
FaceComposer: A Unified Model for
Versatile Facial Content Creation

<Supplementary Material >

In this Appendix, we show training and data details in parts A, B, and C. Part D demonstrates more
experimental results, followed by Part E, the demo page introduction. At last, we list the limitations
and potential societal impact of our FaceComposer.

A Architecture details.

Prior LDM

Diffusion steps 1000 1000
Noise schedule cosine cosine
Sampling steps 100 50
Sampling variance method dpm-solver dpm-solver
Model size 1B 1B
Channels - 320
Depth - 2
Channels multiple - 1,2,4,4
Heads channels - 64
Attention resolution - 32,16,8
Dropout - 0.1
Weight decay 6.0e-2 -
Batch size 4096 1024
Iterations 1M 1M
Learning rate 1.1e-4 5e-5
Adam β2 0.96 0.999
Adam ϵ 1.0e-6 1.0e-8
EMA decay 0.9999 0.9999

Table A1: Hyperparameters for FaceComposer. We use DPM-Solver++ [8] as the sampling algorithm for all
diffusion models.

The hyperparameters of FaceComposer are reported in Tab. A1. The Conditioning mechanism is
depicted in Fig. A1 (global conditioning) and Fig. A2 (local conditioning). For guidance direction
in all our tasks, we put conditions to be emphasized into subset c2, set c1 empty. One exception
is local conditions, which will be added into c1 too, since we observed that this operation helped
FaceComposer generate better results.

The architecture of the Audio2PNCC model follows that of StyleTalk [9]. Unlike StyleTalk, We
change the input audio representations from phonemes to Wav2Vec [1] features. Besides, the
Audio2PNCC model predicts FLAME parameters instead of BFM parameters used in StyleTalk. The
Audio2PNCC model predicts 50 expression parameters and 3 jaw pose parameters. The predicted
parameters are merged with other parameters (e.g. shape, global pose, and camera parameters) to
render the PNCC images [14].
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Figure A1: Global conditioning mechanism of FaceComposer. Global conditions include Identity Feature and
T2F Embedding. For Identity Feature, we project and add it to the timestep embedding. For T2F Embedding,
we take it as key and value for multi-head cross-attention modules.
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Figure A2: Local conditioning mechanism of FaceComposer. Local conditions consist of Mask, PNCC and
Sketch. We project these conditions into embeddings with the same spatial size as the noisy image using stacked
convolutional layers. Subsequently, we concatenate the embeddings and the noisy image as the input of UNet.

B Training details.

During the training stage, our model starts from a pre-trained LDMs1, and is further trained on our
multi-modal face database through a joint training mechanism. We apply the Adam optimizer with
β1 = 0.9, β2 = 0.999, and an initial learning rate of 5 × 10−5 for the LDMs training. The prior
model is trained with another Adam optimizer with β1 = 0.9, β2 = 0.96, and an initial learning
rate of 1.1 × 10−4. In total, we pretrain the LDMs with 1M steps on the full multi-modal dataset
using only T2F Embeddings as the condition, and then finetune the model for 200K steps with all
conditions enabled. The total training costs approximately four days with eight NIVIDA A100 GPUs.
We use an independent dropout probability of 0.5 for each condition, a probability of 0.1 for dropping
all conditions, and a probability of 0.1 for retaining all conditions. The prior model is trained for 1M
steps on the image dataset. In terms of joint training mechanism, we allocate half of GPUs to perform
image training, while the rest of the GPUs are dedicated to video training.

To train the Audio2PNCC model, we follow the settings in StyleTalk [9]. We train on HDTF for 12
epochs. It takes 0.5 hours to train the model on 1 A100 GPU.

C Details of the multi-modal face database

C.1 Image data collection and pre-processing

We merge LAION-Face [13], FFHQ [7], and CelebHQ [6] to construct the raw data pool of image
data. In order to sample high-quality image-text pairs from the raw data pool, we clean up LAION-

1https://github.com/Stability-AI/stablediffusion
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Figure A3: Samples from the video part of the multi-modal face database.

Face. First, we use Face CLIP [13] to filter out the image-text pairs whose text descriptions do not
match the images. Specifically, for each image-text pair, we compute the cosine similarity between
CLIP features extracted from the image and the text and filter out the pair if the similarity is lower
than a predefined threshold 0.3. Second, we use an off-the-shelf face detector [3] to detect faces in
images and filter out images with no faces detected. Third, we detect the bounding boxes of faces
and remove images in which the size of the bounding box is lower than 256 × 256. Finally, we
obtain the cleaned LAION-Face dataset. It contains 1 million face images with corresponding text
captions. After incorporating images from CelebHQ and FFHQ, the database contains 1.1 million
text-annotated facial images.

C.2 Video data collection and preprocessing

To construct the raw data pool of video data, we create various queries and use these queries to collect
raw videos from the Internet. In order to sample high-quality talking head video clips from the raw
data pool, we design several constraints to filter out unsatisfactory videos. First, we split the videos
into 5-second clips and check whether all the clip frames belong to the same person based on the
identity (detected by an identity recognition network [2]). If not, the clips are filtered out. Second,
when multiple faces appear in a clip, we only keep the clips in which the size of one person’s face is
at least four times larger than those of others. Third, we discard clips with head rotation greater than
45 degrees along any axis. Fourth, we remove the clips with faces in low resolution. The average
face size of selected clips is larger than 200× 300 pixels. The total video duration is more than 500
hours. Samples are shown in Fig. A3.

D More analysis on the evaluation of face animation

D.1 Why FaceComposer uses masks in face animation evaluations

When generating face animation, FaceComposer takes images with the mouth region masked as
input and generates images with the mouth region inpainted (visual dubbing methods), rather than
directly generating the entire face (one-shot methods). We would like to explain why it’s unreasonable
to make FaceComposer in a one-shot version (which generates the entire face) compete against
one-shot talking head methods. In the one-shot setting, the one-shot image can be input into one
of the four conditions (i.e. Mask, Sketch, ID and T2F. PNCCs are used for facial motions). When
using a one-shot image for Mask, no region should be masked to make it the same as one-shot talking
head methods. But this use of FaceComposer does not match its training scheme, where we mask
one/all of the nine face parsing areas and recover the masked region based on other conditions. Worse,
the facial motion in unmasked images may conflict with that in PNCCs, resulting in undesired face
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motion generation. As for the other three conditions (Sketch cannot capture the textual information in
the one-shot image, ID can only capture identity attributes without any pixel-level information, T2F
is only able to capture global information), the illumination or speaker appearance of the generated
videos may differ from the input images, and all of them are not designed for one-shot talking head
scenario.

D.2 Fair comparison with prior arts

How to conduct a fair comparison between visual dubbing methods and one-shot methods is neglected
in prior arts. We may attribute the unfairness issue to two aspects: (1) it is unfair to compare the
quality in the non-mouth area, as visual dubbing methods "copy" the area from the input images
while one-shot methods generate the area by themselves. (2) the pose of the generated speaker in
one-shot methods may change, making it fall short in metrics where ground truth (GT) is used as a
reference. To address these issues, we introduce new metrics CPBD-M and SSIM-M.

For (1), CPBD-M, SSIM-M, and M-LMD all focus on the video quality of the mouth region. For
(2), if the pose of visual dubbing and one-shot methods are both aligned with GT, we argue that, in
addition to mouth movement accuracy, the video sharpness and appearance consistency (whether the
appearance is consistent with that in the input image) of the mouth area should also be evaluated
quantitatively, as the quality of these two properties is crucial to video realness. To get closer to
this goal, the samples we generated use the head pose and neutral emotion of GT for pose/emotion-
controllable methods, such as PC-AVS, StyleTalk, and EAMM. (We acknowledge for methods that
can not control poses, unfairness may still exist.) Besides, CPBD-M is a no-reference metric and
SSIM-M evaluates structural similarity but not pixel-level one, both can mitigate the effects of speaker
pose changes.

D.3 Why SyncNet score is lower than Wav2Lip

The SyncNet score of FaceComposer is only lower than Wav2Lip, higher than all other methods,
and the closest to GT. Wav2Lip achieves the highest SyncNet score, even higher than GT, since it
uses SyncNet as a discriminator. Numerous prior arts [4, 12, 9, 5, 10] have reported that Wav2Lip,
despite attaining high SyncNet scores, does not fare well in qualitative evaluations (e.g., user
studies) of lip-sync, attributed to the production of blurry results and, occasionally, exaggerated lip
motions. StyleSync [4] claims SyncNet score only reflects how well an audio-visual pair fits the
learned SyncNet model rather than the true perceptual quality. Thus though generated results might
outperform GT on the metric, it does not mean better sync quality. SPACE [5] claims that SyncNet
scores are very sensitive to the input crop, PD-FGC [10] claims that the SyncNet Score of a method
is strongly correlated with its training data, which makes it unfair when comparing methods trained
on different data.

E More experimental results.

E.1 Face generation+animation

In the main paper, we have shown the generated results conditioned on PNCC sequence and T2F
embedding, here we display another two conditions combination: PNCC sequence and Identity
Feature to finish face generation and animation simultaneously. Considering it’s a face animation, we
put it into the attached video file (suppvideo.mp4), where we get Identity Feature from source images
and PNCC sequence from audio.

E.2 Face generation+editing

We show more face generation+editing results in Fig. A4. For Fig. A4(a), we extract Identity Feature
from source images and mask the faces of target images. In this setting, we can achieve the same
effect as face swapping, demonstrating our abilities of versatile facial content creation again. For
Fig. A4(b), images in the first row provide Identity Feature, the second row lists the style prompt, and
the third row shows the generated results.
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Figure A4: More face generation+editing results. (a) Results are conditioned on Identity Feature and Mask; (b)
Identity Feature and T2F Embedding are used as conditions.

E.3 Face generation+editing+animation

We show some video results, corresponding to Fig. 7 in the main paper, in the final video file
(suppvideo.mp4). It can be seen that FaceComposer can generate smooth face sequences with high
relevance to the conditions.

F Interface design.

In order to make people create, edit and drive their desired characters with just one-click, we design a
friendly interactive interface in Fig. A5. Thanks to the publicly available code CoAdapter 2, we build
a demo of FaceComposer based on the open-source tool Gradio 3.

The five rectangular boxes in the first row represent five condition inputs: Mask, PNCC, Sketch,
ID and T2F from left to right. FaceComposer supports condition combinations, so you can check
"nothing" in the boxes for the conditions you don’t need, and drop image/video to the corresponding
boxes or click that boxes to upload them for the conditions you want. For Mask, we will provide nine
parsing choices to help you mask the uploaded image or video. For PNCC, one can drop an audio
to the box, then the audio2PNCC module will be called to extract the PNCC sequence. For Sketch,
we will automatically extract the sketch for the uploaded image or video. For ID, only reference
image is needed, ArcFace model will be called to get the ID. For T2F, you can upload the reference
image, where T2F is obtained from Face Clip model, or use the input box for "Prompt / Negative
Prompt" below to make the T2F extracted from the text. The negative prompt will be put into c1, and
prompt is in c2. Below the input box of the prompt, we show five parameters: (1) Guidance Scale is
the guidance weight we used in guidance directions; (2) Num samples mean how many samples you
want to generate; (3) Seed is the random seed used in random process in FaceComposer, like noise
generation; (4) Steps mean the number of DDIM steps in inference process; (5) Image resolution,
just as its name implies.

G Discussion.

Pros and cons. The analysis of the pros and cons of jointly training with different conditions is listed
below: Pros: Training with multi-conditions, FaceComposer can support different tasks (e.g. face
generation, face editing and face animation) and enjoy diverse controllabilities (e.g. accomplishing
combined tasks among face creating, editing and animating with one-time forward) with a unified
model. And Tab. 7 in main paper shows that the performance of FaceComposer keeps stable
when changing the number of conditions on a fixed dataset. Cons: Due to the general design of
FaceComposer for a variety of tasks, we need more training data to make different tasks perform well,
which inevitably increases the cost of training. With a limited scale of training data, the performance

2https://huggingface.co/spaces/Adapter/CoAdapter
3https://github.com/gradio-app/gradio
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Figure A5: The demo page of FaceComposer.

of FaceComposer may degrade on some tasks, as illustrated in Tab. 7 of main paper. We thus collect
a high-quality large-scale multi-modal face database to alleviate such a problem.

Limitations. Although FaceComposer supports versatile facial content creation by combining di-
verse conditions, we fail to generate the whole human (face and body). Besides hard to make different
conditions control different human parts, potential conflicts between conditions and inadequate data
lead the “HumanComposer” to a more challenging task. Another limitation of FaceComposer is the
resolution of generated results, i.e., 256×256, which is a compromise between quality and training
efficiency. We will increase the resolution to 512×512 when the code is released in the near future.

Potential societal impact. Since FaceComposer integrates various facial creation tools within a
unified interface, which facilitates access to each tool and enables their combined utilization, the po-
tential downstream applications of FaceComposer are diverse and may have complex societal effects.
On the one hand, FaceComposer shows considerable promise in enhancing, extending, and comple-
menting human creativity. Besides, FaceComposer may lead to the creation of new tools for creative
practitioners, allowing for an expansion of existing options. On the other hand, FaceComposer can
be utilized for malevolent purposes. It is possible for FaceComposer to produce content containing
or suggesting sexual content, hatred, or violence. FaceComposer may cause detrimental effects
on persons and communities when FaceComposer is used to erase or denigrate them, reinforce
stereotypes, subject them to indignity, or provide them with disparately low-quality performance.
Harassment, bullying, or exploitation of individuals is another possible abuse. FaceComposer also
could be exploited to deceive or misinform individuals. As FaceComposer makes it easier to generate
content, these negative impacts will be exacerbated if there are no countermeasures in place.

Numerous precautions have been or will be taken before the release to prevent the misuse of
FaceComposer. We remove harmful content in the training dataset and involve prompt and im-
age/video filters to prevent users from generating harmful content. We will improve the representa-
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tiveness of the dataset by manually balancing it to avoid the bias of generation results, which will
mitigate erasure, stereotype reinforcing, indignity, and disparately low-quality performance for some
prompts. To prevent harassment and bullying, we will ask users not to upload images of people
without their consent. To avoid FaceComposer being used to misinform individuals, all results
generated by FaceComposer will be marked as synthetic content using watermarks. We will perform
pre-release risk analysis by utilizing an expanding array of safety evaluations and red teaming tools.
We will also examine the outcomes of pilots involving novel use cases and carry out comprehensive
retrospective reviews. Automated and human monitoring systems will be developed in order to
prevent the occurrence of misuse. We will do our best to keep researching to eliminate negative social
impacts.

Collecting and releasing a large-scale talking head dataset may also engender multifaceted societal
implications. In addressing the ethical considerations of our dataset, we align our practices with those
established by TalkingHead-1KH [11], a public video dataset. Similar to TalkingHead-1KH, our
dataset comprises exclusively video clips under permissive licenses, such as the Creative Commons
BY 3.0 license, which permits reuse. When releasing our dataset, we will only provide the original
video URL, rather than the video content itself, allowing content owners to retain control over their
videos. If a content owner wishes to remove a video from our dataset, they can either modify the
license of their video and remove it from the original URL or directly inform us via email to delete
the video URL; the email will be provided upon the release of the dataset.

We have invested significant time and effort in meticulously filtering the dataset using off-the-shelf
tools like face detection, pose estimation, and face identification before employing five laborers to
select high-quality data. These laborers were compensated fairly, based on their workload, with prices
negotiated in advance, acknowledging the labor involved in the collection of the dataset.

Given that our dataset is crawled from the Internet, it inherently embodies the biases from the Internet.
We are actively taking measures to enhance the dataset’s representativeness by incorporating more
data representing minority races/ethnicities and reducing data from majority races/ethnicities. We
will also provide a data augmentation module to those utilizing our dataset. Despite our endeavors to
balance the dataset, issues regarding representativeness may persist. We plan to alleviate this problem
over time as we gather more data and feedback.

To regulate the usage, the model and dataset can only be obtained upon email request for research
purposes only. The requesters will be asked to specify their full name, their institutes, and their
positions and to adhere to our usage policies.
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