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Abstract

Over the past few years, there has been growing interest in developing larger and
deeper neural networks, including deep generative models like generative adversar-
ial networks (GANs). However, GANs typically come with high computational
complexity, leading researchers to explore methods for reducing the training and
inference costs. One such approach gaining popularity in supervised learning is
dynamic sparse training (DST), which maintains good performance while enjoy-
ing excellent training efficiency. Despite its potential benefits, applying DST to
GANs presents challenges due to the adversarial nature of the training process.
In this paper, we propose a novel metric called the balance ratio (BR) to study
the balance between the sparse generator and discriminator. We also introduce a
new method called balanced dynamic sparse training (ADAPT), which seeks to
control the BR during GAN training to achieve a good trade-off between perfor-
mance and computational cost. Our proposed method shows promising results
on multiple datasets, demonstrating its effectiveness. Our code is available at
https://github.com/YiteWang/ADAPT.

1 Introduction

Generative adversarial networks (GANs) [20, 7, 70, 44] are a type of generative model that has gained
significant attention in recent years due to their impressive performance in image-generation tasks.
However, the mainstream models in GANs are known to be computationally intensive, making them
challenging to train in resource-constrained settings. Therefore, it is crucial to develop methods that
can effectively reduce the computational cost of training GANs while maintaining their performance,
making GANs more practical and applicable in real-world scenarios.

Neural network pruning has recently emerged as a powerful tool to reduce the training and inference
costs of DNNs for supervised learning. There are mainly three genres of pruning methods, namely
pruning-at-initialization, pruning-during-training, and post-hoc pruning methods. Post-hoc pruning
[32, 42, 25] can date back to the 1980s, which was first introduced for reducing inference time and
memory requirements for efficient deployment; hence does not align with our purpose of efficient
training. Later, pruning-at-initialization [46, 78, 75] and pruning-during-training methods [84] were
introduced to circumvent the need to fully train the dense networks. However, early pruning-during-
training algorithms [58] do not bring much training efficiency compared to post-hoc pruning, while
pruning-at-initialization methods usually suffer from significant performance drop [18]. Recently,
advances in dynamic sparse training (DST) [62, 16, 51, 52, 54] for the first time show that pruning-
during-training methods can have comparable training FLOPs as pruning-at-initialization methods
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while having competing performance to post-hoc pruning. Therefore, applying DST on GANs seems
to be a promising choice.

Although DST has attained remarkable achievements in supervised learning, the application of DST
on GANs is not successful due to newly emerging challenges. One challenge is keeping the generator
and the discriminator balanced. In particular, using overly strong discriminators can lead to overfitting,
while weaker discriminators may fail to effectively prevent mode collapse [3, 4]. Hence, balancing
the sparse generator and the (possibly) sparse discriminator throughout training is even more difficult.
To mitigate the unbalance issue, a recent work STU-GAN [53] proposes to apply DST directly to the
generator. However, we find empirically that such an algorithm is likely to fail when the generator
is already more powerful than the discriminator. Consequently, it remains unclear how to conduct
balanced dynamic sparse training for GANs.

To this end, we propose a metric called balance ratio (BR), which measures the degree of balance of
the two components, to study sparse GAN training. We find that BR is useful in (1) understanding the
interaction between the discriminator and the generator, (2) identifying the cause of a certain training
failure/collapse [7, 8], and (3) helping stabilize sparse GAN training as an indicator. To our best
knowledge, this is the first study to quantify the unbalance of sparse GANs and may even provide
new insights into dense GAN training.

Furthermore, using BR as an indicator, we propose bAlanced DynAmic sParse Training (ADAPT) to
adjust the density and the connections of the discriminator automatically during training.

Our main contributions are summarized below:

• We introduce a novel quantity named balance ratio to study the degree of balance in sparse
GAN training.

• We find empirically that the balance ratio is problematic in certain practical training scenarios
and that existing methods are inadequate for resolving this issue.

• We propose ADAPT, which makes real-time monitoring of the balance ratio. By dynam-
ically adjusting the discriminator, ADAPT enables effective control of the balance ratio
throughout training. Empirically, ADAPT achieves a good trade-off between performance
and computational cost on several datasets.

2 Related works

2.1 Neural network pruning

In deep learning, efficiency is achieved through several methods. This paper primarily focuses
on model training and inference efficiency, which is different from techniques for data efficiency
[83, 85, 86]. These include neural architecture search (NAS) [80, 49] to discover optimal network
structures, quantization [31, 67] for computational efficacy, knowledge distillation [28] to leverage
the knowledge of larger models for smaller counterparts, and neural network pruning to remove
unnecessary connections. Among these, neural network pruning is the focal point of our research.
More specifically, we narrow our focus on unstructured pruning [25, 17], where individual weight is
the finest resolution. This contracts with structured pruning [56, 59, 57, 30] where entire neurons or
channels are pruned.

Post-hoc pruning. Post-hoc pruning method prunes weights of a fully-trained neural network.
It usually requires high computational costs due to the multiple rounds of the train-prune-retrain
procedure [25, 68]. Some use specific criteria [42, 26, 25, 23, 15, 12, 91, 63] to remove weights,
while others perform extra optimization iterations [77]. Post-hoc pruning was initially proposed to
reduce the inference time, while lottery ticket works [17, 68] aimed to mine trainable sub-networks.

Pruning-at-initialization methods. SNIP [46] is one of the pioneering works that aim to find
trainable sub-networks without any training. Some follow-up works [78, 75, 13, 65, 1] aim to propose
different metrics to prune networks at initialization. Among them, Synflow [75], SPP [45], and
FORCE [13] try to address the problem of layer collapse during pruning. NTT [55], PHEW [65], and
NTK-SAP [82] draw inspiration from neural tangent kernel theory.

Pruning-during-training methods. Another genre of pruning algorithms prunes or adjusts DNNs
throughout training. Early works add explicit ℓ0 [58] or ℓ1 [84] regularization terms to encourage a
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sparse solution, hence mitigating performance drop incurred by post-hoc pruning. Later works learn
the subnetworks structures through projected gradient descent [94] or trainable masks [73, 88, 35, 41,
50, 71]. However, these pruning-during-training methods often do not introduce memory sparsity
during training. As a remedy, DST methods [5, 62, 64, 14, 16, 51, 52, 54, 21] were introduced to train
the neural networks under a given parameter budget while allowing mask change during training.

2.2 Generative adversarial networks

Generative adversarial networks (GANs). GANs [20] have drawn considerable attention and have
been widely investigated for years. Deep convolutional GANs [66] replace fully-connected layers
in the generator and the discriminator. Follow-up works [22, 36, 7, 92] employed more advanced
methods to improve the fidelity of generated samples. After that, several novel loss functions
[69, 60, 2, 22, 74], normalization and regularization methods [61, 76, 87] were proposed to stabilize
the adversarial training. Besides the efforts devoted to training GANs, image-to-image translation is
also extensively explored [96, 95, 10, 38, 43, 81].

GAN balance. Addressing the balance between the generator and discriminator in GAN training
has been the focus of various works. However, directly applying existing methods to sparse GAN
training poses challenges. For instance, [3, 4] offer theoretical analyses on the issue of imbalance but
may have limited practical benefits, e.g., they require training multiple generators and discriminators.
Empirically, BEGAN [6] proposes to use proportional control theory to maintain a hyper-parameter
E[|G(z)−D(G(z))|η ]

E[|x−D(x)|η ] , but it is only applicable when the discriminator is an auto-encoder. Unbalanced
GAN [24] pretrains a VAE to initialize the generator, which may only address the unbalance near
initialization. GCC [48] considers the balance during GAN compression, while its criterion requires
a trained (dense) GAN, which is not given in the DST setting. Finally, STU-GAN [53] proposes to
use DST to address the unbalance issues but may fail under certain conditions, as demonstrated in
our experiments.

GAN compression and pruning. One of the promising ways is based on neural architecture search
and distillation algorithm [47, 19, 29]. Another part of the work applied pruning-based methods for
generator compression [72, 90, 33]. Later, works by [79] presented a unified framework by combing
the methods mentioned above. Nevertheless, they only focus on the pruning of generators, thus
potentially posing a negative influence on Nash Equilibrium between generators and discriminators.
GCC [48] compresses both components of GANs by letting the student GANs also learn the losses.
Another line of work [34, 9, 8] tries to test the existence of lottery tickets in GANs. To the best of our
knowledge, STU-GAN [53] is the only work that tries to directly train sparse GANs from scratch.

3 Preliminary and setups

Generative adversarial networks (GANs) have two fundamental components, a generator G(·;θG)
and a discriminator D(·;θD). Specifically, the generator maps a sampled noise z from a multivariate
normal distribution p(z) into a fake image to cheat the discriminator. In contrast, the discriminator
distinguishes the generator’s output and the real images xr from the distribution pdata(xr).

Formally, the optimization objective of the two-player game defined in GANs can be generally
defined as follows:

LD(θD,θG) =Exr∼pdata [f1(D(xr;θD))] + Ez∼p [f2(D(G(z;θG)))] (1)
LG(θG) =Ez∼p [g1(D(G(z;θG)))] . (2)

To be more specific, different losses can be used, including the loss in the original JS-GAN [20]
where f1(x) = − log(x), f2(x) = −g1(x) = − log(1 − x); Wasserstein loss [22] where f1(x) =
−f2(x) = g1(x) = −x; and hinge loss [61] where f1(x) = max(0, 1− x), f2(x) = max(0, 1 + x),
and g1(x) = −x. The two components are optimized alternately to achieve the Nash equilibrium.
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Figure 1: FID (↓) comparison of SDST against STATIC sparse training for SNGAN on CIFAR-10
with different sparsity ratio combinations. The shaded areas denote the standard deviation.

GAN sparse training. In this work, we are interested in sparse training for GANs. In particular, the
objective of sparse GAN training can be formulated as follows:

θ∗
D = min

θD

LD(θD ⊙mD,θG ⊙mG)

θ∗
G = min

θG

LG(θG ⊙mG)

s.t. mD ∈ {0, 1}|θD|, mG ∈ {0, 1}|θG|, ∥mD∥0/|θD| ≤ dD, ∥mG∥0/|θG| ≤ dG,

where ⊙ is the Hadamard product; θ∗
D, mD, |θD|, dD are the sparse solution, mask, number of

parameters, and target density for the discriminator, respectively. The corresponding variables for
the generator are denoted with subscript G. For pruning-at-initialization methods, masks m are
determined before training, whereas m are dynamically adjusted for dynamic sparse training (DST)
methods.

Dynamic sparse training (DST). DST methods [62, 16] usually start with a sparse network parame-
terized by θ ⊙m with randomly initialized mask m. After a constant time interval ∆T , it updates
mask m by removing a fraction of connections and activating new ones with a certain criterion. The
total number of active parameters ∥m∥0 is hence kept under a certain threshold d|θ|. Please see
Appendix B for more details.

4 Motivating observations: The unbalance in sparse GAN training

As discussed in section 1, it is essential to maintain the balance of generator and discriminator during
GAN training. As strong discriminators may lead to over-fitting, whereas weak discriminators may
be unable to detect mode collapse. When it comes to sparse GAN training, the consequences caused
by the unbalance can be further amplified. For example, sparsifying a weak generator while keeping
the discriminator unmodified may lead to an even more unbalanced worst-case scenario.

To support our claim, we conduct experiments with SNGAN [61] on the CIFAR-10 dataset. We
consider the following sparse training algorithms:

➊ Static sparse training (STATIC). For STATIC, layer-wise sparsity ratio and masks mG,mD

are fixed throughout the training.

➋ Single dynamic sparse training (SDST). SDST is a direct application of the DST method on
GANs where only the generator dynamically adjusts masks during the training. We name such
method SDST as only one component of the GAN, i.e., the generator, is dynamic. Furthermore,
we call the variant which grows connections based on gradients magnitude as SDST-RigL [16],
and randomly as SDST-SET [62]. Note that STU-GAN [53] is almost identical to SDST-RigL
with EMA [89] tailored for DST. We do not consider naively applying DST on both generators and
discriminators, as in STU-GAN, it is empirically shown that simply adjusting both components
generates worse performance with more severe training instability.2

We test the considered algorithms with dG ∈ {10%, 20%, 30%, 50%} and dD ∈ {10%, 20%, 30%,
50%, 100%}. More experiment details can be found at Appendix A and Appendix B.

2We also perform a small experiment in subsection E.2 to validate their findings.
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Figure 2: BR comparison of SDST against STATIC sparse training for SNGAN on CIFAR-10 with
different sparsity ratio combinations.

4.1 Key observations

We report the results in Figure 1 and summarize our critical findings as follows:

➊ Observation 1: Neither strong nor weak sparse discriminators can provide satisfactory
results. The phenomenon is most noticeable when dG = 10%, where the FID initially decreases but
then increases. The reasons may be as follows: (1) Overly weak discriminators may cause training
collapse as they cannot provide useful information to the generator, resulting in a sudden increase in
FID at the early stage of sparse GAN training. (2) Overly strong discriminators may not yield good
FID results because they learn too quickly, not allowing the generator to keep up. Hence, to ensure a
balanced training of GAN for sparse training methods, it is crucial to find an appropriate sparsity
ratio for the discriminator.

➋ Observation 2: SDST is unable to give stable performance boost compared to the STATIC
baseline. Another critical observation is that SDST is better than STATIC only when the discrimina-
tor is strong enough. More specifically, for all selected discriminator density ratios, SDST method is
not better than STATIC when using a small discriminator density (dD = 10%). On the contrary, for
the cases where dD > dG, we generally see a significant performance boost brought by SDST.

5 Balance ratio: Towards quantifying the unbalance in sparse GAN training

5.1 Formulation of the balance ratio

To gain a deeper understanding of the phenomenon observed in the previous section, and to better
monitor and control the degree of unbalance in sparse GANs, we introduce a novel quantity called
the balance ratio (BR). This quantity is defined as follows.

At each training iteration, we draw random noise z from a multivariate normal distribution and
real images xr from the training set. We denote the discriminator after gradient descent update
as D(·;θD). We denote generator before and after gradient descent training as Gpre(·;θG) and
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Figure 4: FID (↓) of STATIC sparsely trained SNGAN with and without DDA on CIFAR-10 with
different sparsity ratio combinations. The result of DDA is independent of dD as it is determined
automatically. The shaded areas denote the standard deviation.

Gpost(·;θ′
G), respectively. Then the balance ratio is defined as:

BR =
Ez∼p [D(Gpost(z))−D(Gpre(z))]

Exr∼pdata [D(xr)]− Ez∼p[D(Gpre(z))]
=

α

β
. (3)
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Figure 3: Illustration of balance ratio.

Precisely, BR measures how much improvement
the generator can achieve in the scale measured
by the discriminator for a specific random noise
z. When BR is too small (e.g., BR< 30%),
the updated generator is too weak to trick the
discriminator, as the generated images are still
considered fake. Similarly, for the case where
BR is too large (e.g., BR> 80%), the discrimi-
nator is considered too weak hence it may not
provide useful information to the generator. We
also illustrate BR in Figure 3.

5.2 Understanding observation 1: Analysing GAN balance with the balance ratio

We visualize the BR evolution throughout the training for the experiments in section 4 to show the
effectiveness of BR in quantifying the balance of sparse GANs. We show the results in Figure 2.

It illustrates that BR can distinguish the density difference (hence the representation power difference)
of the discriminator. Specifically, we can see that for larger discriminator density dD, the BR is much
lower throughout the training, indicating strong discriminators. On the contrary, for the cases where
the discriminators are too weak compared to the generators, e.g., all cases where dD = 10%, we can
observe BR first increases and then oscillates wildly. We believe this oscillatory behavior is related to
the training collapse. Empirical results also show that the FID metric experiences a sudden increase
after this turning point.

5.3 Dynamic density adjust: A first attempt to utilize the balance ratio

As demonstrated in the previous section, the balance ratio (BR) effectively captures the degree of
balance between the generators and discriminators in sparse GANs. Hence, it is natural to leverage BR
to dynamically adjust the density of discriminators during sparse GAN training so that a reasonable
discriminator density can be found.

To demonstrate the value of BR, we propose a simple yet powerful modification to the STATIC
baseline. This method, which we call dynamic density adjust (DDA), is explained below. Specifically,
we initialize the initial density of the discriminator dinit

D = dG. After a specific training iteration
interval, we adjust the density of the discriminator based on the BR over the last few iterations with a
pre-defined density increment ∆d. With a pre-defined BR bounds [B−, B+], we decrease dD by ∆d
when BR is smaller than B−, and vise versa. We show the algorithm in Appendix C Algorithm 1.

Comparison to ADA [37]. In this paragraph, we compare ADA and DDA. (1) Notice that DDA
algorithm is orthogonal to ADA in a sense that StyleGAN2-ADA adjusts the data augmentation
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probability while DDA adjusts the discriminator density. (2) Moreover, the criterion used in DDA, i.e.
BR, is very different from the criterion proposed in StyleGAN2-ADA, i.e. rv = E[D(xtrain)]−E[D(xval)]

E[D(xtrain)]−E[D(G(z))]

and rt = E [sign(D(xtrain))]. In particular, rv requires a separate validation set, while rt only
quantifies the overfitting of the discriminator to the training set. (3) Another note is that DDA is a
flexible framework, where its criterion, i.e. BR, can be potentially replaced by rv , rt, and such.

Experiment results. We test DDA with target BR interval [B−, B+] = [0.5, 0.65]. Precisely, DDA
tends to find a suitable discriminator where the generator can just trick the discriminator throughout
the training. We show the results in Figure 4 with red lines. The experiments show that DDA can
identify reasonable discriminator densities to enable balanced training for sparse GANs.

5.4 Understanding observation 2: Analysing the failure of SDST with the balance ratio

By leveraging BR, we can also gain further insights into why some configurations do not benefit from
SDST as compared to STATIC.

Regarding SDST as a way of increasing the generator capacity. Our findings suggest that
SDST can possibly enhance the generator’s representation power, as demonstrated by the higher
BR values compared to STATIC observed in Figure 2. We attribute this effect to the in-time
over-parameterization (ITOP) [54] induced by dynamic sparse training.

SDST does not address training collapse. The increase in generator’s representation power resulting
from SDST is only beneficial when the discriminator has matching or superior representation power.
Therefore, if the training has already collapsed for the static baseline methods (STATIC), meaning
that the generator is already stronger than the discriminator, SDST may not be effective in stabilizing
sparse GAN training. This is evident from the results shown in Figure 2 first-row column 1, second-
row column 1, third-row columns 1-2, and fourth-row columns 1-3.

Despite the superior performance of STU-GAN (or SDST in general) at higher discriminator density
ratios dD, there exist some limitations for SDST, which we summarize below:

➊ SDST requires a pre-defined discriminator density dD before training. However, it is unclear
what is a good choice. In real-world scenarios, it is not practical to manually search for the optimal
dD for each dG. A workaround may be using the maximum allowed density for the discriminator.
However, as shown in Figure 1, the best performance is not always obtained with the maximum
dD = 100%. Moreover, we are wasting extra computational cost for a worse performance if we use
an overly-strong discriminator.

➋ SDST fails if there is an additional constraint on the density of the discriminator dD. As Figure 1
suggests, for weak discriminators, SDST is unable to show consistent improvement compared to the
STATIC baseline.

Hence, STU-GAN (or SDST in general), which directly applies DST to the generator, may only be
useful when the corresponding discriminator is strong enough. In this sense, obtaining balanced
training automatically is essential in GAN DST to deal with more complicated scenarios.

6 Balanced dynamic sparse training for GANs

In this section, we describe our methodology for balanced sparse GAN training.

STU-GAN (or SDST in general) considered in the last section cannot generate stable and satisfying
performance. This implies that we should utilize the discriminator in a better way rather than do
nothing (like SDST) or directly apply DST to the discriminator (see subsection E.2 for additional
experiments). Consequently, DDA (subsection 5.3), which adjusts the discriminator density to stabilize
GAN training, is a favorable candidate to address the issue. To this end, we propose bAlanced
DynAmic sParse Training (ADAPT), which adjusts the density of the discriminator during training
with DDA while the generator performs DST.

We further introduce two variants, namely ADAPTrelax and ADAPTstrict, based on whether we force
the discriminator to be sparse. We present them in subsection 6.1 and subsection 6.2. These methods
are more flexible and generate more stable performance compared to SDST.
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Table 1: FID (↓) of different sparse training methods with no constraint on the density of the
discriminator. Best results are in bold; second-best results are underlined.

Dataset CIFAR-10 (SNGAN) STL-10 (SNGAN) CIFAR-10 (BigGAN) TinyImageNet (BigGAN)
Generator density 10% 20% 30% 50% 10% 20% 30% 50% 10% 20% 30% 50% 10% 20% 30% 50%

(Dense Baseline) 10.74 29.71 8.11 15.43

STATIC-Balance 26.75 19.04 15.05 12.24 48.18 44.67 41.73 37.68 16.98 12.81 10.33 8.47 28.78 21.67 18.86 17.51
STATIC-Strong 26.79 19.65 14.38 11.91 52.48 43.85 42.06 37.47 23.48 14.26 11.19 8.64 31.44 22.51 18.22 18.00

SDST-Balance-SET 26.23 17.79 13.21 11.79 56.41 46.58 39.93 30.37 12.41 9.87 9.13 8.01 25.39 21.30 21.80 21.20
SDST-Strong-SET 16.49 13.36 11.68 10.68 67.37 49.96 37.99 31.08 18.94 9.64 8.75 8.36 22.20 20.56 21.70 18.32
SDST-Balance-RigL 27.06 16.36 14.00 12.28 43.08 33.90 31.83 30.30 12.45 9.42 8.86 8.03 21.60 19.33 18.57 17.45
SDST-Strong-RigL 17.02 13.86 12.51 11.35 53.65 33.25 31.41 30.18 10.58 9.11 8.69 8.33 21.14 18.95 17.75 16.30

ADAPTrelax (Ours) 14.19 13.19 12.38 10.60 35.98 33.06 31.71 29.96 10.19 8.56 8.36 8.22 19.42 17.99 17.06 14.15

6.1 ADAPTrelax: Balanced dynamic sparse training in the relaxed setting

In this section, we consider the relaxed setting where a dense discriminator can be used, i.e., dD ≤
dmax = 100%. This relaxed scenario gives the greatest flexibility to the discriminator. However, it
does not necessarily enforce the sparsity of the discriminator (hence, no computational savings for
the discriminator) because the density of the discriminator can be as high as 100%.

For the relaxed setting, we use the direct combination of SDST with DDA. Precisely, the generator is
adjusted using DST as mentioned in section 4 while the density of the discriminator is dynamically
adjusted with DDA as mentioned in subsection 5.3. We call such a combination relaxed balanced
dynamic sparse training (ADAPTrelax). Please see Appendix C Algorithm 2 for more details.

Comparison to STU-GAN (or SDST in general). Compared to STU-GAN (or SDST in general),
which pre-defines and fixes the discriminator density during training, the difference is that for
ADAPTrelax, the density of the discriminator is adjusted during the training process automatically
through real-time monitoring of the balance ratio. Given the initial discriminator density dint

D = dG,
ADAPTrelax increases the discriminator density if a stronger discriminator is needed, and vice versa.

6.2 ADAPTstrict: Balanced dynamic sparse training in the strict setting

Different from subsection 6.1, we now consider a strict setting where there is an additional sparsity
constraint on the discriminator density in this section, i.e., dD ≤ dmax < 100%.

ADAPTrelax introduced in the previous section does not necessarily enforce sparsity for the discrimi-
nator, which provides less memory/training resources saving for larger generator density ratios. Note
that the discriminator does not take advantage of DST to explore the structure of the dense network.
Hence, we further present strict balanced dynamic sparse training (ADAPTstrict) in this section.
This method allows the discriminator to perform DST in a controlled manner, which can lead to a
better exploration of the dense network structure while maintaining the balance between the generator
and the discriminator. We explain how ADAPTstrict differs from ADAPTrelax below:

➊ Capacity increase of the discriminator. The essential difference lies when the observed BR is
higher than B+, which means we need a stronger discriminator. In this case, if the discriminator
density is lower than the constraint, i.e., dD < dmax, ADAPTstrict will perform just like ADAPTrelax to
increase the discriminator density. However, if the discriminator is already the maximum density, i.e.,
dD = dmax, the discriminator will alternatively perform DST as a way of increasing the discriminator
capacity (See subsection 5.4 for intuition).

➋ Capacity decrease of the discriminator. Similar to ADAPTrelax, when the observed BR is lower
than B−, we will decrease the discriminator density.

Hence, ADAPTstrict makes the discriminator adaptive both in the density level (through density
adjustment) and the parameter level (through DST). The algorithm of ADAPTstrict is shown in
Appendix C Algorithm 3.

6.3 Experiment setting

Datasets, architectures, and target sparsity ratios. We conduct experiments on SNGAN with
ResNet architectures on the CIFAR-10 [40] and the STL-10 [11] datasets. We have also conducted
experiments with BigGAN [7] on the CIFAR-10 and TinyImageNet dataset (with DiffAug [93]).
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Table 2: FID (↓) of different sparse training methods. The density of the discriminator is con-
strained to be lower than 50%. Best results are in bold; second-best results are underlined.

Dataset CIFAR-10 (SNGAN) STL-10 (SNGAN) CIFAR-10 (BigGAN) TinyImageNet (BigGAN)
Generator density 10% 20% 30% 50% 10% 20% 30% 50% 10% 20% 30% 50% 10% 20% 30% 50%

(Dense Baseline) 10.74 29.71 8.11 15.43

STATIC-Balance 26.75 19.04 15.05 12.58 48.18 44.67 41.73 37.68 16.98 12.81 10.33 8.47 28.78 21.67 18.86 17.51
STATIC-Strong 21.73 16.69 13.48 12.58 50.36 44.06 40.73 37.68 18.91 13.43 10.84 8.47 33.01 23.93 17.90 17.51

SDST-Balance-SET 26.23 17.79 13.21 11.79 56.24 44.51 41.23 30.80 12.41 9.87 9.13 8.01 25.39 21.30 21.80 21.20
SDST-Strong-SET 15.68 12.75 11.98 11.79 57.91 50.05 38.13 30.80 11.85 9.39 8.61 8.01 22.68 20.24 22.00 21.20
SDST-Balance-RigL 27.06 16.36 14.00 12.28 43.08 33.90 31.64 30.30 12.45 9.42 8.86 8.03 21.60 19.33 18.57 17.45
SDST-Strong-RigL 15.19 12.93 12.75 12.28 53.74 37.34 31.98 30.30 10.11 9.17 8.35 8.03 21.90 20.43 18.29 17.45

ADAPTstrict (Ours) 14.53 12.73 12.20 12.11 41.18 31.59 31.16 29.11 9.29 8.64 8.44 7.90 18.89 17.37 16.93 16.02

Table 3: Normalized training FLOPs (↓) of different sparse training methods with no constraint on
the density of the discriminator.

Dataset CIFAR-10 (SNGAN) STL-10 (SNGAN) CIFAR-10 (BigGAN) TinyImageNet (BigGAN)
Generator density 10% 20% 30% 50% 10% 20% 30% 50% 10% 20% 30% 50% 10% 20% 30% 50%

(Dense Baseline) 100% (2.67× 1017) 100% (3.94× 1017) 100% (6.81× 1017) 100% (9.85× 1017)

Static-Balance 8.97% 17.08% 26.25% 47.25% 27.30% 47.14% 59.22% 73.35% 9.79% 19.02% 28.66% 49.03% 23.25% 44.87% 60.91% 79.29%
Static-Strong 58.29% 60.94% 64.53% 74.61% 86.12% 86.94% 87.60% 88.84% 83.78% 84.80% 86.21% 90.15% 48.02% 61.62% 72.79% 85.79%

SDST-Balance-SET 9.78% 18.91% 28.35% 48.44% 27.55% 47.60% 60.17% 75.38% 10.35% 20.12% 29.96% 49.82% 21.13% 37.06% 48.83% 65.58%
SDST-Strong-SET 59.25% 62.94% 66.89% 75.96% 86.36% 87.43% 88.49% 90.82% 84.36% 85.90% 87.52% 90.95% 45.66% 53.91% 60.61% 71.88%
SDST-Balance-RigL 10.71% 17.43% 25.66% 43.56% 29.51% 50.41% 63.34% 79.03% 9.92% 19.30% 28.90% 48.31% 24.97% 43.86% 57.26% 76.75%
SDST-Strong-RigL 58.63% 61.35% 64.04% 71.01% 88.51% 90.24% 91.78% 94.57% 83.97% 85.24% 86.59% 89.54% 50.05% 61.02% 69.64% 83.35%

ADAPTrelax (Ours) 36.67% 57.62% 61.31% 70.11% 46.73% 77.92% 83.62% 90.49% 10.39% 25.90% 40.65% 80.76% 29.75% 51.98% 64.57% 80.81%

Target density ratios of the generators dG are chosen from {10%, 20%, 30%, 50%}. Please see
Appendix A for more experiment details.

Baseline methods and two practical strategies. We use STATIC and SDST (section 4) as our
baselines. Note that in real-world application scenarios, it is not practical to perform a grid search
for a good dD as in section 4. Hence, we propose two practical strategies to define the constant
discriminator density for these baseline methods: (1) balance strategy, where we set the density of
the discriminator dD the same as the density of the generator dG; (2) strong strategy, where we set
the density of the discriminator as large as possible, i.e., dD = dmax. For SDST methods, we test
both SDST-SET and SDST-RigL. For a fair comparison, dmax is set to be 100% and 50% for
the relaxed setting and the strict setting, respectively.

For ADAPT, we use the RigL version, which grows connections of the generators and discriminators
based on gradient magnitude. The gradient information enables two components to react promptly
according to the change of each other. Different from the value used in subsection 5.3, we control
the balance ratio in the range [0.45, 0.55] unless otherwise mentioned to have a slightly stronger
discriminator, potentially avoiding training collapse. More details can be found in Appendix B.

6.4 Experiment results

We show the experiment results in Table 1 and Table 2 for the relaxed setting and the strict setting,
respectively. We also present the training FLOPs normalized by the dense counterpart for the relaxed
setting in Table 3. We defer the results for the strict setting to Appendix F Table 12. We show
FID for the CIFAR-10 test set, Inception scores, and comparison with post-hoc pruning baseline in
Appendix E. We also show ADAPT BR evolution in Appendix D. We summarize our findings below.

The strong strategy and the balance strategy for baselines. Generally, using the strong strategy has
some advantages over the balance strategy. Such an observation is most prominent in the CIFAR-10
dataset. For the cases where the balance strategy is better, e.g., SNGAN on the STL-10 dataset, our
explanation is that the size difference between generators and discriminators is more significant.
Hence, the degree of unbalance is more severe and leads to more detrimental effects.

Comparison of RigL and SET for SDST. We found that RigL has an advantage over SET
when dealing with more sparse generators. Our hypothesis is that gradient information can effectively
guide the generator to identify the most crucial connections in such cases. However, this advantage is
not as apparent for more dense generators.

ADAPTrelax achieves a good trade-off between performance and computational cost. Experiments
show that ADAPTrelax shows promising performance by being best for 13 out of 16 cases. The
advantage of ADAPTrelax is most prominent for the most difficult case, i.e., dG = 10%. Specifically, it
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shows 2.3 and 7.1 FID improvements over the second-best methods for the SNGAN on the CIFAR-10
and the STL-10, respectively. Moreover, compared to the competitive baseline methods that use the
strong strategy, i.e., SDST-Strong-RigL and SDST-Strong-SET, ADAPTrelax shows great
computational cost reduction. For example, it outperforms SDST-Strong-RigL on BigGAN
(CIFAR-10) with much-reduced training FLOPs (10.39% v.s. 83.97%).

ADAPTstrict shows stable and superior performance. Similar to ADAPTrelax, we notice that
ADAPTstrict also delivers promising results compared to baselines, even with a further constraint
on the discriminator. More precisely, among all the cases, ADAPTstrict ranks top 2 for all cases,
with 13 cases being the best. Moreover, ADAPTstrict again shows comparable or better performance
compared to SDST-Strong-RigL with reduced computational cost.

A more interesting observation is that ADAPTstrict sometimes outperforms ADAPTrelax. We speculate
that this phenomenon occurs because changes in density may result in a larger influence on the GAN
balance during training compared to DST. Hence, the strict version, whose discriminator density
range is smaller, may offer a more consistent performance.

7 Conclusion

In this paper, we investigate the use of DST for GANs and find that solely applying DST to the
generator does not necessarily enhance the performance of sparse GANs. To address this, we introduce
BR to examine the degree of unbalance between the sparse generators and discriminators. We find
that applying DST to the generator only benefits the training when the discriminator is comparatively
stronger. Additionally, we propose ADAPT, which can dynamically adjust the discriminator at both
the parameter and density levels. Our approach shows promising results, and we hope it can aid
researchers in better comprehending the interplay between the two components of GAN training and
motivate further exploration of sparse training for GANs. However, we must note that we have not
yet evaluated our methods on the latest GAN architectures due to computational constraints.
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Overview of the Appendix

The Appendix is organized as follows:

• Appendix A introduces the general experimental setup.
• Appendix B introduces the details of dynamic sparse training.
• Appendix C shows detailed algorithms, i.e., DDA, ADAPTrelax, and ADAPTstrict.
• Appendix D shows the BR evolution during training for ADAPT.
• Appendix E shows additional results, including IS and FID of test sets of the main paper.
• Appendix F shows detailed FLOPs comparisons of sparse training methods.

A Experimental setup

In this section, we explain the training details used in our experiments. Our code is mainly based on
the original code of ITOP [54] and GAN ticket [9].

A.1 Architecture details

We use ResNet-32 [27] for the CIFAR-10 dataset and ResNet-48 for the STL-10 dataset. See Table 4
and Table 5 for detailed architectures. We apply spectral normalization for all fully-connected layers
and convolutional layers of the discriminators.

For BigGAN architecture, we use the implementation used in DiffAugment [93].3

A.2 Datasets

We use the training set of CIFAR-10, the unlabeled partition of STL-10, and the training set of
TinyImageNet for GAN training. Training images are resized to 32 × 32, 48 × 48, 64 × 64 for
CIFAR-10, STL-10, and TinyImageNet datasets, respectively. Augmentation methods for both
datasets are random horizontal flip and per-channel normalization.

A.3 Training hyperparameters

SNGAN on the CIFAR-10 and STL-10 datasets. We use a learning rate of 2 × 10−4 for both
generators and discriminators. The discriminator is updated five times for every generator update.
We adopt Adam optimizer with β1 = 0 and β2 = 0.9. The batch size of the discriminator and the
generator is set to 64 and 128, respectively. Hinge loss is used following [7, 9]. We use exponential
moving average (EMA) [89] with β = 0.999. The generator is trained for a total of 100k iterations.

BigGAN on the CIFAR-10 dataset. We use a learning rate of 2 × 10−4 for both generators and
discriminators. The discriminator is updated four times for every generator update. We adopt Adam
optimizer with β1 = 0 and β2 = 0.999. The batch size of both the discriminator and the generator
is set to 50. Hinge loss is used following [7, 87]. We use EMA with β = 0.9999. The generator is
trained for a total of 200k iterations.

BigGAN on the TinyImageNet dataset. We use DiffAug [93] to augment the input. The learning
rate of the discriminator and the generator are set to 4 × 10−4 and 1 × 10−4, respectively. The
discriminator is updated one time for every generator update. We adopt Adam optimizer with β1 = 0
and β2 = 0.999. The batch size of both the discriminator and the generator is set to 256. Hinge loss
is used following [7, 87]. We use EMA with β = 0.9999. The generator is trained for a total of 200k
iterations.

A.4 Evaluation metric

SNGAN on the CIFAR-10 and the STL-10 datasets. We compute Fréchet inception distance
(FID) and Inception score (IS) for 50k generated images every 5000 iterations. Best FID and IS are

3https://github.com/mit-han-lab/data-efficient-gans/tree/master/
DiffAugment-biggan-cifar.
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reported. For the CIFAR-10 dataset, we report both FID for the training set and test set, whereas, for
the STL-10 dataset, we report the FID of the unlabeled partition.

BigGAN on the CIFAR-10 and the TinyImageNet dataset. We compute Fréchet inception distance
(FID) and Inception score (IS) for 10k generated images every 5000 iterations. Best FID and IS are
reported.

B Dynamic sparse training details

B.1 How the generator performs DST

In this section, we explain how the generator performs DST below. Note that the generator performs
the same for SDST and ADAPT.

Sparsity distribution at initialization. Following RigL and ITOP [16, 54], only parameters of
fully connected and convolutional layers will be pruned. At initialization, we use the commonly
adopted Erdős-Rényi-Kernel (ERK) strategy [16, 14, 54] to allocate higher sparsity to larger layers.
Specifically, the sparsity of convolutional layers l is scaled with 1− nl−1+nl+wl+hl

nl−1nlwlhl , where nl denotes
the number of channels of layer l while wl and hl are the widths and the height of the corresponding
kernel in that layer. For fully connected layers, Erdős-Rényi (ER) strategy is used, where the sparsity
is scaled with 1− nl−1+nl

nl−1nl .

Update schedule. The update schedule controls how many connections are adjusted per DST
operation. It can be specified by the number of training iterations between sparse connectivity updates
∆TG, the initial fraction of connections adjusted γ, and decaying schedule fdecay(γ, T ) for γ.

Drop and grow. After ∆TG training iterations, we update the mask mG by dropping/pruning
fdecay(γ, T ) |θG| dG number of connections with the lowest magnitude, where |θG|, dG are the
number of parameters and target density for the generator, fdecay(γ, T ) is the update schedule. Right
after the connection drop, we regrow the same amount of connections.

For the growing criterion, we test both random growth SET [62, 54] and gradient-based growth
RigL [16]. Concretely, gradient-based methods find newly-activated connections θ with the highest
gradient magnitude

∣∣∂L
∂θ

∣∣, while random-based methods explore connections in a random fashion. All
the newly-activated connections are set to 0. One thing that should be noticed is that while previous
works consider layer-wise connections drop and growth, we grow and drop connections globally as it
grants more flexibility to the DST method.

EMA for sparse GAN. EMA [89] is well-known for its ability to alleviate the non-convergence
of GAN. We also implement EMA for sparse GAN training. Specifically, we zero out the moving
average of dropped weights whenever there is a mask change.

B.2 DST hyperparameters for the generator

We use the same hyper-parameters for SDST and ADAPT. The initial γ is set to 0.5, and we use a
cosine annealing function fdecay following RigL and ITOP.

SNGAN on the CIFAR-10 and the STL-10 datasets. The connection update frequency of the
generator ∆TG is set to 500 and 1000 for the CIFAR-10 dataset and STL-10 dataset, respectively.

BigGAN on the CIFAR-10 and the TinyImageNet dataset. The connection update frequency of
the generator ∆TG is set to be 1000.

B.3 Density dynamic adjust (DDA) hyper-parameters

In this section, we provide hyper-parameters used in subsection 5.3. We set dD = 2000 , ∆TD = 0.05,
[B−, B+] = [0.5, 0.65]. Time-averaged BR over 1000 iterations is used as the indicator.

B.4 DST hyperparameters for the discriminator in ADAPT

We use a constant BR interval [B−, B+] = [0.45, 0.55] for SNGAN experiments and BigGAN on the
CIFAR-10 dataset. We set the BR interval [B−, B+] = [0.3, 0.4] for BigGAN on the TinyImageNet
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Table 4: ResNet architecture for CIFAR-10.

(a) Generator (b) Discriminator

z ∈ R128 ∼ N (0, I) image x ∈ [−1, 1]32×32×3

dense, 4× 4× 256 ResBlock down 128

ResBlock up 256 ResBlock down 128

ResBlock up 256 ResBlock down 128

ResBlock up 256 ResBlock down 128

BN, ReLU, 3× 3 conv, Tanh ReLU 0.1

Global sum pooling

dense → 1

Table 5: ResNet architecture for STL-10.

(a) Generator (b) Discriminator

z ∈ R128 ∼ N (0, I) image x ∈ [−1, 1]48×48×3

dense, 6× 6× 512 ResBlock down 64

ResBlock up 256 ResBlock down 128

ResBlock up 128 ResBlock down 256

ResBlock up 64 ResBlock down 512

BN, ReLU, 3× 3 conv, Tanh ResBlock down 1024

ReLU 0.1

Global avg pooling

dense → 1

since it uses DiffAug. Time-averaged BR over 1000 iterations is used as the indicator. Density
increment ∆d is set to be 0.05, 0.025, and 0.05 for SNGAN (CIFAR-10), SNGAN (STL-10), and
BigGAN (CIFAR-10), respectively. We use the same setting used in subsection B.2 for the generator.

Hyper-parameters for ADAPTrelax. The density update frequency of the discriminator ∆TD is 1000,
2000, 5000, and 10000 iterations for SNGAN (CIFAR-10), SNGAN (STL-10), BigGAN (CIFAR-10),
and BigGAN (TinyImageNet), respectively.

Hyper-parameters for ADAPTstrict. The density/connections update frequency of the discriminator
∆TD is 2000, 2000, 5000, and 10000 iterations for SNGAN (CIFAR-10), SNGAN (STL-10),
BigGAN (CIFAR-10), and BigGAN (TinyImageNet), respectively.

Note that we compute BR for every iteration to visualize the BR evolution, whereas one should note
that such computational cost can be greatly decreased if BR is computed every few iterations.

C Algorithms

In this section, we present the detailed algorithms for DDA, ADAPTrelax, and ADAPTstrict.

C.1 Dynamic adjust algorithm

We first present DDA in Algorithm 1.

Algorithm 1 Dynamic density adjust (DDA) for the discriminator.
Require: Generator G, discriminator D, BR upper bound B+ and lower bound B−, DA interval ∆TD , density

increment ∆d, current training iteration t.
1: if t mod ∆TD == 0 then
2: Compute time-averaged BR with Equation 3
3: if BR > B+ then
4: Increase the density of discriminator from dD to dD +∆d.
5: else if BR < B− then
6: Decrease the density of discriminator from dD to dD −∆d.
7: end if
8: end if

C.2 Relaxed balanced dynamic sparse training algorithm

Details of ADAPTrelax algorithm is presented in Algorithm 2.

C.3 Strict balanced dynamic sparse training algorithm

Details of ADAPTstrict algorithm is presented in Algorithm 3.
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Algorithm 2 Relaxed balanced dynamic sparse training (ADAPTrelax) for GANs.
Require: Generator G, discriminator D, total number of training iterations T , number of training steps for

discriminator in each iteration N , discriminator adjustment interval ∆TD , DST interval for the generator
∆TG, density increment ∆d, target generator density dG, BR upper bound B+ and lower bound B−.

1: Set initial discriminator density dD = dG
2: for t in [1, · · · , T ] do
3: for n in [1, · · · , N ] do
4: Compute the loss of discriminator LD(θD)
5: LD(θD).backward()
6: end for
7: if t mod ∆TD == 0 then
8: Compute the loss of generator LG(θG)
9: LG(θG).backward()

10: Compute time-averaged BR with Equation 3
11: if BR > B+ then
12: Increase the density of discriminator from dD to min(100%, dD +∆d).
13: else if BR < B− then
14: Decrease the density of discriminator from dD to max(0%, dD −∆d).
15: end if
16: end if
17: if t mod ∆TG == 0 then
18: Apply DST to G
19: end if
20: end for

Algorithm 3 Strict balanced dynamic sparse training (ADAPTstrict) for GANs.
Require: Generator G, discriminator D, total number of training iterations T , number of training steps for

discriminator in each iteration N , given maximal density of discriminator dmax, discriminator adjustment
interval ∆TD , DST interval for the generator ∆TG, density increment ∆d, target generator density dG, BR
upper bound B+ and lower bound B−.

1: Set initial discriminator density dD = dG
2: for t in [1, · · · , T ] do
3: for n in [1, · · · , N ] do
4: Compute the loss of discriminator LD(θD)
5: LD(θD).backward()
6: end for
7: if t mod ∆TD == 0 then
8: Compute the loss of generator LG(θG)
9: LG(θG).backward()

10: Compute time-averaged BR with Equation 3
11: if BR > B+ and dD < dmax then
12: Increase the density of discriminator from dD to min(dmax, dD +∆d).
13: else if BR > B+ and dD == dmax then
14: Apply DST to D
15: else if BR < B− then
16: Decrease the density of discriminator from dD to max(0%, dD −∆d).
17: end if
18: end if
19: if t mod ∆TG == 0 then
20: Apply DST to G
21: end if
22: end for
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Figure 5: Balance ratio and discriminator density evolution during training for ADAPTrelax on BigGAN
(CIFAR-10). Dashed lines represent BR values of 0.45 and 0.55.
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Figure 6: Balance ratio and discriminator density evolution during training for ADAPTstrict on BigGAN
(CIFAR-10). Dashed lines represent BR values of 0.45 and 0.55.

D ADAPT balance ratio evolution

In this section, we show that ADAPT methods are able to maintain a BR throughout training. We
show the time evolution of BR and discriminator density for BigGAN on the CIFAR-10 dataset.

Results of ADAPTrelax and ADAPTstrict are shown in Figure 5 and Figure 6. It clearly illustrates the
ability of ADAPT to keep the BR controlled during GAN training.
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Table 6: FID (↓) of different sparse training methods along with post-hoc pruning baseline with no
constraint on the density of the discriminator. Best results are in bold; second-best results are
underlined.

Dataset CIFAR-10 (SNGAN) STL-10 (SNGAN) CIFAR-10 (BigGAN)
Generator density 10% 20% 30% 50% 10% 20% 30% 50% 10% 20% 30% 50%

(Dense Baseline) 10.74 29.71 8.11

Post-hoc pruning 20.89 14.07 12.99 11.90 57.28 37.12 31.98 29.70 15.44 10.84 9.65 8.77

STATIC-Balance 26.75 19.04 15.05 12.24 48.18 44.67 41.73 37.68 16.98 12.81 10.33 8.47
STATIC-Strong 26.79 19.65 14.38 11.91 52.48 43.85 42.06 37.47 23.48 14.26 11.19 8.64

SDST-Balance-SET 26.23 17.79 13.21 11.79 56.41 46.58 39.93 30.37 12.41 9.87 9.13 8.01
SDST-Strong-SET 16.49 13.36 11.68 10.68 67.37 49.96 37.99 31.08 18.94 9.64 8.75 8.36
SDST-Balance-RigL 27.06 16.36 14.00 12.28 43.08 33.90 31.83 30.30 12.45 9.42 8.86 8.03
SDST-Strong-RigL 17.02 13.86 12.51 11.35 53.65 33.25 31.41 30.18 10.58 9.11 8.69 8.33

ADAPTrelax (Ours) 14.19 13.19 12.38 10.60 35.98 33.06 31.71 29.96 10.19 8.56 8.36 8.22

E More experiment results

E.1 IS and FID for the CIFAR-10 dataset

In this section, we present corresponding IS scores results for Table 1 and Table 2. The results are
shown in Table 8 and Table 9, respectively. We also include FID results of CIFAR-10 test set in
Table 10.

E.2 Naively applying DST to both the generator and the discriminator

In this section, we follow STU-GAN to compare the baseline where applying DST on both generators
and discriminators. We name it DST-bothGD.

We test on SNGAN (CIFAR-10) with ∆TD = 1000, ∆TG = 500, and γ = 0.5. Note that we use the
balance strategy where dG = dD. The reason is that the strong strategy uses a dense discriminator,
and it does not make sense to apply DST to a dense network.

We show the results in Table 7. It shows that it generates unstable results and consistenly performs
worse than SDST-Strong. So we do not compare such baseline in the main body of the paper.

E.3 Post-hoc pruning baseline

In this section, we compare different sparse training methods with post-hoc magnitude pruning [68]
baseline. Magnitude pruning involves first training a dense generator, then pruning its weights globally
based on their magnitudes. The pruned generator is then fine-tuned with the dense discriminator.
We perform additional fine-tuning for 50% of the original total iterations. Results are presented in
Table 6.

Our experimental results clearly demonstrate the advantages of dynamic sparse training over post-
hoc magnitude pruning. The latter typically requires around 150% normalized training FLOPs,
while DST methods constantly achieve comparable or better performance with significantly reduced
computational cost.

F A detailed comparison of training costs

In this section, we include the detailed computational cost of all sparse training methods. More
specifically, we take into account the density redistribution over different layers in this section.
Also, we make an assumption that the computational overhead introduced by computing BR can be
neglected.4

Here we provide training costs for the strict setting in Table 12.

4This is true if we compute BR less frequently.
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Table 7: FID (↓) of different sparse training methods on CIFAR-10 datasets with no constraint on the
density of the discriminator. Best results are in bold; second-best results are underlined.

Dataset CIFAR-10
Generator density 10% 20 % 30 % 50 %

(Dense Baseline) 10.74

Static-Balance 26.75 19.04 15.05 12.24
Static-Strong 26.79 19.65 14.38 11.91

DST-bothGD-SET 20.57 14.90 12.58 11.86
DST-bothGD-RigL 31.95 17.99 13.24 12.47

SDST-Balance-SET 26.23 17.79 13.21 11.79
SDST-Strong-SET 16.49 13.36 11.68 10.68
SDST-Balance-RigL 27.06 16.36 14.00 12.28
SDST-Strong-RigL 17.02 13.86 12.51 11.35

ADAPTrelax (Ours) 14.19 13.19 12.38 10.60

Table 8: IS (higher is better) of different sparse training methods. There is no constraint on the density
of the discriminator, i.e., dmax = 100%.

Dataset SNGAN(CIFAR-10) SNGAN(STL-10) BigGAN(CIFAR-10) BigGAN(TinyImageNet)
Generator density 10% 20 % 30 % 50 % 10% 20 % 30 % 50 % 10% 20 % 30 % 50 % 10% 20 % 30 % 50 %

(Dense Baseline) 8.48 9.16 8.99 14.65

Static-Balance 7.24 7.83 8.06 8.38 7.94 8.19 8.44 8.69 7.99 8.24 8.68 8.90 10.65 12.28 13.41 13.57
Static-Strong 7.52 8.03 8.32 8.45 7.70 8.22 8.35 8.70 7.75 8.13 8.52 8.99 10.45 12.56 13.61 13.73

SDST-Balance-SET 7.28 7.89 8.22 8.38 8.43 8.92 9.26 9.31 8.62 8.67 8.82 8.98 11.75 12.60 12.30 12.21
SDST-Strong-SET 8.37 8.54 8.57 8.60 7.65 8.53 9.39 9.21 8.16 8.78 8.85 9.06 12.75 12.84 12.46 13.73
SDST-Balance-RigL 7.19 7.94 8.18 8.34 8.98 9.07 9.12 9.28 8.64 8.71 8.91 8.93 12.67 13.32 13.18 13.61
SDST-Strong-RigL 8.32 8.52 8.59 8.57 8.15 9.10 9.16 9.17 8.65 8.72 8.97 9.00 13.32 13.35 13.60 14.47

ADAPTrelax (Ours) 8.42 8.44 8.54 8.60 9.08 9.29 9.06 9.26 8.74 9.07 8.98 9.00 13.09 13.57 13.68 15.77

Table 9: IS (higher is better) of different sparse training methods. The density of the discriminator is
constrained to be lower than dmax = 50%.

Dataset SNGAN(CIFAR-10) SNGAN(STL-10) BigGAN(CIFAR-10) BigGAN(TinyImageNet)
Generator density 10% 20 % 30 % 50 % 10% 20 % 30 % 50 % 10% 20 % 30 % 50 % 10% 20 % 30 % 50 %

(Dense Baseline) 8.48 9.16 8.99 14.65

Static-Balance 7.24 7.83 8.06 8.38 7.94 8.19 8.44 8.69 7.99 8.24 8.68 8.90 10.65 12.28 13.41 13.57
Static-Strong 7.85 8.14 8.31 8.38 7.89 8.22 8.38 8.69 7.75 8.03 8.52 8.90 9.99 11.61 13.77 13.57

SDST-Balance-SET 7.28 7.89 8.22 8.38 8.43 8.92 9.26 9.31 8.62 8.67 8.82 8.98 11.75 12.60 12.30 12.21
SDST-Strong-SET 8.33 8.53 8.40 8.38 8.50 8.77 9.46 9.26 8.55 8.77 8.84 8.98 12.00 12.87 12.16 12.21
SDST-Balance-RigL 7.19 7.94 8.18 8.34 8.98 9.07 9.12 9.28 8.64 8.71 8.91 8.93 12.67 13.32 13.18 13.61
SDST-Strong-RigL 8.24 8.48 8.37 8.34 8.28 9.05 9.11 9.28 8.61 8.83 8.84 8.93 12.04 12.66 13.57 13.61

ADAPTstrict (Ours) 8.27 8.36 8.48 8.47 8.98 9.17 9.20 9.19 8.90 8.89 8.92 9.10 13.85 13.61 14.05 14.40

Table 10: FID of test set (↓) of different sparse training methods on SNGAN (CIFAR-10) dataset.
Best results are in bold; second-best results are underlined.

Maximal discriminator density dmax 100 % 50 %
Generator density 10% 20 % 30 % 50 % 10% 20 % 30 % 50 %

(Dense Baseline) 13.32

Static-Balance 29.56 21.79 17.80 14.94 29.56 21.79 17.80 14.94
Static-Strong 29.50 22.45 17.12 14.58 24.62 19.43 16.32 14.94

SDST-Balance-SET 28.84 20.31 15.95 14.35 28.84 20.31 15.95 14.35
SDST-Strong-SET 19.16 16.12 14.45 13.50 18.38 15.33 14.78 14.35
SDST-Balance-RigL 29.77 19.02 16.68 15.05 29.77 19.02 16.68 15.05
SDST-Strong-RigL 19.72 16.50 15.20 14.09 17.92 15.51 15.52 15.05

ADAPTrelax (Ours) 16.82 15.85 15.14 13.37 - - - -
ADAPTstrict (Ours) - - - - 17.19 15.57 14.92 14.80
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Table 11: FID of test set (↓) of different sparse training methods on BigGAN (CIFAR-10) dataset.
Best results are in bold; second-best results are underlined.

Maximal discriminator density dmax 100 % 50 %
Generator density 10% 20 % 30 % 50 % 10% 20 % 30 % 50 %

(Dense Baseline) 10.36

Static-Balance 19.58 15.63 13.21 10.92 19.58 15.63 13.21 10.92
Static-Strong 26.08 15.82 13.47 10.95 22.04 16.39 13.73 10.92

SDST-Balance-SET 14.90 12.77 11.82 10.68 14.90 12.77 11.82 10.68
SDST-Strong-SET 21.63 11.92 11.27 10.75 14.53 11.83 10.96 10.68
SDST-Balance-RigL 14.86 12.03 11.30 10.68 14.86 12.03 11.30 10.68
SDST-Strong-RigL 13.35 11.58 11.00 10.88 12.59 12.03 10.89 10.68

ADAPTrelax (Ours) 12.71 11.02 10.62 10.80 - - - -
ADAPTstrict (Ours) - - - - 11.83 11.22 10.92 10.33

Table 12: Normalized training FLOPs (↓) of different sparse training methods. The density of the
discriminator is constrained to be lower than 50%.

Dataset CIFAR-10 (SNGAN) STL-10 (SNGAN) CIFAR-10 (BigGAN) TinyImageNet (BigGAN)
Generator density 10% 20% 30% 50% 10% 20% 30% 50% 10% 20% 30% 50% 10% 20% 30% 50%

(Dense Baseline) 100% (2.67× 1017) 100% (3.94× 1017) 100% (6.81× 1017) 100% (9.85× 1017)

Static-Balance 8.97% 17.08% 26.25% 47.25% 27.30% 47.14% 59.22% 73.35% 9.79% 19.02% 28.66% 49.03% 23.25% 44.87% 60.91% 79.29%
Static-Strong 30.89% 33.58% 37.17% 47.25% 70.65% 71.48% 72.14% 73.35% 42.66% 43.69% 45.10% 49.03% 41.52% 55.03% 66.29% 79.29%

SDST-Balance-SET 9.78% 18.91% 28.35% 48.44% 27.55% 47.60% 60.17% 75.38% 10.35% 20.12% 29.96% 49.82% 21.13% 37.06% 48.83% 65.58%
SDST-Strong-SET 31.87% 35.51% 39.53% 48.44% 70.95% 71.97% 73.07% 75.38% 43.25% 44.80% 46.42% 49.82% 39.28% 47.31% 54.11% 65.58%
SDST-Balance-RigL 10.71% 17.43% 25.66% 43.56% 29.51% 50.41% 63.34% 79.03% 9.92% 19.30% 28.90% 48.31% 24.97% 43.86% 57.26% 76.75%
SDST-Strong-RigL 31.22% 33.93% 36.63% 43.56% 72.95% 75.05% 76.42% 79.03% 42.80% 44.08% 45.37% 48.31% 43.76% 53.71% 63.05% 76.75%

ADAPTstrict (Ours) 24.23% 27.55% 31.70% 37.83% 50.91% 70.18% 75.99% 80.68% 10.32% 23.69% 31.54% 33.83% 34.42% 51.68% 62.34% 77.46%
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