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Sec. 1 validates the applicability of our GraphAdapter by introducing it to the state-of-the-art adapter-1

style tuning methods, including CaFo [15] and TaskRes* [14].2

Sec. 2 provides more experimental details on Few-shot Learning for our GraphAdapter.3

Sec. 3 describes more details about datasets and implementation.4

Sec. 4 visualizes the textual graph nodes used for classification before and after utilizing our5

GraphAdapter.6

Sec. 5 makes a comprehensive analysis of the possible broader impacts.7

1 Applicability8

To validate the applicability of our GraphAdapter, we select two state-of-the-art adapter-style works,9

including CaFo [15] and TaskRes* [14]. Here, CaFo [15] incorporates diverse prior knowledge from10

large pre-trained vision and language models, including DINO’s vision-contrastive knowledge, GPT-11

3’s language-generative knowledge, and DALLE’s generative capability. The adapting strategy of12

CaFo [15] is from the Tip-Adapter [16]. The TaskRes* denotes the enhanced version of TaskRes [14],13

which exploits the enhanced base classifier instead of the original classifier from CLIP [11].14

For CaFo [15], we directly incorporate our GraphAdapter into the textual classifier. For TaskRes* [14],15

we replace the task residual with our proposed GraphAdapter and maintain its enhanced textual16

branch from CLIP. The experimental results on ImageNet [3] are shown in Table 1. We can observe17

that our GraphAdapter can consistently increase the performance of CaFo [15] and TaskRes* [14]18

on few-shot learning with all 1-/2-/4-/8-/16-shots settings. Particularly, on the 16-shot setting, ours19

improves CaFo [15] by 0.51%, and TaskRes* by 1.15%, which validates the powerful applicability of20

our GraphAdapter. Overall, our GraphAdapter is complementary to these prior-augmented methods,21

and can obtain better performance by integrating ours into them.22

Table 1: The experiments for the applicability of our GraphAdapter. For Cafo [15], we incorporate
our GraphAdapter into the textual classifier. Notably, the TaskRes* exploits the enhanced base
classifier. Therefore, TaskRes* + Ours denotes that TaskRes* replace the task residual with our
proposed GraphAdapter.

Methods 1-shot 2-shot 4-shot 8-shot 16-shot

CaFo [15] 63.80 64.34 65.64 66.86 68.79
+Ours 63.81 64.97 66.17 67.68 69.30

TaskRes*[14] 61.43 62.17 62.93 64.03 64.75
+Ours 61.73 62.53 63.47 64.57 65.80
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2 More Experimental Results23

We present the numerical results of “Figure 3 in the main text” as Table 2. We compare our24

GraphAdapter with the state-of-the-art works, including the prompt-based method CoOp [17], and25

adapter-style methods, i.e., CLIP-Adapter [5], Tip-Adapter-F [16], and TaskRes [14]. Here, the26

performance of Tip-Adapter-F is reproduced by [14], which aims to ensure a fair comparison with27

CoOp [17]. From the table, we can find that on the 16-shot few-shot learning, our GraphAdapter28

outperforms all previous works except for UCF101 [12] where its performance is comparable. Depart29

from that, for the average accuracy of 11 benchmark datasets in the 1-/2-/4-/8-/16-shot few-shot30

learning, our GraphAdapter surpasses previous works with a consistent improvement of 0.57% to31

0.76%. We also make the analysis for the Error Bars by providing the standard deviation (Std) of our32

experimental results in Table 2.33

Table 2: A numerical comparison between our GraphAdapter and the state-of-the-art methods.
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Zero-shot CLIP [11]

1-shot

86.29 42.32 37.56 17.28 66.14 77.31 58.18 85.77 55.61 58.52 61.46 58.77
CoOp [17] 87.53 44.39 50.63 9.64 68.12 74.32 57.15 85.89 55.59 60.29 61.92 59.59
CLIP-Adapter [5] 88.60 45.80 61.40 17.49 73.49 76.82 61.20 85.99 55.13 61.30 62.20 62.67
Tip-Adapter-F [16] 88.80 50.49 50.34 19.01 81.17 76.22 60.88 86.04 56.78 61.23 66.19 63.38
TaskRes [14] 88.80 50.17 61.27 21.20 78.77 74.03 61.43 83.50 58.77 61.93 64.57 64.04

Ours (w/ Std) 88.90 51.77 63.30 20.93 79.98 75.43 61.50 84.40 59.70 61.93 64.93 64.80
(±0.22) (±1.48) (±1.96) (±0.25) (±0.90) (±0.14) (±0.09) (±1.02) (±0.45) (±0.26) (±0.59) (±0.34)

Zero-shot CLIP [11]

2-shot

86.29 42.32 37.56 17.28 66.14 77.31 58.18 85.77 55.61 58.52 61.46 58.77
CoOp [17] 87.93 45.15 61.50 18.68 77.51 72.49 57.81 82.64 58.28 59.48 64.09 62.32
CLIP-Adapter [5] 89.37 51.48 63.90 20.10 81.61 77.22 61.52 86.73 58.74 63.29 67.12 65.55
Tip-Adapter-F [16] 89.61 55.32 64.76 21.76 85.40 77.05 61.57 86.06 61.13 63.19 68.99 66.80
TaskRes [14] 90.13 54.53 65.77 23.07 85.63 75.30 62.17 84.43 62.77 64.33 69.10 67.02

Ours (w/ Std) 90.20 55.75 67.27 23.80 85.63 76.27 62.32 86.30 63.23 64.60 69.47 67.71
(±0.22) (±1.56) (±1.57) (±0.65) (±0.25) (±0.12) (±0.17) (±0.99) (±0.12) (±0.33) (±0.42) (±0.31)

Zero-shot CLIP [11]

4-shot

86.29 42.32 37.56 17.28 66.14 77.31 58.18 85.77 55.61 58.52 61.46 58.77
CoOp [17] 89.55 53.49 70.18 21.87 86.20 73.33 59.99 86.70 62.62 63.47 67.03 66.77
CLIP-Adapter [5] 89.98 56.86 73.38 22.59 87.17 77.92 61.84 87.46 62.45 65.96 69.05 68.61
Tip-Adapter-F [16] 90.87 60.25 69.66 26.39 89.53 77.46 62.62 86.46 64.86 65.88 72.71 69.70
TaskRes [14] 90.63 59.50 72.97 24.83 89.50 76.23 62.93 86.27 66.50 66.67 69.70 69.61

Ours (w/ Std) 90.97 59.63 75.20 26.97 89.90 76.77 63.12 86.57 66.53 66.70 71.47 70.35
(±0.05) (±0.39) (±1.37) (±0.29) (±0.19) (±0.26) (±0.19) (±1.47) (±0.29) (±0.28) (±0.16) (±0.27)

Zero-shot CLIP [11] 86.29 42.32 37.56 17.28 66.14 77.31 58.18 85.77 55.61 58.52 61.46 58.77
CoOp [17] 90.21 59.97 76.73 26.13 91.18 71.82 61.56 85.32 68.43 65.52 71.94 69.89
CLIP-Adapter [5] 91.40 61.00 77.93 26.25 91.72 78.04 62.68 87.65 67.89 67.50 73.30 71.40
Tip-Adapter-F [16] 91.70 62.93 79.33 30.62 91.00 77.90 64.15 88.28 69.51 69.23 74.76 72.67
TaskRes [14] 92.23 64.23 78.07 29.50 94.30 76.90 64.03 87.07 70.57 68.70 74.77 72.76

Ours (w/ Std)

8-shot

92.45 64.50 80.17 31.37 94.07 77.73 64.23 87.63 70.53 68.97 75.73 73.40
(±0.38) (±0.34) (±1.87) (±0.40) (±0.12) (±0.19) (±0.08) (±0.26) (±0.12) (±0.12) (±0.45) (±0.29)

Zero-shot CLIP [11]

16-shot

86.29 42.32 37.56 17.28 66.14 77.31 58.18 85.77 55.61 58.52 61.46 58.77
CoOp [17] 91.83 63.58 83.53 31.26 94.51 74.67 62.95 87.01 73.36 69.26 75.71 73.42
CLIP-Adapter [5] 92.49 65.96 84.43 32.10 93.90 78.25 63.59 87.84 74.01 69.55 76.76 74.44
Tip-Adapter-F [16] 92.63 66.94 84.94 35.86 94.23 78.11 65.44 88.18 75.75 71.00 79.03 75.65
TaskRes [14] 92.90 67.57 82.57 33.73 96.10 78.23 64.75 88.10 74.93 70.30 76.87 75.10

Ours (w/ Std) 93.33 67.57 85.27 36.87 96.23 78.63 65.70 88.57 76.23 71.20 78.80 76.22
(±0.08) (±0.09) (±0.29) (±0.50) (±0.16) (±0.08) (±0.08) (±0.51) (±0.17) (±0.08) (±0.26) (±0.11)

3 More Dataset and Implementation Details34

More Dataset Details. In this paper, we follow previous works, e.g., CoOp [17], CLIP-Adapter [5],35

TaskRes [14], and Tip-Adapter [16], and exploit the prompts in Table 3 for the tuning and testing.36

More Implementation Details. Our experimental results are achieved by running the algorithm37

three times with different seeds for each setting. The training and inference are implemented with a38

single NVIDIA GeForce RTX 3090. In the implementation of GraphAdapter for the ImageNet [3],39

we decouple the sub-graph with 1000 nodes for each modality into four graphs with 256 nodes to40

alleviate the computational cost.41

4 Visualization of Graph Nodes42

To demonstrate how our GraphAdapter works for the adapter-style tuning for VLMs, we visualize43

the graph nodes for textual features before and after the GraphAdapter. As shown in Figure 1, we44
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Table 3: The number of classes and the used prompt temple for each dataset.
Datasets # Classes Prompt Templet

Caltech101 [4] 100 “a photo of a [class].”
DTD [2] 47 “[class] texture.”
EuroSAT [6] 10 “a centered satellite photo of [class].”
FGVCAircraft [8] 100 “a photo of a [class], a type of aircraft.”
Flowers102 [9] 102 “a photo of a [class], a type of flower.”
Food101 [1] 101 “a photo of a [class], a type of food.”
OxfordPets [10] 37 “a photo of a [class], a type of pet.”
StanfordCars [7] 196 “a photo of a [class].”
SUN397 [13] 397 “a photo of a [class].”
UCF101 [12] 101 “a photo of a person doing [class].”

ImageNet [3] 1000
Ensemble of 7 selected templates, including “itap of a [class].”, “a bad photo of
the [class].”, “a origami [class].”, “a photo of the large [class].”, “a [class] in a
video game.”, “art of the [class].” and “a photo of the small [class].” .

randomly sampled 20 classes from ImageNet [3] and utilize the t-SNE to visualize the distribution45

of each node corresponding to the textual fracture for classification. We can observe that with our46

GraphAdapter, the nodes of different classes move in directions that lead to much larger inter-class47

distances, thereby improving the performance of adapter-style tuning for VLMs.48

Figure 1: Visualization of the variance of the graph nodes before and after GraphAdapter. Each node
represents the representation of one class. We randomly sampled 20 classes from ImageNet for better
visualization. The nodes move toward the direction that leads to much larger inter-class distances
after GraphAdapter. The red arrows denote the directions.

5 Broader Impacts49

The adapter-style tuning of VLMs aims to efficiently finetune the VLMs for downstream tasks by50

optimizing a few parameters in the low-data regime. The possible broader impact of our GraphAdapter51

stems from the tuning of VLMs itself, which has a heavy dependency on the pre-trained VLMs. The52

utilization of our GraphAdapter should follow the privacy and safety of datasets and pre-trained53

models.54

3



References55

[1] L. Bossard, M. Guillaumin, and L. Van Gool. Food-101–mining discriminative components56

with random forests. In Computer Vision–ECCV 2014: 13th European Conference, Zurich,57

Switzerland, September 6-12, 2014, Proceedings, Part VI 13, pages 446–461. Springer, 2014.58

[2] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi. Describing textures in the59

wild. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages60

3606–3613, 2014.61

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical62

image database. In 2009 IEEE conference on computer vision and pattern recognition, pages63

248–255. Ieee, 2009.64

[4] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training ex-65

amples: An incremental bayesian approach tested on 101 object categories. In 2004 conference66

on computer vision and pattern recognition workshop, pages 178–178. IEEE, 2004.67

[5] P. Gao, S. Geng, R. Zhang, T. Ma, R. Fang, Y. Zhang, H. Li, and Y. Qiao. Clip-adapter: Better68

vision-language models with feature adapters. arXiv preprint arXiv:2110.04544, 2021.69

[6] P. Helber, B. Bischke, A. Dengel, and D. Borth. Eurosat: A novel dataset and deep learning70

benchmark for land use and land cover classification. IEEE Journal of Selected Topics in71

Applied Earth Observations and Remote Sensing, 12(7):2217–2226, 2019.72

[7] J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3d object representations for fine-grained73

categorization. In Proceedings of the IEEE international conference on computer vision74

workshops, pages 554–561, 2013.75

[8] S. Maji, E. Rahtu, J. Kannala, M. Blaschko, and A. Vedaldi. Fine-grained visual classification76

of aircraft. arXiv preprint arXiv:1306.5151, 2013.77

[9] M.-E. Nilsback and A. Zisserman. Automated flower classification over a large number of78

classes. In 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing,79

pages 722–729. IEEE, 2008.80

[10] O. M. Parkhi, A. Vedaldi, A. Zisserman, and C. Jawahar. Cats and dogs. In 2012 IEEE81

conference on computer vision and pattern recognition, pages 3498–3505. IEEE, 2012.82

[11] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,83

P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervision.84

In International conference on machine learning, pages 8748–8763. PMLR, 2021.85

[12] K. Soomro, A. R. Zamir, and M. Shah. Ucf101: A dataset of 101 human actions classes from86

videos in the wild. arXiv preprint arXiv:1212.0402, 2012.87

[13] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba. Sun database: Large-scale scene88

recognition from abbey to zoo. In 2010 IEEE computer society conference on computer vision89

and pattern recognition, pages 3485–3492. IEEE, 2010.90

[14] T. Yu, Z. Lu, X. Jin, Z. Chen, and X. Wang. Task residual for tuning vision-language models.91

arXiv preprint arXiv:2211.10277, 2022.92

[15] R. Zhang, X. Hu, B. Li, S. Huang, H. Deng, H. Li, Y. Qiao, and P. Gao. Prompt, generate,93

then cache: Cascade of foundation models makes strong few-shot learners. arXiv preprint94

arXiv:2303.02151, 2023.95

[16] R. Zhang, W. Zhang, R. Fang, P. Gao, K. Li, J. Dai, Y. Qiao, and H. Li. Tip-adapter: Training-96

free adaption of clip for few-shot classification. In Computer Vision–ECCV 2022: 17th European97

Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXV, pages 493–510.98

Springer, 2022.99

[17] K. Zhou, J. Yang, C. C. Loy, and Z. Liu. Learning to prompt for vision-language models.100

International Journal of Computer Vision, 130(9):2337–2348, 2022.101

4


	Applicability
	More Experimental Results
	More Dataset and Implementation Details
	Visualization of Graph Nodes
	Broader Impacts

