
Overview of the Appendix556

The Appendix is organized as follows:557

• Appendix A introduces the general experimental setup.558

• Appendix B introduces the details of dynamic sparse training.559

• Appendix C shows detailed algorithms, i.e., DDA, ADAPTrelax, and ADAPTstrict.560

• Appendix D shows the BR evolution during training for ADAPT.561

• Appendix E shows additional results, including IS and FID of test sets of the main paper.562

• Appendix F shows detailed FLOPs comparisons of sparse training methods.563

A Experimental setup564

In this section, we explain the training details used in our experiments. Our code is mainly based on565

the original code of ITOP [48] and GAN ticket [8].566

A.1 Architecture details567

We use ResNet-32 [25] for the CIFAR-10 dataset and ResNet-48 for the STL-10 dataset. See Table 4568

and Table 5 for detailed architectures. We apply spectral normalization for all fully-connected layers569

and convolutional layers of the discriminators.570

For BigGAN architecture, we use the implementation used in DiffAugment [82].2571

A.2 Datasets572

We use the training set of CIFAR-10, the unlabeled partition of STL-10, and the training set of573

TinyImageNet for GAN training. Training images are resized to 32 × 32, 48 × 48, 64 × 64 for574

CIFAR-10, STL-10, and TinyImageNet datasets, respectively. Augmentation methods for both575

datasets are random horizontal flip and per-channel normalization.576

A.3 Training hyperparameters577

SNGAN on the CIFAR-10 and STL-10 datasets. We use a learning rate of 2 × 10−4 for both578

generators and discriminators. The discriminator is updated five times for every generator update.579

We adopt Adam optimizer with β1 = 0 and β2 = 0.9. The batch size of the discriminator and the580

generator is set to 64 and 128, respectively. Hinge loss is used following [6, 8]. We use exponential581

moving average (EMA) [78] with β = 0.999. The generator is trained for a total of 100k iterations.582

BigGAN on the CIFAR-10 dataset. We use a learning rate of 2 × 10−4 for both generators and583

discriminators. The discriminator is updated four times for every generator update. We adopt Adam584

optimizer with β1 = 0 and β2 = 0.999. The batch size of both the discriminator and the generator585

is set to 50. Hinge loss is used following [6, 76]. We use EMA with β = 0.9999. The generator is586

trained for a total of 200k iterations.587

BigGAN on the TinyImageNet dataset. We use DiffAug [82] to augment the input. The learning588

rate of the discriminator and the generator are set to 4 × 10−4 and 1 × 10−4, respectively. The589

discriminator is updated one time for every generator update. We adopt Adam optimizer with β1 = 0590

and β2 = 0.999. The batch size of both the discriminator and the generator is set to 256. Hinge loss591

is used following [6, 76]. We use EMA with β = 0.9999. The generator is trained for a total of 200k592

iterations.593

A.4 Evaluation metric594

SNGAN on the CIFAR-10 and the STL-10 datasets. We compute Fréchet inception distance595

(FID) and Inception score (IS) for 50k generated images every 5000 iterations. Best FID and IS are596

2https://github.com/mit-han-lab/data-efficient-gans/tree/master/
DiffAugment-biggan-cifar.

15

https://github.com/mit-han-lab/data-efficient-gans/tree/master/DiffAugment-biggan-cifar
https://github.com/mit-han-lab/data-efficient-gans/tree/master/DiffAugment-biggan-cifar

reported. For the CIFAR-10 dataset, we report both FID for the training set and test set, whereas, for597

the STL-10 dataset, we report the FID of the unlabeled partition.598

BigGAN on the CIFAR-10 and the TinyImageNet dataset. We compute Fréchet inception distance599

(FID) and Inception score (IS) for 10k generated images every 5000 iterations. Best FID and IS are600

reported.601

B Dynamic sparse training details602

B.1 How the generator performs DST603

In this section, we explain how the generator performs DST below. Note that the generator performs604

the same for SDST and ADAPT.605

Sparsity distribution at initialization. Following RigL and ITOP [15, 48], only parameters of606

fully connected and convolutional layers will be pruned. At initialization, we use the commonly607

adopted Erdős-Rényi-Kernel (ERK) strategy [15, 13, 48] to allocate higher sparsity to larger layers.608

Specifically, the sparsity of convolutional layers l is scaled with 1− nl−1+nl+wl+hl

nl−1nlwlhl , where nl denotes609

the number of channels of layer l while wl and hl are the widths and the height of the corresponding610

kernel in that layer. For fully connected layers, Erdős-Rényi (ER) strategy is used, where the sparsity611

is scaled with 1− nl−1+nl

nl−1nl .612

Update schedule. The update schedule controls how many connections are adjusted per DST613

operation. It can be specified by the number of training iterations between sparse connectivity updates614

∆TG, the initial fraction of connections adjusted γ, and decaying schedule fdecay(γ, T) for γ.615

Drop and grow. After ∆TG training iterations, we update the mask mG by dropping/pruning616

fdecay(γ, T) |θG| dG number of connections with the lowest magnitude, where |θG|, dG are the617

number of parameters and target density for the generator, fdecay(γ, T) is the update schedule. Right618

after the connection drop, we regrow the same amount of connections.619

For the growing criterion, we test both random growth SET [56, 48] and gradient-based growth620

RigL [15]. Concretely, gradient-based methods find newly-activated connections θ with the highest621

gradient magnitude
∣∣∂L
∂θ

∣∣, while random-based methods explore connections in a random fashion. All622

the newly-activated connections are set to 0. One thing that should be noticed is that while previous623

works consider layer-wise connections drop and growth, we grow and drop connections globally as it624

grants more flexibility to the DST method.625

EMA for sparse GAN. EMA [78] is well-known for its ability to alleviate the non-convergence626

of GAN. We also implement EMA for sparse GAN training. Specifically, we zero out the moving627

average of dropped weights whenever there is a mask change.628

B.2 DST hyperparameters for the generator629

We use the same hyper-parameters for SDST and ADAPT. The initial γ is set to 0.5, and we use a630

cosine annealing function fdecay following RigL and ITOP.631

SNGAN on the CIFAR-10 and the STL-10 datasets. The connection update frequency of the632

generator ∆TG is set to 500 and 1000 for the CIFAR-10 dataset and STL-10 dataset, respectively.633

BigGAN on the CIFAR-10 and the TinyImageNet dataset. The connection update frequency of634

the generator ∆TG is set to be 1000.635

B.3 Density dynamic adjust (DDA) hyper-parameters636

In this section, we provide hyper-parameters used in subsection 5.3. We set dD = 2000 , ∆TD = 0.05,637

[B−, B+] = [0.5, 0.65]. Time-averaged BR over 1000 iterations is used as the indicator.638

B.4 DST hyperparameters for the discriminator in ADAPT639

We use a constant BR interval [B−, B+] = [0.45, 0.55] for SNGAN experiments and BigGAN on the640

CIFAR-10 dataset. We set the BR interval [B−, B+] = [0.3, 0.4] for BigGAN on the TinyImageNet641

16

Table 4: ResNet architecture for CIFAR-10.

(a) Generator (b) Discriminator

z ∈ R128 ∼ N (0, I) image x ∈ [−1, 1]32×32×3

dense, 4× 4× 256 ResBlock down 128

ResBlock up 256 ResBlock down 128

ResBlock up 256 ResBlock down 128

ResBlock up 256 ResBlock down 128

BN, ReLU, 3× 3 conv, Tanh ReLU 0.1

Global sum pooling

dense → 1

Table 5: ResNet architecture for STL-10.

(a) Generator (b) Discriminator

z ∈ R128 ∼ N (0, I) image x ∈ [−1, 1]48×48×3

dense, 6× 6× 512 ResBlock down 64

ResBlock up 256 ResBlock down 128

ResBlock up 128 ResBlock down 256

ResBlock up 64 ResBlock down 512

BN, ReLU, 3× 3 conv, Tanh ResBlock down 1024

ReLU 0.1

Global avg pooling

dense → 1

since it uses DiffAug. Time-averaged BR over 1000 iterations is used as the indicator. Density642

increment ∆d is set to be 0.05, 0.025, and 0.05 for SNGAN (CIFAR-10), SNGAN (STL-10), and643

BigGAN (CIFAR-10), respectively. We use the same setting used in subsection B.2 for the generator.644

Hyper-parameters for ADAPTrelax. The density update frequency of the discriminator ∆TD is 1000,645

2000, 5000, and 10000 iterations for SNGAN (CIFAR-10), SNGAN (STL-10), BigGAN (CIFAR-10),646

and BigGAN (TinyImageNet), respectively.647

Hyper-parameters for ADAPTstrict. The density/connections update frequency of the discriminator648

∆TD is 2000, 2000, 5000, and 10000 iterations for SNGAN (CIFAR-10), SNGAN (STL-10),649

BigGAN (CIFAR-10), and BigGAN (TinyImageNet), respectively.650

Note that we compute BR for every iteration to visualize the BR evolution, whereas one should note651

that such computational cost can be greatly decreased if BR is computed every few iterations.652

C Algorithms653

In this section, we present the detailed algorithms for DDA, ADAPTrelax, and ADAPTstrict.654

C.1 Dynamic adjust algorithm655

We first present DDA in Algorithm 1.

Algorithm 1 Dynamic density adjust (DDA) for the discriminator.
Require: Generator G, discriminator D, BR upper bound B+ and lower bound B−, DA interval ∆TD , density

increment ∆d, current training iteration t.
1: if t mod ∆TD == 0 then
2: Compute time-averaged BR with Equation 3
3: if BR > B+ then
4: Increase the density of discriminator from dD to dD +∆d.
5: else if BR < B− then
6: Decrease the density of discriminator from dD to dD −∆d.
7: end if
8: end if

656

C.2 Relaxed balanced dynamic sparse training algorithm657

Details of ADAPTrelax algorithm is presented in Algorithm 2.658

C.3 Strict balanced dynamic sparse training algorithm659

Details of ADAPTstrict algorithm is presented in Algorithm 3.660

17

Algorithm 2 Relaxed balanced dynamic sparse training (ADAPTrelax) for GANs.
Require: Generator G, discriminator D, total number of training iterations T , number of training steps for

discriminator in each iteration N , discriminator adjustment interval ∆TD , DST interval for the generator
∆TG, density increment ∆d, target generator density dG, BR upper bound B+ and lower bound B−.

1: Set initial discriminator density dD = dG
2: for t in [1, · · · , T] do
3: for n in [1, · · · , N] do
4: Compute the loss of discriminator LD(θD)
5: LD(θD).backward()
6: end for
7: if t mod ∆TD == 0 then
8: Compute the loss of generator LG(θG)
9: LG(θG).backward()

10: Compute time-averaged BR with Equation 3
11: if BR > B+ then
12: Increase the density of discriminator from dD to min(100%, dD +∆d).
13: else if BR < B− then
14: Decrease the density of discriminator from dD to max(0%, dD −∆d).
15: end if
16: end if
17: if t mod ∆TG == 0 then
18: Apply DST to G
19: end if
20: end for

Algorithm 3 Strict balanced dynamic sparse training (ADAPTstrict) for GANs.
Require: Generator G, discriminator D, total number of training iterations T , number of training steps for

discriminator in each iteration N , given maximal density of discriminator dmax, discriminator adjustment
interval ∆TD , DST interval for the generator ∆TG, density increment ∆d, target generator density dG, BR
upper bound B+ and lower bound B−.

1: Set initial discriminator density dD = dG
2: for t in [1, · · · , T] do
3: for n in [1, · · · , N] do
4: Compute the loss of discriminator LD(θD)
5: LD(θD).backward()
6: end for
7: if t mod ∆TD == 0 then
8: Compute the loss of generator LG(θG)
9: LG(θG).backward()

10: Compute time-averaged BR with Equation 3
11: if BR > B+ and dD < dmax then
12: Increase the density of discriminator from dD to min(dmax, dD +∆d).
13: else if BR > B+ and dD == dmax then
14: Apply DST to D
15: else if BR < B− then
16: Decrease the density of discriminator from dD to max(0%, dD −∆d).
17: end if
18: end if
19: if t mod ∆TG == 0 then
20: Apply DST to G
21: end if
22: end for

18

0 50000 100000 150000 200000

Training iteration

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

B
al

an
ce

ra
ti

o

Density of the generator dG=10%

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

of
th

e
d

is
cr

im
in

at
or

0 50000 100000 150000 200000

Training iteration

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

B
al

an
ce

ra
ti

o

Density of the generator dG=20%

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

of
th

e
d

is
cr

im
in

at
or

0 50000 100000 150000 200000

Training iteration

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

B
al

an
ce

ra
ti

o

Density of the generator dG=30%

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

of
th

e
d

is
cr

im
in

at
or

0 50000 100000 150000 200000

Training iteration

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

B
al

an
ce

ra
ti

o

Density of the generator dG=50%

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

of
th

e
d

is
cr

im
in

at
or

Figure 5: Balance ratio and discriminator density evolution during training for ADAPTrelax on BigGAN
(CIFAR-10). Dashed lines represent BR values of 0.45 and 0.55.

0 50000 100000 150000 200000

Training iteration

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

B
al

an
ce

ra
ti

o

Density of the generator dG=10%

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

of
th

e
d

is
cr

im
in

at
or

0 50000 100000 150000 200000

Training iteration

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

B
al

an
ce

ra
ti

o

Density of the generator dG=20%

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

of
th

e
d

is
cr

im
in

at
or

0 50000 100000 150000 200000

Training iteration

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

B
al

an
ce

ra
ti

o

Density of the generator dG=30%

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

of
th

e
d

is
cr

im
in

at
or

0 50000 100000 150000 200000

Training iteration

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

B
al

an
ce

ra
ti

o

Density of the generator dG=50%

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

of
th

e
d

is
cr

im
in

at
or

Figure 6: Balance ratio and discriminator density evolution during training for ADAPTstrict on BigGAN
(CIFAR-10). Dashed lines represent BR values of 0.45 and 0.55.

D ADAPT balance ratio evolution661

In this section, we show that ADAPT methods are able to maintain a BR throughout training. We662

show the time evolution of BR and discriminator density for BigGAN on the CIFAR-10 dataset.663

Results of ADAPTrelax and ADAPTstrict are shown in Figure 5 and Figure 6. It clearly illustrates the664

ability of ADAPT to keep the BR controlled during GAN training.665

19

Table 6: FID (↓) of different sparse training methods along with post-hoc pruning baseline with no
constraint on the density of the discriminator. Best results are in bold; second-best results are
underlined.

Dataset CIFAR-10 (SNGAN) STL-10 (SNGAN) CIFAR-10 (BigGAN)
Generator density 10% 20% 30% 50% 10% 20% 30% 50% 10% 20% 30% 50%

(Dense Baseline) 10.74 29.71 8.11

Post-hoc pruning 20.89 14.07 12.99 11.90 57.28 37.12 31.98 29.70 15.44 10.84 9.65 8.77

STATIC-Balance 26.75 19.04 15.05 12.24 48.18 44.67 41.73 37.68 16.98 12.81 10.33 8.47
STATIC-Strong 26.79 19.65 14.38 11.91 52.48 43.85 42.06 37.47 23.48 14.26 11.19 8.64

SDST-Balance-SET 26.23 17.79 13.21 11.79 56.41 46.58 39.93 30.37 12.41 9.87 9.13 8.01
SDST-Strong-SET 16.49 13.36 11.68 10.68 67.37 49.96 37.99 31.08 18.94 9.64 8.75 8.36
SDST-Balance-RigL 27.06 16.36 14.00 12.28 43.08 33.90 31.83 30.30 12.45 9.42 8.86 8.03
SDST-Strong-RigL 17.02 13.86 12.51 11.35 53.65 33.25 31.41 30.18 10.58 9.11 8.69 8.33

ADAPTrelax (Ours) 14.19 13.19 12.38 10.60 35.98 33.06 31.71 29.96 10.19 8.56 8.36 8.22

E More experiment results666

E.1 IS and FID for the CIFAR-10 dataset667

In this section, we present corresponding IS scores results for Table 1 and Table 2. The results are668

shown in Table 8 and Table 9, respectively. We also include FID results of CIFAR-10 test set in669

Table 10.670

E.2 Naively applying DST to both the generator and the discriminator671

In this section, we follow STU-GAN to compare the baseline where applying DST on both generators672

and discriminators. We name it DST-bothGD.673

We test on SNGAN (CIFAR-10) with ∆TD = 1000, ∆TG = 500, and γ = 0.5. Note that we use the674

balance strategy where dG = dD. The reason is that the strong strategy uses a dense discriminator,675

and it does not make sense to apply DST to a dense network.676

We show the results in Table 7. It shows that it generates unstable results and consistenly performs677

worse than SDST-Strong. So we do not compare such baseline in the main body of the paper.678

E.3 Post-hoc pruning baseline679

In this section, we compare different sparse training methods with post-hoc magnitude pruning [61]680

baseline. Magnitude pruning involves first training a dense generator, then pruning its weights globally681

based on their magnitudes. The pruned generator is then fine-tuned with the dense discriminator.682

We perform additional fine-tuning for 50% of the original total iterations. Results are presented in683

Table 6.684

Our experimental results clearly demonstrate the advantages of dynamic sparse training over post-685

hoc magnitude pruning. The latter typically requires around 150% normalized training FLOPs,686

while DST methods constantly achieve comparable or better performance with significantly reduced687

computational cost.688

F A detailed comparison of training costs689

In this section, we include the detailed computational cost of all sparse training methods. More690

specifically, we take into account the density redistribution over different layers in this section.691

Also, we make an assumption that the computational overhead introduced by computing BR can be692

neglected.3693

Here we provide training costs for the strict setting in Table 12.694

3This is true if we compute BR less frequently.

20

Table 7: FID (↓) of different sparse training methods on CIFAR-10 datasets with no constraint on the
density of the discriminator. Best results are in bold; second-best results are underlined.

Dataset CIFAR-10
Generator density 10% 20 % 30 % 50 %

(Dense Baseline) 10.74

Static-Balance 26.75 19.04 15.05 12.24
Static-Strong 26.79 19.65 14.38 11.91

DST-bothGD-SET 20.57 14.90 12.58 11.86
DST-bothGD-RigL 31.95 17.99 13.24 12.47

SDST-Balance-SET 26.23 17.79 13.21 11.79
SDST-Strong-SET 16.49 13.36 11.68 10.68
SDST-Balance-RigL 27.06 16.36 14.00 12.28
SDST-Strong-RigL 17.02 13.86 12.51 11.35

ADAPTrelax (Ours) 14.19 13.19 12.38 10.60

Table 8: IS (higher is better) of different sparse training methods. There is no constraint on the density
of the discriminator, i.e., dmax = 100%.

Dataset SNGAN(CIFAR-10) SNGAN(STL-10) BigGAN(CIFAR-10) BigGAN(TinyImageNet)
Generator density 10% 20 % 30 % 50 % 10% 20 % 30 % 50 % 10% 20 % 30 % 50 % 10% 20 % 30 % 50 %

(Dense Baseline) 8.48 9.16 8.99 14.65

Static-Balance 7.24 7.83 8.06 8.38 7.94 8.19 8.44 8.69 7.99 8.24 8.68 8.90 10.65 12.28 13.41 13.57
Static-Strong 7.52 8.03 8.32 8.45 7.70 8.22 8.35 8.70 7.75 8.13 8.52 8.99 10.45 12.56 13.61 13.73

SDST-Balance-SET 7.28 7.89 8.22 8.38 8.43 8.92 9.26 9.31 8.62 8.67 8.82 8.98 11.75 12.60 12.30 12.21
SDST-Strong-SET 8.37 8.54 8.57 8.60 7.65 8.53 9.39 9.21 8.16 8.78 8.85 9.06 12.75 12.84 12.46 13.73
SDST-Balance-RigL 7.19 7.94 8.18 8.34 8.98 9.07 9.12 9.28 8.64 8.71 8.91 8.93 12.67 13.32 13.18 13.61
SDST-Strong-RigL 8.32 8.52 8.59 8.57 8.15 9.10 9.16 9.17 8.65 8.72 8.97 9.00 13.32 13.35 13.60 14.47

ADAPTrelax (Ours) 8.42 8.44 8.54 8.60 9.08 9.29 9.06 9.26 8.74 9.07 8.98 9.00 13.09 13.57 13.68 15.77

Table 9: IS (higher is better) of different sparse training methods. The density of the discriminator is
constrained to be lower than dmax = 50%.

Dataset SNGAN(CIFAR-10) SNGAN(STL-10) BigGAN(CIFAR-10) BigGAN(TinyImageNet)
Generator density 10% 20 % 30 % 50 % 10% 20 % 30 % 50 % 10% 20 % 30 % 50 % 10% 20 % 30 % 50 %

(Dense Baseline) 8.48 9.16 8.99 14.65

Static-Balance 7.24 7.83 8.06 8.38 7.94 8.19 8.44 8.69 7.99 8.24 8.68 8.90 10.65 12.28 13.41 13.57
Static-Strong 7.85 8.14 8.31 8.38 7.89 8.22 8.38 8.69 7.75 8.03 8.52 8.90 9.99 11.61 13.77 13.57

SDST-Balance-SET 7.28 7.89 8.22 8.38 8.43 8.92 9.26 9.31 8.62 8.67 8.82 8.98 11.75 12.60 12.30 12.21
SDST-Strong-SET 8.33 8.53 8.40 8.38 8.50 8.77 9.46 9.26 8.55 8.77 8.84 8.98 12.00 12.87 12.16 12.21
SDST-Balance-RigL 7.19 7.94 8.18 8.34 8.98 9.07 9.12 9.28 8.64 8.71 8.91 8.93 12.67 13.32 13.18 13.61
SDST-Strong-RigL 8.24 8.48 8.37 8.34 8.28 9.05 9.11 9.28 8.61 8.83 8.84 8.93 12.04 12.66 13.57 13.61

ADAPTstrict (Ours) 8.27 8.36 8.48 8.47 8.98 9.17 9.20 9.19 8.90 8.89 8.92 9.10 13.85 13.61 14.05 14.40

Table 10: FID of test set (↓) of different sparse training methods on SNGAN (CIFAR-10) dataset.
Best results are in bold; second-best results are underlined.

Maximal discriminator density dmax 100 % 50 %
Generator density 10% 20 % 30 % 50 % 10% 20 % 30 % 50 %

(Dense Baseline) 13.32

Static-Balance 29.56 21.79 17.80 14.94 29.56 21.79 17.80 14.94
Static-Strong 29.50 22.45 17.12 14.58 24.62 19.43 16.32 14.94

SDST-Balance-SET 28.84 20.31 15.95 14.35 28.84 20.31 15.95 14.35
SDST-Strong-SET 19.16 16.12 14.45 13.50 18.38 15.33 14.78 14.35
SDST-Balance-RigL 29.77 19.02 16.68 15.05 29.77 19.02 16.68 15.05
SDST-Strong-RigL 19.72 16.50 15.20 14.09 17.92 15.51 15.52 15.05

ADAPTrelax (Ours) 16.82 15.85 15.14 13.37 - - - -
ADAPTstrict (Ours) - - - - 17.19 15.57 14.92 14.80

21

Table 11: FID of test set (↓) of different sparse training methods on BigGAN (CIFAR-10) dataset.
Best results are in bold; second-best results are underlined.

Maximal discriminator density dmax 100 % 50 %
Generator density 10% 20 % 30 % 50 % 10% 20 % 30 % 50 %

(Dense Baseline) 10.36

Static-Balance 19.58 15.63 13.21 10.92 19.58 15.63 13.21 10.92
Static-Strong 26.08 15.82 13.47 10.95 22.04 16.39 13.73 10.92

SDST-Balance-SET 14.90 12.77 11.82 10.68 14.90 12.77 11.82 10.68
SDST-Strong-SET 21.63 11.92 11.27 10.75 14.53 11.83 10.96 10.68
SDST-Balance-RigL 14.86 12.03 11.30 10.68 14.86 12.03 11.30 10.68
SDST-Strong-RigL 13.35 11.58 11.00 10.88 12.59 12.03 10.89 10.68

ADAPTrelax (Ours) 12.71 11.02 10.62 10.80 - - - -
ADAPTstrict (Ours) - - - - 11.83 11.22 10.92 10.33

Table 12: Normalized training FLOPs (↓) of different sparse training methods. The density of the
discriminator is constrained to be lower than 50%.

Dataset CIFAR-10 (SNGAN) STL-10 (SNGAN) CIFAR-10 (BigGAN) TinyImageNet (BigGAN)
Generator density 10% 20% 30% 50% 10% 20% 30% 50% 10% 20% 30% 50% 10% 20% 30% 50%

(Dense Baseline) 100% (2.67× 1017) 100% (3.94× 1017) 100% (6.81× 1017) 100% (9.85× 1017)

Static-Balance 8.97% 17.08% 26.25% 47.25% 27.30% 47.14% 59.22% 73.35% 9.79% 19.02% 28.66% 49.03% 23.25% 44.87% 60.91% 79.29%
Static-Strong 30.89% 33.58% 37.17% 47.25% 70.65% 71.48% 72.14% 73.35% 42.66% 43.69% 45.10% 49.03% 41.52% 55.03% 66.29% 79.29%

SDST-Balance-SET 9.78% 18.91% 28.35% 48.44% 27.55% 47.60% 60.17% 75.38% 10.35% 20.12% 29.96% 49.82% 21.13% 37.06% 48.83% 65.58%
SDST-Strong-SET 31.87% 35.51% 39.53% 48.44% 70.95% 71.97% 73.07% 75.38% 43.25% 44.80% 46.42% 49.82% 39.28% 47.31% 54.11% 65.58%
SDST-Balance-RigL 10.71% 17.43% 25.66% 43.56% 29.51% 50.41% 63.34% 79.03% 9.92% 19.30% 28.90% 48.31% 24.97% 43.86% 57.26% 76.75%
SDST-Strong-RigL 31.22% 33.93% 36.63% 43.56% 72.95% 75.05% 76.42% 79.03% 42.80% 44.08% 45.37% 48.31% 43.76% 53.71% 63.05% 76.75%

ADAPTstrict (Ours) 24.23% 27.55% 31.70% 37.83% 50.91% 70.18% 75.99% 80.68% 10.32% 23.69% 31.54% 33.83% 34.42% 51.68% 62.34% 77.46%

22

	Experimental setup
	Architecture details
	Datasets
	Training hyperparameters
	Evaluation metric

	Dynamic sparse training details
	How the generator performs DST
	DST hyperparameters for the generator
	Density dynamic adjust (DDA) hyper-parameters
	DST hyperparameters for the discriminator in ADAPT

	Algorithms
	Dynamic adjust algorithm
	Relaxed balanced dynamic sparse training algorithm
	Strict balanced dynamic sparse training algorithm

	ADAPT balance ratio evolution
	More experiment results
	IS and FID for the CIFAR-10 dataset
	Naively applying DST to both the generator and the discriminator
	Post-hoc pruning baseline

	A detailed comparison of training costs

