale and δsk is the delta scaling prediction.

Therefore, the learnable parameters of each person modeled by its volumetric primitives V are color
c ∈ RW×W×3×S×S×S , density σ ∈ RW×W×1×S×S×S , and delta scale factor δs ∈ RW×W×3.

Efficient Decoder-free Rendering. Once the radiance and kinematic information of primitives are
determined, we can leverage differentiable ray marching [27] to render the corresponding camera
view. For a given camera ray rp(t) = op + tdp with origin op ∈ R3 and ray direction dp ∈ R3, the
corresponding pixel value Ip is calculated as an integral:

Ip =

∫ tmax

tmin

c(rp(t)) ·
dT (t)

dt
· dt, where T (t) =

∫ t

tmin

σ(rp(t)) · dt, (2)

where tmin and tmax are the near and far bound for points sampling. The c(·) and σ(·) are global
color and density fields derived from trilinear interpolation of color and density attributes among
primitives hit by the camera ray. Notably, in contrast to NeRF-based methods [32] which often
require evaluating MLP decoders per camera rays, this rendering process is decoder-free which can
be directly rendered into pixels. Thus, it is far more efficient for both training and rendering.

To animate the volumetric primitives given a pose sequence {θj}Nframe
j=1 , we explicitly employ the

LBS algorithm on top of SMPL [29] to produce per-frame human mesh M(β, θj), which serve as
driving signal to determine the kinematic information of the moving volumetric primitives.
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Figure 3: Encoder architecture for generalizable primitives fitting. To get rid of per-subject
optimization, we propose an encoder that is capable of learning primitives from multi-view images
across identities. The encoder consists of a motion branch and an appearance branch, which are fused
by the proposed cross-modal attention layer to get kinematic and radiance information of primitives.

3.2 Generalizable Primitive Learning from Multi-View Images

In order to leverage explicit 3D supervision from multi-view images, it is essential to reconstruct 3D
representations for each individual to provide ground truth for the diffusion model. While earlier
research [57] on 3D diffusion models adhered to a per-identity fitting fashion, which could be time-
consuming on a large-scale dataset. To overcome this limitation, we propose a generalizable encoder
to reconstruct 3D human representation across diverse identities without per-subject optimization.

Our setting is learning 3D representations from multi-view images {Ii}Ncam
i=1 , where Ncam denotes

the number of camera views and i is the corresponding index. We first estimate the SMPL [29]
parameters M(β, θ) using off-the-shelf tools [10]. Then, we employ an encoder with dual branches
to parameterize the coarse human mesh as well as the multi-view images, which outputs the radiance
and kinematic information of volumetric primitives. The architecture is illustrated in Figure 3.

Specifically, the encoder consists of two branches, one is for appearance while the other is for motion.
For the appearance branch, we back-project the pixels of input images corresponding to all visible
vertices of the SMPL model to the UV space. The unwrapped image textures will be averaged
across multiple views and fed to the image encoder FI(Ii; ΦI) parameterized by ΦI , providing
texel-aligned appearance features. For the motion branch, we take as input the local pose parameters
of SMPL model, i.e., θ excluding the first three elements that denote global orientation. The local pose
parameters are padded to a W ×W 2D map and fed to the motion encoder Fθ(θ; Φθ) parameterized
by Φθ, providing motion features. Instead of fusing the features from two branches via naive
concatenation, we propose a cross-modal attention module to effectively capture the dependencies
between appearance and motion, which significantly improves the reconstruction quality of 3D
humans (Tab. 3 and Fig. 7). Intuitively, this module captures the interdependence of color and motion,
e.g., clothes wrinkles and shadows caused by different human poses. Then, the radiance and kinematic
information (color, density, and delta scale) of volumetric primitives are separately predicted by three
mapping networks (Frgb, Fσ, Fs) conditioned on the fused feature.

The encoder comprises {FI , Fθ, Frgb, Fσ, Fs} is trained in an end-to-end manner across identities
instead of per-subject optimization. The learning objective is formulated as a reconstruction task
between ground truth images and rendered images:

Lrec = λrgbLrgb + λsilLsil + λvolLvol, (3)

where Lrgb is the image reconstruction loss in L2-norm, Lsil is the silhouette loss, Lvol is the
volume regularization term [28], and λ∗ are loss weights. The volume regularization is defined as
Lvol =

∑K
i=1 Prod(si), where Prod(·) denotes the product of scale factor along three axes. It aims

to prevent large primitives from occupying empty space that leads to loss of resolution.

3.3 Primitive Diffusion Model

Once the volumetric primitives are reconstructed, the problem of 3D human generation is reduced to
learning the distribution p(V) with diffusion models. In specific, to generate a 3D human with its
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Figure 4: Generated 3D humans of PrimDiffusion. Our method can synthesize 3D humans with
explicit controls of view, pose and shape, together with well-defined depths. Additionally, we can also
handle off-body topologies such as bloomy hair and loose garments using primitives. We visualize
the RGB, depth, and primitives side-by-side. Please check the supplementary video for more results.

representation as V0, the diffusion model learns to denoise VT ∼ N (0, I) progressively closer to the
data distribution through denoising steps {VT−1, . . . ,V0}. Note that, the targets of denoising and
diffusion process are color c ∈ RW×W×3×S×S×S , density σ ∈ RW×W×1×S×S×S , and delta scale
factor δs ∈ RW×W×3. To form a parameter space with a regular shape, we first pad the delta scale
δs to the same size of color c. Then, we concatenate and reshape them into a 3D tensor. With slight
abuse of notation, we denote this tensor as V0 ∈ R[W ·S]×[W ·S]×[7·S] in the following subsections.

Forward Process. Given a data point, i.e., volumetric primitives of a human, sampled from a real
data distribution V0 ∼ q(V), we define the forward diffusion process in which we add Gaussian noise
to the sample in T steps, producing a sequence of noisy samples {V1, . . . ,VT }:

q(Vt|Vt−1) = N (Vt;
√

1− βtVt−1, βtI), (4)

where the step sizes are controlled by a variance schedule {βt ∈ (0, 1)}Tt=1. We use a linear
scheduler [17] in our experiments. Denoting αt = 1− βt and ᾱt =

∏t
i=1 αi, we can directly sample

Vt at any arbitrary time step t in a closed form through reparameterization:

q(Vt|V0) =

t∏
i=1

q(Vi|Vi−1) = N (Vt;
√
ᾱtV0, (1− ᾱt)I). (5)

Reverse Process. The reverse process, namely the denoising process, aims to generate a true sample
V0 from a Gaussian noise VT ∼ N (0, I), which requires an estimation of the posterior distribution:

q(Vt−1|Vt,V0) = N (Vt−1; µ̃(Vt,V0), β̃tI), µ̃(Vt,V0) =

√
αt(1− ᾱt−1)

1− ᾱt
Vt +

√
ᾱt−1βt

1− ᾱt
V0, (6)

where β̃t = (1 − ᾱt−1)/(1 − ᾱt)βt. Notably, V0 is the generation target that is unknown. Thus,
we need to learn a denoiser gΦ parameterized by Φ to approximate these conditional probabilities
pΦ(Vt−1|Vt) ≈ q(Vt−1|Vt,V0), i.e., estimate the mean µ̃(·). In practice, we train the denoiser gΦ to
predict V0 such that:

µΦ(Vt, t) =
1√
αt

(Vt −
1− αt

1− ᾱt
(Vt −

√
ᾱtgΦ(Vt, t))), (7)

where the posterior probabilities can be approximated as pΦ(Vt−1|Vt) = N (Vt−1;µΦ(Vt, t), β̃tI).
During inference, this posterior is sampled at each time step t to gradually denoise the noisy sample
Vt. The denoiser gΦ is trained to minimize the difference from µ̃ which can be simplified [17] as :

Lsimple
t = Et∼[1,T ],V0,Vt

[||V0 − gΦ(Vt, t)||22]. (8)

4 Experiments

Dataset. We obtain 796 high-quality 3D humans from RenderPeople [55] with diverse identities
and clothes. For each person, we repose the mesh with 20 different human poses [31] to ensure pose
diversity. For each pose instance of a person, we render 36 multi-view images with known camera
poses. All methods are trained from scratch (except mentioned) on this dataset for fair comparisons.
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a) StyleSDF b) EG3D c) EVA3D d) Ours

Figure 5: Qualitative comparisons of unconditional 3D human generation between PrimDiffu-
sion and baseline methods. RGB renderings and corresponding depths are placed side-by-side.

Table 1: Quantitative results on unconditional 3D human generation. The top three techniques
are highlighted in red, orange, and yellow, respectively. In this table, “ft” indicates a finetuned model
that is pre-trained on the DeepFashion [26] dataset.

Methods FIDCLIP ↓ FID ↓ KID×102 ↓ PCK ↑ Depth×102 ↓ FPS ↑
StyleSDF [37] 18.55 51.27 4.08 ± 0.13 - 49.37 ± 22.18 2.53

EG3D [5] 19.54 24.32 1.96 ± 0.10 - 16.59 ± 21.03 22.97
EVA3D [18] 15.03 44.37 2.68 ± 0.13 91.84 3.24 ± 9.93 6.14

EVA3D ft [18] 14.58 40.40 2.99 ± 0.14 91.30 2.60 ± 7.95 6.14
Ours 12.11 17.95 1.63 ± 0.09 97.62 1.42 ± 1.78 88.24

Implementation Details. We use K = W 2 = 1024 primitives to represent each 3D human. The
denoiser gΦ is implemented as a 2D U-Net [45] with intermediate attention layers. We first train the
generalizable encoder using all available images. Then, the denoiser gΦ is trained according to the
primitives produced by the frozen encoder. Please check the supplementary material for more details.

Evaluation Metrics. We adopt Fréchet Inception Distance (FID) [16] and Kernel Inception Distance
(KID) [4] to evaluate the quality of rendered images. Note that, we use different backbones to evaluate
FID in different latent spaces in order to get a thorough evaluation, i.e., FIDCLIP employs the CLIP
image encoder [40] while FID employs the Inception-V3 model [54]. To evaluate the 3D geometry,
we use an off-the-shelf tool [42] to estimate depth maps from renderings and compute L2 distance
against rendered depths. We further adopt a human-centric metric, Percentage of Correct Keypoints
(PCK) [2], to evaluate the pose controllability of 3D human generative models.

Comparison Methods. As the first diffusion model for 3D human generation, we compare with
three GAN-based methods. EVA3D [18] learns to generate 3D human from 2D image collections.
EG3D [5] and StyleSDF [37] are approaches for 3D-aware generation from 2D images, succeeding
in generating human faces and objects. All of these methods enable view control by implicitly
conditioning on the camera pose, which leads to extra forward passes upon viewpoint changes.

4.1 Qualitative Results

We show the RGB renderings and corresponding depth maps generated by PrimDiffusion and
baselines in Fig. 5. StyleSDF and EG3D achieve coarse results in terms of appearance and geometry.
However, due to the lack of human prior, most of the capacity is wasted on modeling the empty
space that is not occupied by the human body, which leads to blurry facial details. Furthermore, the
inefficient 3D representations make them hard to scale up to high resolution without super-resolution
modules, which also limits their geometry to low resolution (642 or 1282). EVA3D succeeds in
high-resolution rendering with much better geometry by incorporating human prior. However, it
fails to generate enough facial details. We attribute this to its part-wise human representation. For
example, EVA3D models the human head as a single volume, assigning a difficult learning problem
of distinguishing facial details within one uniform representation. In contrast, PrimDiffusion divides
humans into many primitives tailed with powerful diffusion modeling, which is not only capable of
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Figure 6: Qualitative ablation study of different human representations for 3D diffusion. Alter-
natively, we replace primitives with voxel grids as human representation to validate the effectiveness.
RGB renderings, depths, and representation occupancy are placed sequentially for each sample.

Table 2: Quantitative ablation study of different human representations for 3D diffusion. Note
that, the “Resolution” denotes the 3D spatial resolution of the representation.

Methods Resolution FIDCLIP ↓ FID ↓ KID×102 ↓ Depth×102 ↓
Voxel 64× 64× 64 19.53 81.78 7.72 ± 0.17 8.22 ± 3.78

Latents [38] - 12.13 37.70 3.44 ±0.11 1.76 ± 1.91
Ours 256× 256× 8 12.11 17.95 1.63 ± 0.09 1.42 ± 1.78

modeling enough details (e.g., faces and textures) but also supporting 512× 512 resolution for both
RGB and depth without any super-resolution decoder.

4.2 Quantitative Results

The results of numerical comparisons are presented in Tab. 1. As general 3D generation approaches,
StyleSDF and EG3D get fair scores in terms of generation quality, but the geometries are much
worse than others. EVA3D generates good geometries, indicated by its comparable depth error
with us. However, the image quality is still far behind us. Note that, we observe the vanilla FID
might be inaccurate, which leads to discrepancies between visualizations and numerical results. For
example, the images rendered by EG3D are of poor quality but the FID is much lower than other
baselines. Therefore, we report FIDCLIP metric which we found more consistent with qualitative
results. Nevertheless, the proposed method still outperforms baselines by a large margin.

Moreover, we also compare our model with a finetuned EVA3D that is first pre-trained on DeepFash-
ion [26] dataset to establish 3D representations of humans and then finetuned on our RenderPeople
dataset. The motivation for this experiment is to fully leverage the ability to learn 3D representations
on both multiview images and collections of images for methods like EVA3D instead of training from
scratch with multiview images only. However, as shown in Tab. 1, the finetuned EVA3D still has a
performance gap compared with our method.

4.3 Ablation Studies

Different Representations for 3D Diffusion. Apparently, the volumetric primitive is not the
only representation for 3D human diffusion models. We also explore the effectiveness of other
representations, like voxel grids [53] and latent codes [38]. The “voxel” baseline differentiates itself
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Table 3: Ablation study of design choices for
volumetric primitives fitting. The metrics PSNR,
SSIM [58], and LPIPS [63] are averaged across all
training identities, views, and poses.

Methods PSNR ↑ SSIM ↑ LPIPS ↓
w/o varying δs 18.35 0.803 0.182

w/o R, T 31.70 0.982 0.058
w/o attention 28.39 0.962 0.081

Ours 32.15 0.984 0.048

Ours

w/o 

attentionw/o 𝑅, 𝑇 GT

w/o 

varying 𝛿𝑠

Figure 7: Visualizations on effects of differ-
ent design choices for volumetric primitives
fitting. “GT” denotes the ground truth image.

from our method in two ways: 1) it utilizes voxel grids with a resolution of 64× 64× 64 for fitting
3D representation from multi-view images, and 2) it leverages 3D convolution layers instead of
2D for instantiation of gΦ(·). Note that, as 3D convolution layers occupy much more memories
than 2D, the feasible resolution of voxel grids is rather limited. Moreover, the “latents” baseline
inherits the idea of anchoring latent codes [38] to the vertices of the SMPL model for 3D human
representation learning. However, the vanilla NeuralBody [38] takes 14 hours per subject to converge
which makes it unscalable to large-scale datasets like RenderPeople which contains lots of identities.
Thus, we implement the “latents” baseline in the following way. We replace the payload of volumetric
primitives with latent codes and leverage sparse convolution layers as the decoder to output the color
and density of radiance fields. This implementation of a NeuralBody version of our method keeps
the ability to learn cross-identity 3D representation through our generalizable primitive learning
framework while getting rid of per-subject fitting.

Quantitative results are presented in Tab. 2. The voxel-based representation fails to achieve a rea-
sonable result both in rendering quality and geometry. The latent codes baseline achieves plausible
generated results but worse quality compared with ours. We further visualize the qualitative com-
parisons in Fig. 6. The voxel-based approach wastes many parameters to densely model the scene,
leading to the low spatial resolution of the representation. This is the root cause of its blurry render-
ings, which validates the importance of our primitive-based representation for 3D human diffusion
model.

Ablation on Design Choices for Primitives Fitting. The quality of primitives fitting significantly
affects the generation quality, as it provides 3D ground truth for the diffusion model. Therefore, we
ablate the effectiveness of different designs for generalizable primitives fitting, presented in Fig 7
and Tab. 3. Note that, we use reconstruction metrics for evaluation. We denote “w/o varying δs”
as the baseline that replaces the spatially-varied delta scale factor δs with a uniformly distributed
scale factor, i.e., all primitives share the same delta scale factor. It fails to reconstruct reasonable 3D
humans. The “w/o R, T ” denotes the method that uses predefined rotation and translation calculated
from a template human mesh instead of an identity-specific one, which leads to a slight drop in
quality. And “w/o attention” denotes the method trained without our proposed cross-modal attention
module, which is important for detailed textures and motion-dependent effects.

4.4 Further Analysis

Real-time Inference. Thanks to our efficient representation and decoder-free rendering procedure,
PrimDiffusion can render 3D consistent humans with varying viewpoints and poses in a resolution of
512× 512 at 88.24 FPS once the denoising process is done. As shown in Tab. 1, due to the use of the
decoder which decodes the 3D representation to images, all baselines fail to high-resolution real-time
rendering at a comparable quality with us. Furthermore, these methods implicitly model 3D-aware
conditions, i.e., viewpoints and poses, which causes extra forward pass calls upon conditions changes.

Generalizability to Novel Poses. It is worth mentioning that a decoder (e.g., MLP for NeRF
decoding or CNN for super-resolution) may lead to overfitting to the pose distribution of the training
dataset, which prohibits pose generalization to out-of-distribution. Another merit of our decoder-free
rendering is that we can generalize to novel poses without test-time optimization, post-processing,
and rigging (Fig. 1 and Fig. 4). We refer readers to the supplementary material for video results.
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Figure 8: Application of PrimDiffusion. a) Thanks to the dense correspondence offered by volumet-
ric primitives, we can transfer the texture in a 3D consistent way. b) By masking the corresponding
primitives with Gaussian noise and performing the denoising process with mask guidance, our method
can achieve the conditional generative task, i.e., 3D inpainting, without retraining the model.

4.5 Applications

Texture Transfer. Based on the dense correspondence offered by volumetric primitives, we can
transfer the texture from one human body to another, as shown in Fig. 8 a). Since the entire process is
operated in 3D space, we can render the human with transferred texture with free viewpoints.

3D Inpainting. Thanks to the flexibility of primitive-based representation and diffusion model,
PrimDiffusion can inpaint the masked region on the human body with new textures as shown in
Fig. 8 b). By perturbing the masked region with noise, we take the volumetric primitives as the
mask guidance to the denoiser gΦ(·). Note that, in contrast to GAN-based methods, this conditional
generation is done without retraining the model.

5 Conclusion

In this paper, we propose the first diffusion model for 3D human generation. To offer a compact and
expressive parameter space with human prior for diffusion models, we propose to directly operate
the diffusion and denoising process on a set of volumetric primitives, which models the human body
as a number of small volumes with radiance and kinematic information. This flexible yet efficient
representation enables high-performance rendering for novel views and poses, with a resolution
of 512 × 512 in real-time. Furthermore, we also propose a cross-modal attention module tailored
with an encoder-based pipeline for fitting volumetric primitives from multi-view images without
per-subject optimization. We believe our method will pave the way for further exploration in 3D
human generation.

Limitation. While our method shows promising results for unconditional 3D human generation,
several limitations remain. First, though we can model off-body topology like loose garments and
long hair, how to animate them remains a challenge. Second, our renderings contain artifacts for
complex textures. Leveraging 2D pre-trained generative models would be a possible solution. Last,
due to the high degree of freedom of primitives, our method is a two-staged pipeline to prevent
training instability. Further explorations on single-stage 3D diffusion models would be fruitful. In
addition, compared with GAN-based approaches, our method requires a sufficient number of posed
views to get good 3D representations for training diffusion models. In this context, it would be
interesting to explore few-shot inverse rendering techniques to reduce the reliance on multiview
images for the first stage of our method.

Broader Impacts. The generated 3D humans of PrimDiffusion might be misused to create mislead-
ing content or fake media. It can also edit personal imagery, leading to privacy concerns.
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