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Abstract

As Large Language Models (LLMs) become increasingly integrated into our
everyday lives, understanding their ability to comprehend human mental states
becomes critical for ensuring effective interactions. However, despite the recent
attempts to assess the Theory-of-Mind (ToM) reasoning capabilities of LLMs, the
degree to which these models can align with human ToM remains a nuanced topic
of exploration. This is primarily due to two distinct challenges: (1) the presence
of inconsistent results from previous evaluations, and (2) concerns surrounding
the validity of existing evaluation methodologies. To address these challenges,
we present a novel framework for procedurally generating evaluations with LLMs
by populating causal templates. Using our framework, we create a new social
reasoning benchmark (BigToM) for LLMs which consists of 25 controls and 5,000
model-written evaluations. We find that human participants rate the quality of
our benchmark higher than previous crowd-sourced evaluations and comparable
to expert-written evaluations. Using BigToM, we evaluate the social reasoning
capabilities of a variety of LLMs and compare model performances with human
performance. Our results suggest that GPT4 has ToM capabilities that mirror
human inference patterns, though less reliable, while other LLMs struggle.2

1 Introduction
Humans continually try to understand what others think, want, and feel.

We try to understand what people have done and predict what they might do next by inferring their
mental states. This capability, often referred to as “Theory of Mind” (ToM), is the foundation of
social interaction [45, 22, 25, 10, 38]. With Large Language Models (LLMs) playing a growing role
in our lives, assessing their ability to model human mental states is key for guaranteeing effective
interactions. This involves evaluating the current abilities of LLMs, understanding their failure
modes, and discovering ways to improve them. LLMs with ToM-like abilities could be better at
teaching us, learning from us, communicating with us, collaborating with us, and understanding us
[15, 20, 30, 11, 36].

Recent attempts at understanding social reasoning in LLMs have used crowd-sourced data, SocialIQA
[32], data from synthetic templates, ToMi [21], or (modified) tests from psychology designed to
evaluate human capabilities [e.g. 24, 42, 18, 5, 23, 41]. Sap et al. [33] used SocialIQA and ToMi to
show that GPT-3 had limitied social reasoning capabilities. However, their findings are challenging
to interpret due to limitations in their methodology. SocialIQA has several ambiguous examples
and stories that do not effectively test the desired social reasoning behaviors. In comparison, ToMi
suffers from ambiguous narratives with unclear perceptual descriptions and additional confounding
factors in reasoning like memory loads or tracking requirements. Moreover, both of these datasets
lack control conditions making it difficult to identify precisely where models make mistakes. The
results of studies with tests developed by psychologists show some signs of ToM capabilites in LLMs

∗Equal Contribution.
2https://sites.google.com/view/social-reasoning-lms
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Causal Template

Noor is working as a barista at
a busy coffee shop. Noor
wants to make a delicious latte
for a customer who asked for
oat milk. Noor grabs a milk
pitcher and fills it with oat
milk. Noor believes that the
milk pitcher contains oat milk.

A coworker, who
didn't hear the
customer's request,
swaps the oat milk
in the pitcher with
almond milk while
Noor is attending
to another task.

Example Scenario[a]

World Agent Variables Prior Causal Event

Forward Belief[b]

True Belief
Noor sees her coworker 

swapping the milk.

False Belief
Noor does not see her 
coworker swapping the 

milk.

What does 
Noor 

believe?

True Belief
Noor believes that the 
milk pitcher contains 

almond milk.

False Belief
Noor believes that the 
milk pitcher contains 

oat milk.

🤔👀

👀Observed 🤔 Inferred

Percepts Question Answer Options Human PerformanceCausal Inference

Forward Action[c]

Percepts

True Belief
Noor sees her coworker 

swapping the milk.

False Belief
Noor does not see her 
coworker swapping the 

milk.

Question

What will 
Noor do?

Answer Options

True Belief
Noor opens the fridge 
again and reaches for 

oat milk.

False Belief
Noor makes the latte 
using the milk in the 

pitcher.

Human PerformanceCausal Inference

👀

🤔

🤔

👀Observed 🤔 Inferred

Backward Belief[d]

Percepts

True Belief
Noor opens the fridge 
again and reaches for 

oat milk.

False Belief
Noor makes the latte 
using the milk in the 

pitcher.

Question

What does 
Noor 

believe?

Answer Options

True Belief
Noor believes that the 
milk pitcher contains 

almond milk.

False Belief
Noor believes that the 
milk pitcher contains 

oat milk.

Human PerformanceCausal Inference

👀

🤔

👀Observed 🤔 Inferred

🤔

TB

TB ∧ FB

Figure 1: Illustration of our template-based Theory-of-Mind (ToM) scenarios. [a] The causal template
and an example scenario including prior desires, actions, and beliefs, and a causal event that changes
the state of the environment. [b] Testing Forward Belief inference by manipulating an agent’s
percepts. TB = True Belief. FB = False Belief. [c] Forward Action inference from an agent’s percepts
which requires additional inferences over unknown beliefs. [d] Backward Belief inference requires
joint inferences over unknown percepts and beliefs from an agent’s observed actions. Error bars for
human performance represent 95% bootstrapped confidence intervals of the mean.

[18, 5]. However, when LLMs such as GPT-3 [4] succeed in scenarios, they often fail dramatically
on trivial alterations [42, 24, 35]. Despite their careful design, concerns about the limited test set
[24, 18] and potential dataset leakage from modifications to the Sally-Anne task [3] in [5, 18, 24],
suggest caution in the interpretation of these results (see App. D for a detailed discussion).

To address these shortcomings, we present a novel framework for procedurally designing synthetic
ToM evaluations from causal templates (Fig. 1). By representing ToM scenarios as causal graphs, we
can systematically intervene on variables, generate control conditions, and probe different aspects
of an LLM’s ToM capabilities. More concretely, consider the scenario in Fig. 1a: Here, “Noor” is
an agent with a desire, “to make a latte with oat milk”, who performed an action, “fills it with oat
milk”, resulting in a belief, “she believes that the pitcher has oat milk”. Next, a “Causal Event”
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changes the state of the environment (“oat milk” → “almond milk”). Given this setup, we can now
manipulate the agent’s percept to create True Belief and False Belief conditions. In the True Belief
condition, the perception of the causal event is presented, “Noor sees her coworker swapping the
milk”, and then we test a model’s forward belief inference abilities; “What does Noor believe is in
the pitcher?” (Fig. 1b). Moreover, we can probe more difficult inferences, such as forward action
inferences from an agent’s percepts via inferred beliefs (Fig. 1c). In addition to manipulating percepts,
we can intervene on an agent’s actions to examine a model’s backward belief inferences, which is
even more difficult as it requires a joint inference over unknown percepts and beliefs (Fig. 1d; §3).

We design a framework for systematic and diverse evaluations of LLMs in three steps. First, we
build a causal template (an abstracted causal model) for the domain of interest, which in our case
is ToM. Second, we prompt a language model to populate the variables in the template (yielding a
concrete causal model). Third, we construct different evaluation conditions by combining variables
from the populated causal template (Fig. 2 and §3). Our approach is a general method for generating
evaluations, applicable in any domain where reasoning traces can be represented as causal graphs.

Overall, our contributions are as follows: (1) We present a framework for generating systematic
evaluations from causal templates that help us understand a model’s behavior, its failures and
successes, through automated, controlled tests. (2) We show the effectiveness of our scalable,
cost-efficient method for writing evaluations with language models by comparing its quality to
crowd-sourced and expert written tests. (3) Finally, we test ToM reasoning in a variety of LLMs3

using different prompting techniques, and compare model performances with human performance.
We find that gpt-4 shows human-like ToM inference patterns, although less reliable, while other
LLMs struggle.

2 Related Work
Theory-of-Mind in Humans. Infants, arguably from 12 months of age, can attribute mental states
to agents, exhibiting theory of mind reasoning [25]. A classic test to probe this reasoning is the
false-belief task [3]: Sally has a doll and puts it in a basket, then leaves the room. While Sally is away,
Anne takes the ball out of the basket and puts it into a box. Participants are then asked to predict what
happens next: “When Sally comes back, where will she look for her ball?”. To answer this question,
participants need to infer Sally’s beliefs, and realize that her beliefs aren’t the same as theirs. Through
well-planned experiments, cognitive scientists probe reasoning aspects relating to agents’ desires
and beliefs [22, 13, 45, 38]. These studies employ control conditions to rule out simple heuristics
people might use, while searching for the cognitive mechanisms that underlie human reasoning and
behavior [1, 2, 14, 47, 37, 9]. Such experiments have inspired AI researchers to design “behavioral”
experiments for probing ToM in AI models [11, 36, 39, 19].

Theory-of-Mind in Machines. Initial attempts at building ToM representations in neural network
based models [31, 30] used ToM specific tasks to train and test the models. As LLMs scaled and
became better at reasoning, researchers used a small set of tests from cognitive science to claim that
ToM reasoning had emerged in LLMs (GPT-3, GPT-4) [18, 5]. But, further probing using alterations
and diverse scenarios showed that this reasoning was quite brittle [42, 24]. Other tests for social
reasoning used crowd-sourced and synthetic evaluations to find mixed results [35, 32, 32, 21, 41].
Despite the abundance of research in this domain, we still don’t understand the strengths and
weaknesses of LLMs in ToM reasoning. Previous evaluations suffer from one or more of the
following issues: reliance on limited evaluations designed for humans [e.g. 18, 24], insufficient
control conditions [e.g. 33, 42], limited test cases [e.g. 41, 5], noisy/ambiguous crowd-sourced
evaluations [e.g. 33], the risk of dataset leakage [e.g. 18, 41], confounding factors in reasoning [e.g.
21, 42] and possible overfitting of the prompting method [24] (see App. D for a detailed discussion).
The goal of our work is to come up with a scalable, replicable framework to understand the reasoning
behind predictions made by language models while avoiding the pitfalls that other methods fall into.

Model-Written Evaluations.

Advancements in aligning LLMs with instruction-tuning and RL from human feedback (RLHF) have
recently shown promising results, such as the generation of a high-quality hate-speech detection
dataset with GPT-3 [16, 8], red-teaming [27], and training data generation [34]. The latest work
has extended this to the generation of evaluations directly [28]. Perez et al. [28] examined whether

3LLaMa-65B, text-davinci-003, gpt-3.5-turbo, Claude-v1.3, Claude-2, gpt-4-0314
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Causal Template[a]

Forward Belief[b] Human RatingsQuestions

Understandability: 
The story is easy to understand. 

(1 strongly disagree–5 strongly agree)

Unambiguous:
The correct answer to the question is clear and unambiguous.

(1 strongly disagree–5 strongly agree)

Coherent question and answer:
The question and answers are relevant and clear in relation to 

the story.
(1 strongly disagree–5 strongly agree)

Prompt Template

# Generate new scenarios.
1. prior: {context} {desire} {action} {percept} {belief} 

2. causal event: {causal event}

3. percepts: {percept true belief} {percept false belief}

4. actions: {action true belief} {action false belief} 

5. questions: {belief question} {action question}

6. belief answers: {belief true belief} {belief false belief}

7. action answers: {action true belief} {action false belief}

Causal Template Conditions

# 1 forward belief true
prior: {context} {desire} {action} {percept} {belief} 
causal event: {causal event}
percept: {percept true belief}
question: {belief question}

# 6 backward belief false
prior: {context} {desire} {action} {percept} {belief}
causal event: {causal event}
percept: {action false belief}
question: {belief question}

🤔👀

👀

🤔 🤔

👀Observed 🤔 Inferred

t1

t2

Percepts Beliefs

Desires Actions

Figure 2: [a] Three-stage method for generating evaluations: Building a causal template for the
domain (left). Creating a prompt template (simplified here; see Fig. 4 for the prompt) from the
causal graph and populating template variables using a language model (middle). Composing test
items by combining template variables (right). [b] Crowdworker ratings of our model-generated
Theory-of-Mind (ToM) evaluations compared to crowd-sourced ToM evaluations and expert-written
ToM evaluations. Error bars represent 95% bootstrapped confidence intervals of the mean.

generated data can serve as high-quality evaluation data with minimal errors for a variety of novel
language model behaviors. These tests, while being scalable, cost-effective and easy to replicate, are
still challenging to interpret as they lack structure in the generation of tests. In contrast, Dasgupta et al.
[6] show how carefully designed automated tests can find specific failure modes in reasoning. Our
work aims to integrate the benefits of these methods, creating a more structured approach to generating
and interpreting tests, while preserving scalability, cost-effectiveness, and ease of replication.

3 Model-Written Evaluations with Causal Templates

Preliminaries. Theory of Mind is the ability to attribute mental states like beliefs, intents, desires,
emotions and knowledge to oneself and others. It involves understanding that other people’s mental
states (latent causes) guide their actions (see Fig. 1a). In this work, we focus on the causal graph
linking precepts, beliefs, desires, and actions. We want to test if models are able to perform forward
and backward inference over different variables in this graph.

Our goal is to generate ToM evaluations that meet the following criteria: (1) they include control condi-
tions to systematically assess language models’ response tendencies and failure modes across different
aspects of ToM, (2) they don’t directly involve human-designed test items, and (3) they are diverse
and scalable. By generating a diverse set of tasks, we wish to specifically target the reasoning involved
in ToM inferences, while not focusing on other errors in common-sense reasoning4. To achieve this,
we follow [28] and propose using language models to generate their own evaluations, specifically
story(s)-question(q)-answer(a) test items of the format of (s1, q1, a1), (s2, q2, a2), ...(sN , qN , aN )
(examples are shown in Tab. 1). To generate these evaluations, we propose a novel three stage-method:
(1) Building a causal template of the domain, (2) populating causal templates using language models,
and (3) composing test items for a given condition by “stitching” together template variables into
fluent stories (Fig. 2a).

4For example, in Shapira et al. [35], errors in understanding ‘transparent access’ are not ToM inference
errors but errors in understanding perceptual access with transparent objects, i.e., not an error in computing what
someone knows from what they see. Adding the line: “<agent> can see through transparent <object>.“ mitigates
these errors with gpt-4.
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3.1 Stage 1: Building a Causal Template

To build a causal template, we start by defining the variables (see Fig. 1a and Fig. 2a). The world
is set up with a context and description of the agent (“Noor is a barista [...]”). Next, we add the
initial (prior) values of the variables in the template: desire (“Noor wants to make a latte“), percept
(“Noor fills a pitcher with oat milk“) and belief (“Noor believes that the pitcher has oat milk“). Next,
a Causal Event changes the state of the environment (“oat milk“ → “almond milk”). We can now
manipulate the agent’s percept of the causal event and the resulting action the agent will take. In this
paper, we focus on the following inferences:

Initial Percept to Initial Belief. This tests if models understand that percepts (and actions) give rise
to beliefs: “Noor grabs a pitcher and fills it with oat milk“ → “Noor believes that the milk pitcher
contains oat milk“. This is a preliminary inference that a model must perform before being able to
answer more complicated questions about beliefs or actions following the causal event.

With vs. Without Initial Belief. We consider two version of the background (prior) scenario. In
version one (“without initial belief”), we do not explicitly reveal the agent’s initial belief (i.e. we
exclude the sentence “Noor believes that the pitcher has oat milk“). In version two (“with initial
belief”), we include the agent’s initial belief in the scenario. Revealing the initial belief should make
the inference problem easier as we can skip the inference from percept to belief. Moreover, it allows
us to test whether explicitly stating the initial belief biases the answers of LLMs.

Forward Belief. In this condition, the model must infer the belief of the agent given the agent’s
percepts of the causal event (see Fig. 1b). This inference can be written as: P (Belief | Percept).

Forward Action. Here, the model must infer the agent’s action given percepts (see Fig. 1c). Implicitly,
this inference requires the model to first infer the agent’s belief before predicting the agent’s action
given percept and desire:

∑
Belief P (Action | Percept,Desire,Belief).

Backward Belief. In this condition (Fig. 1d), the goal is to infer the agent’s belief from observed
actions. This is the most difficult condition as it requires joint inference over unknown beliefs and
percepts from an observed action:

∑
Percept

∑
Belief P (Action | Desire,Percept,Belief).

Additional Controls. To control for context effects, we further include a control condition in
which the “Causal Event” is replaced with a “Random Event” that does not change the state of the
environment (e.g., “A musician starts playing music while Noor is making the latte.”).

3.2 Stage 2: Populating Causal Templates With Language Models

Unlike previous work [28, 43], we do not directly use language models to generate individual test
items. Instead, we create prompt templates (Fig. 2a, App. A) from the causal template developed in
the previous section and use a language model(gpt-4-0314 with a temperature of 0.5 and default
parameters) to fill template variables. For a given prompt, we generate 3 new completions using 3
few-shot examples. We constrain the model to generate exactly one sentence for a each variable in
our template. Here we make an assumption that the model is good at forward prediction, coming
up with plausible actions from the context, and the belief and desire of the agent (see App. C for a
discussion).

3.3 Stage 3: Composing Test Items from Template Variables

Having generated a sentence for each variable of the template, we choose the sentences to include
in the story; this varies by condition depending on the inferences we wish to test. For example,
we can create a story for the Forward Belief inference for the True Belief condition by combining
the sentences for variables context, desire, action, percept, belief with the sentences for
causal event and percept, followed by the belief question and the answer options for the
true belief and false belief versions (see Fig. 2a). In total, we generate 200 templates and
extract 25 conditions from each template (resulting in a new benchmark consisting of 5,000 test
items; see App. A for examples). For our main results with both humans and language models, we
will focus on the 6 most important conditions Forward Belief (True Belief, False Belief), Forward
Action (True Belief, False Belief), and Backward Belief (True Belief, False Belief). Results for the
remaining conditions are in App. E.
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Table 1: Test examples from human-written and model-written datasets.
Dataset Human-written or Model-written Test Example

Expert
Story: “Here is a bag filled with popcorn. There is no chocolate in the bag. Yet, the label on the bag
says ’chocolate’ and not ’popcorn.’ Sam finds the bag. She had never seen the bag before. She cannot
see what is inside the bag. She reads the label.” Question: “What does Sam believe the bag contains?”
Answers: Popcorn, Chocolate (correct answer). Written by: Human. Source: [42]

Expert
Story: “Inside the fridge of the Airbnb host’s kitchen is a can labeled as ’tuna’. However, the can
actually contains sardines and no tuna. Jill, a guest who just arrived at the house, opens the fridge and
sees the can. She cannot see what is inside the can, but she reads the label.” Question: “What does Jill
think is in the can?” Answers: Sardines, Tuna (correct answer).Written by: Human. Source: [18]

BigToM

Story: “Noor is working as a barista at a busy coffee shop. Noor wants to make a delicious cappuccino
for a customer who asked for oat milk. Noor grabs a milk pitcher and fills it with oat milk. Noor
believes that the milk pitcher contains oatmilk. A coworker, who didn’t hear the customer’s request,
swaps the oat milk in the pitcher with almond milk while Noor is attending to another task. Noor sees
her coworker swapping the milk.” Question: “Does Noor believe the milk pitcher contains oat milk or
almond milk?” Answers: Noor believes the milk pitcher contains almond milk (correct answer), Noor
believes the milk pitcher contains oat milk. Written by: GPT-4. Condition: Forward Belief (True
Belief) With Initial Belief.

BigToM

Story: “Mei is a pearl diver in a small coastal village in Japan. Mei wants to find a perfect pearl to
give to her grandmother for her birthday. Mei spots an oyster at the bottom of the sea that looks to be
the right size and age to contain a pearl. Mei believes that the oyster she spotted contains a pearl. A
curious octopus opens the oyster, revealing that there is no pearl inside, and then swims away. Mei
dives down to collect the oyster.” Question: “Does Mei believe the oyster she spotted contains a pearl
or that it is empty?” Answers: Mei believes the oyster she spotted contains a pearl (correct answer),
Mei believes the oyster she spotted is empty. Written by: GPT-4. Condition: Backward Belief (False
Belief) With Initial Belief.

socialIQa
Story: “Kendall persisted after being told no, and eventually had a positive effect on Lee.” Question:

“What will Lee want to do next?” Answers: Refuse to help Kendall, Give into Kendall (correct answer),
Give a punch to Kendall’s face. Written by: Human. Source: [32]

socialIQa
Story: “Lee tried to remain calm when nobody answered the phone call.” Question: “What does Lee
need to do before this?” Answers: send a text, try again, pick up the phone (correct answer). Written
by: Human. Source: [32]

3.4 Quality of Generated Data

Expert Evaluations. Tab. 1 shows random examples from human-and model-written datasets. Our
model-written examples are high-quality and closely match the pattern of examples generated by
human experts. To assess the quality of our model-written dataset, we first had two experts (two
authors) independently evaluate 100 model-written templates including all 25 conditions (2500 test
items overall). During their evaluations, experts answered the following questions: Question 1:

“Does the story follow the assigned structure?” Answers: 1 (Yes), 0 (No). Question 2: “Does the
story test the desired behavior?” Answers: 1 (“Strongly Disagree”) to 5 (“Strongly Agree”). The
overall percentage agreement between experts on the first question was 93.94% with mean ratings of
0.919 (95% CI: 0.859–0.970) for expert 1 and 0.960 (95% CI: 0.919–0.990) for expert 2. For the
second question, average expert ratings were 4.33 (95% CI: 4.13–4.53) for expert 1 and 4.35 (95%
CI: 4.18–4.52) for expert 2, both with a median rating of 5.

Participant Evaluations. We evaluate the quality of 200 items from BigToM with human partic-
ipants5. Due to the large number of conditions, we gather participant ratings for the true belief
and false belief versions of the forward belief condition, as exemplary versions representing the
conditions. We compare participants’ ratings of our model-written evaluations (“BigToM”) with
50 random items sampled from a large-scale (38,000 items), human-written (crowd-sourced) ToM
benchmark (“socialIQa”) [32] as well as 50 random items sampled from ToM scenarios written by
human researchers (“Expert”) [7, 42, 18]. Both socialIQa and the Expert test items were selected as
they have recently been used to evaluate language models’ ToM capabilities [e.g. 33, 42, 18, 24, 35].
Fig. 2b shows participants’ average item ratings for each dataset and question. Our model-written
test items (BigToM) received the highest ratings for each question. Results from a Bayesian linear
mixed effects regression confirmed that test-items extracted from our model-written templates were
better than the crowd-sourced items, particularly in coherence and un-ambiguity, and comparable to
(or better than) expert-written test items (details in §B.1).

4 Experiments
Evaluating Models. We test five large language models: text-davinci-003, gpt-3.5-turbo,
gpt-4-0314, claude-v1.3, and llama-65b-q5 (quantized)[40, 12]. All models are used with the

5Preregistration Experiment 1: https://osf.io/qxj2s. Note: We doubled the size of our participants and items
upon reviewer’s request. All numbers in the preregistration correspond to half of the numbers reported in this
paper.
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[b]

Causal Inference

👀

🤔

🤔

Forward Action

0-shot Performance (without initial belief) 0-shot Performance (with initial belief)

Forward Belief[a]

Causal Inference

🤔👀

Percepts Beliefs

Desires Actions

👀 🤔Observed Inferred

0-shot Performance (without initial belief) 0-shot Performance (with initial belief)

Backward Belief[c]

Causal Inference 0-shot Performance (without initial belief) 0-shot Performance (with initial belief)

👀

🤔🤔

TB

TB ∧ FB

Figure 3: blueModel performance (0-shot) across conditions. [a] Forward Belief inferences from
percepts to beliefs. TB = True Belief. FB = False Belief. [b] Forward Action inferences from an
agent’s percepts which require additional inferences over unknown beliefs. [c] Backward Belief
inferences over unknown percepts and beliefs from an agent’s observed actions. Error bars for humans
represent 95% bootstrapped confidence intervals of the mean.

most deterministic setting with a temperature of 0. We test these models with four types of prompts:
0-shot, 0-shot-chain-of-thought [17], 1-shot, and 1-shot-chain-of-thought [44]. The example used for
the 1-shot prompt is from the Forward Belief - False Belief condition, where the inference variable is
the belief of the agent. The task is presented to the model in the form of a comprehension question
with a story, followed by a question and two answer options. We compare models on their accuracy
to answer the questions. We have released our prompts and evaluation scripts on the project page6.
We compare models to a human baseline7 (details in B.2).

4.1 Results and Discussion
The results of our investigation are detailed in Tab. 2, Tab. 7 and App. E, spanning different conditions,
models, and prompts. We discuss results for the true belief and false belief conditions. Importantly,
success on the false belief version of the task is evaluated only if the model succeeded on the true
belief version, as otherwise a model might succeed on the false belief version for the wrong reasons
(i.e. failing to comprehend the change in the environment rather than comprehending the change in
the environment and understanding that the agent was not aware of this change). Therefore, we label
the success on the false belief task as “TB” ∧ “False Belief”.

Initial Percept to Initial Belief. All models are proficient at making this inference, and understand
how percepts lead to the formation of beliefs (App. E to table).

6https://sites.google.com/view/social-reasoning-lms
7Preregistration Experiment 2: https://osf.io/zxw6m
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Table 2: Performance of GPT-4 for each method. TB = True Belief. FB = False Belief. † = without
initial belief. ‡ = with initial belief.

Condition Contingency Method
0-shot 0-shot-cot 1-shot 1-shot-cot

Fwd. Belief
!" TB .99† .91‡ .99† .99‡ .99† .97‡ 1.00† .97‡

FB .98† .99‡ .99† .99‡ .99† .99‡ .99† .99‡

TB ∧ FB .97† .90‡ .98† .98‡ .97† .96‡ .99† .96‡

Fwd. Action
!

"

" TB .98† .98‡ .99† .99‡ 1.00† 1.00‡ 1.00† 1.00‡

FB .81† .92‡ .88† .96‡ .98† 1.00‡ 1.00† .99‡

TB ∧ FB .79† .90‡ .87† .95‡ .98† 1.00‡ 1.00† .99‡

Bwd. Belief
!

"" TB .86† .62‡ .84† .76‡ .68† .57‡ .83† .81‡

FB .53† .77‡ .54† .63† .85† .92‡ .75† .85‡

TB ∧ FB .40† .40‡ .38† .40‡ .53† .49‡ .58† .65‡

Forward Belief Inference. Here we test if models can track beliefs across the change in the world
(Tab. 2 and Fig. 3a). Many models struggle with this, especially when an initial belief is stated
(suggesting they anchor on this explicitly stated belief). gpt-4 and, to a lesser extent, Claude
perform better, approaching human levels.

Forward Action Inference.While all models are good at predicting actions when beliefs agree with
the world state, most models struggle in the critical false-belief condition (Fig. 3b). gpt-4 is the
exception, exhibiting human-level performance (or even slightly better).

Backward Belief Inference. This represents the most challenging inference. Even humans struggle,
achieving only 82% accuracy in the true belief condition and 72% in the false belief condition. We
believe this is due to unavoidable uncertainty about whether the agent gained knowledge of the
true world state. Models are generally far below chance, indicating that they reliably attribute the
wrong belief, especially in false-belief situations and especially when an explicit initial belief is given
(Fig. 3c). gpt-4 is again the exception with a more human-like pattern, though not achieving human
level performance 0-shot.

Comparison of prompts. Human participants received instructions and a demonstration example to
understand the task (see App. H). Hence, a fair comparison should provide similar support to models.
One-shot learning consistently enhances performance across all models and conditions. In contrast,
zero-shot-chain-of-thought (CoT) prompting doesn’t consistently improve performance across condi-
tions. Introducing a one-shot CoT example does lead to consistent performance improvement across
all conditions, however this performance may not be indicative of stronger ToM per se: mimicking
the reasoning template is enough to solve our task in most cases. (Human participants were not given
demonstrations of how to reason in the task.)

5 Discussion
In this work, we present a novel framework for measuring the capabilities of large language models
(LLMs) by using abstract causal templates to automatically generate scenarios, controlling what
information is provided and what must be inferred. We created a new benchmark for Theory of Mind
(BigToM), allowing us to more carefully map the ToM reasoning abilities of LLMs. Our extensive
control conditions aim to take into account content effects [6] and many low-level confounds. We
found that many models struggle with even the most basic component of ToM, reasoning from
percepts and events to beliefs, and that this is substantially affected by previously-stated beliefs.
Of all the models tested, GPT-4 exhibits ToM capabilities that align closely with human inference
patterns. Yet even GPT-4 was below human accuracy at the most challenging task: inferring beliefs
from actions.

Limitations. Our evaluation methodology may appear circular at first: the model being tested plays a
role in generating the test items. However, we believe that for testing inferential abilities this is not a
confound. Our method constructs stories by selecting from all the available facts of a given situation
and then isolates the inferential capabilities for the remaining aspects. This means that a model may
be able to understand the immediate causal steps in the story while being unable to perform the
required inferences being tested. Indeed, even gpt-4 does not achieve a perfect zero-shot score at
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our tests, indicating this gap between situation knowledge and inferential understanding. Further, to
validate our hypothesis about circularity not being a confound, we generate an evaluation set with
claude-2. We find that gpt-4 gets comparable scores on an evaluation set generated by a different
model, outperforming the model that created the dataset (see App. F for details).

Our method shares limitations with other model-generated evaluations (as discussed in Perez et al.
[28]): the generated evaluations can be biased in the content and the contexts that are generated .
While synthetic datasets generated from language models offer advantages in scale and control, they
also come with inherent biases reflecting those embedded in the underlying model and training data.
As large language models are trained on internet text, they inevitably pick up stereotyped associations
for gender, race, and other attributes in certain contexts. This could lead to normative, stereotyped
roles in different situations in the synthetic dataset. A related issue could arise from biases leading
to over-generation of certain situations, effectively yielding imbalanced evaluation data. (We note
this is also a problem for human-generated items!) However, language models are also steerable
through detailed instructions, allowing mitigation of some biases. Careful steering might be needed
during dataset generation to ensure diversity and balance along different dimensions. In domains
where the models capabilities are lacking, the model will struggle to generate good evaluations. Such
limitations could be resolved through shared generation with a human expert while populating the
causal graph (see App. A for an example interface). The stories produced by the model at times
exhibit errors in common sense, yet these instances represent a small fraction (∼3%) of the overall
tests generated; as language models continue to improve, we can expect these errors to reduce. Our
test items tend to have syntactic similarities which might reduce the diversity of the items in our
benchmark; this could perhaps be fixed by asking the model to paraphrase the generated stories.

Future Work. Our causal template method can be used for other domains where the effects of hidden
causes or the underlying causes of effects must be inferred. These include many studied by cognitive
scientists interested in the “intuitive theories” underlying human reasoning. For instance, morality,
affect, and desire within social cognition, and extending to physical reasoning and more abstract
reasoning such as medical diagnosis and mathematics.

In the future, testing social reasoning should move towards more realistic scenarios that are not
limited to traditional ToM tests. We believe that we should focus on creating social reasoning tests or
benchmarks in use-cases where LLMs are being deployed. We believe that there is a need to move
towards more dynamic benchmarks for social reasoning, by creating environments where people or
simulated agents (LLMs as people) interact with a language model. Such environments could also be
used as a playground where the capabilities of models are not only measured, but also improved.

Conclusion. We have demonstrated a novel approach for assessing LLMs, and while there are
limitations, we believe our findings offer a promising direction for future research in understanding
and enhancing the capabilities of these powerful models. The nascent ability of LLMs to reason
about mental states of people is a foundational capability for exciting use cases and problematic
misuse. Systematic and broad benchmarking of these abilities is thus a pressing concern, and we
believe BigToM is an important step.
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