
Interpretable Graph Networks
Formulate Universal Algebra Conjectures

Francesco Giannini∗
CINI, Italy

francesco.giannini@unisi.it

Stefano Fioravanti∗
Università di Siena, Italy, JKU Linz, Austria Italy

stefano.fioravanti@unisi.it

Oguzhan Keskin
University of Cambridge, UK

ok313@cam.ac.uk

Alisia Maria Lupidi
University of Cambridge, UK

aml201@cam.ac.uk

Lucie Charlotte Magister
University of Cambridge, UK

lcm67@cam.ac.uk

Pietro Lió
University of Cambridge, UK

pl219@cam.ac.uk

Pietro Barbiero∗
Università della Svizzera Italiana, CH

University of Cambridge, UK
barbip@usi.ch

Abstract

The rise of Artificial Intelligence (AI) recently empowered researchers to investi-
gate hard mathematical problems which eluded traditional approaches for decades.
Yet, the use of AI in Universal Algebra (UA)—one of the fields laying the founda-
tions of modern mathematics—is still completely unexplored. This work proposes
the first use of AI to investigate UA’s conjectures with an equivalent equational
and topological characterization. While topological representations would enable
the analysis of such properties using graph neural networks, the limited trans-
parency and brittle explainability of these models hinder their straightforward use
to empirically validate existing conjectures or to formulate new ones. To bridge
these gaps, we propose a general algorithm generating AI-ready datasets based on
UA’s conjectures, and introduce a novel neural layer to build fully interpretable
graph networks. The results of our experiments demonstrate that interpretable
graph networks: (i) enhance interpretability without sacrificing task accuracy, (ii)
strongly generalize when predicting universal algebra’s properties, (iii) generate
simple explanations that empirically validate existing conjectures, and (iv) identify
subgraphs suggesting the formulation of novel conjectures.

1 Introduction FRAME

CONJE
CTURE

GENERATE

DATA SET

TRAIN AI

MODEL
EXTRACT

EXPLANATIONS

not modular
not m

odular modular

iGNN

not modular

Figure 1: Interpretable graph networks
support universal algebra research.

Universal Algebra (UA, (6)) is one of the foundational fields
of modern Mathematics with possible deep impact in all
mathematical disciplines, but the complexity of studying
abstract algebraic structures hinders scientific progress and
discourages many academics. Recently, the emergence of
powerful AI technologies empowered researchers to inves-
tigate intricate mathematical problems which eluded tradi-
tional approaches for decades, leading to the solution of
open problems (e.g., (24)) and discovery of new conjectures
(e.g., (7)). Yet, universal algebra currently remains an un-
investigated realm for AI, primarily for two reasons (i) first

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

UA deals with infinite objects or even classes of abstract objects, which pose unique challenges for
conventional AI techniques, (ii) secondly the field commonly relies on deterministic algorithms,
utilized to construct finite models or serve as deterministic theorem provers, such as "mace4" and
"prover9"1. In this sense, we hope that our paper could represent a guidance to further explore the
study of UA’s problems with AI, e.g. by integrating existing systems, like these mentioned theorem
provers, with our methodology, which may suggest novel conjectures, in a unique scheme.

Universal algebra studies algebraic structures from an abstract perspective. Interestingly, several
UA conjectures equivalently characterize algebraic properties using equations or graphs (16). In
theory, studying UA properties as graphs would enable the use of powerful AI techniques, such as
Graph Neural Networks (GNN, (39)), which excel on graph-structured data. However, two factors
currently limit scientific progress. First, the absence of benchmark datasets suitable for machine
learning prevents widespread application of AI to UA. Second, GNNs’ opaque reasoning obstructs
human understanding of their decision process (38). Compounding the issue of GNNs’ limited
transparency, GNN explainability methods mostly rely on brittle and untrustworthy local/post-hoc
methods (14; 27; 28; 38; 45) or pre-defined subgraphs for explanations (2; 42), which are often
unknown in UA.

Contributions. In this work, we investigate universal algebra’s conjectures through AI (Figure 1).
Our work includes three significant contributions. First, we propose a novel algorithm that generates
a dataset suitable for training AI models based on an UA equational conjecture. Second, we generate
and release the first-ever universal algebra’s dataset compatible with AI, which contains more than
29, 000 lattices and the labels of 5 key properties i.e., modularity, distributivity, semi-distributivity,
join semi-distributivity, and meet semi-distributivity. And third, we introduce a novel neural layer that
makes GNNs fully interpretable, according to Rudin’s (38) notion of interpretability. The results of our
experiments demonstrate that interpretable GNNs (iGNNs): (i) enhance GNN interpretability without
sacrificing task accuracy, (ii) strongly generalize when trained to predict universal algebra’s properties,
(iii) generate simple concept-based explanations that empirically validate existing conjectures, and
(iv) identify subgraphs which could be relevant for the formulation of novel conjectures. As a
consequence, our findings demonstrate the potentiality of AI methods for investigating UA problems.

2 Background

Universal Algebra is a branch of mathematics studying general and abstract algebraic structures.
Algebraic structures are typically represented as ordered pairs A = (A,F), consisting of a non-empty
set A and a collection of operations F defined on the set. UA aims to identify algebraic properties
(often in equational form) shared by various mathematical systems. In particular, varieties are classes
of algebraic structures sharing a common set of identities, which enable the study of algebraic systems
based on their common properties. Prominent instances of varieties that have been extensively studied
across various academic fields encompass Groups, Rings, Boolean Algebras, Fields, and many others.
A particularly relevant variety of algebras are Lattices (details in Appendix A.3), which are often
studied for their connection with logical structures.
Definition 2.1. A lattice L is an algebraic structure composed by a non-empty set L and two binary
operations ∨ and ∧, satisfying the commutativity, associativity, idempotency, and absorption axioms.

Figure 2: Hasse diagrams.

Equivalently a lattice can be characterized as a partially ordered set in
which every pair of elements has a supremum (∨) and an infimum (∧)
(cf. Appendix A.3). Lattices also have formal representations as graphs
via Hasse diagrams (L,E) (e.g., Figure 2), where each node x ∈ L is a
lattice element, and directed2 edges (x, y) ∈ E ⊆ L × L represent the
ordering relation, such that if (x, y) ∈ E then x ≤L y in the ordering of
the lattice. A sublattice L′ of a lattice L is a lattice such that L′ ⊆ L and
L′ preserves the original order (the “essential structure”) of L, i.e. for all x, y ∈ L′ then x ≤L′ y if
and only if x ≤L y. The foundational work by Birkhoff (5), Dedekind (9), and Jónsson (18) played a
significant role in discovering that some significant varieties of lattices can be characterized through
the omission of one or more lattices. Specifically, a variety V of lattices is said to omit a lattice L
if the latter cannot be identified as a sublattice of any lattice in V . A parallel line of work in UA

1https://www.cs.unm.edu/~mccune/prover9/.
2The orientation of Hasse diagrams is always to be meant bottom-up, hence we will omit arrows for simplicity.

2

https://www.cs.unm.edu/~mccune/prover9/

characterizes lattices in terms of equational ("term1 ≈ term2") and quasi-equational ("if equation1
holds then equation2 holds") properties, such as distributivity and modularity.
Definition 2.2. Let L be a lattice. L is modular if it satisfies x ≤ y → x ∨ (y ∧ z) ≈ y ∧ (x ∨ z);
distributive if it satisfies x ∨ (y ∧ z) ≈ (x ∨ y) ∧ (x ∨ z).

We notice that each distributive lattice is also modular (see Appendix A.3). Figure 2 represents M3

(modular with 3 atoms) and N5 (non-modular with 5 atoms), the smallest instances of lattices which
exhibit failures of distributivity and modularity, respectively. For example, N5 is neither modular
nor distributive, considering the substitution x = a, y = c, z = b. The same substitution shows that
M3 is not distributive. The classes of distributive and modular lattices show classical examples of
varieties that can equivalently be characterized using equations and lattice omissions, as illustrated by
the following theorems.
Theorem 2.3 (Dedekind (9)). A lattice variety V is modular if and only if V omits N5.

Theorem 2.4 (Birkhoff (5)). A lattice variety V is distributive if and only if V omits N5 and M3.

Starting from these classic results, the investigation of lattice omissions and the structural charac-
terizations of classes of lattices has evolved into a rich and extensively studied field (16), but it was
never approached with AI methodologies before.

3 Methods

The problem of characterizing lattice varieties through lattice omission is very challenging as it
requires the analysis of large (potentially infinite) lattices (5; 9; 18). To address this task, we propose
the first AI-assisted framework supporting mathematicians in finding empirical evidences to validate
existing conjectures and to suggest novel theorems. To this end, we propose a general algorithm
(Section 3.1) allowing researchers in universal algebra to define a property of interest and generate
a dataset suitable to train AI models. We then introduce interpretable graph networks (Section 3.2)
which can suggest candidate lattices whose omission is responsible for the satisfaction of the given
algebraic property.

3.1 A Tool to Generate Datasets of Lattice Varieties

Algorithm 1: Generate dataset of lattice varieties.
Input: n ≥ 1, hasProperty(·,·,·) // n: cardinality
Dataset = []
AllFuncs← genAllFuncs(n) // binary functions as n× n matrices
for L ∈ AllFuncs do // L(i, j) = 1 meaning i ≤L j

if isPartialOrder(L) then // check if≤L is refl., antisym. and trans.
if isLattice(L) then // check if L is a lattice

for i, j ≤ n do
∧L[i, j]← supx≤L{x ≤L i and x ≤L j}
∨L[i, j]← infx≤L{i ≤L x and j ≤L x}

if hasProperty(L,∧L,∨L) then // check∧L ,∨L properties
Dataset.append([L, True])

else
Dataset.append([L, False])

We propose a general methodology to investi-
gate any algebraic property whose validity can
be verified on a finite lattice. In this work, we
focus on properties that can be characterized via
equations and quasi-equations. To train AI mod-
els, we propose a general dataset generator3 for
lattice varieties. Intuitively, the generator takes
as input the number of nodes n in the lattices
and a function to check whether a lattice satisfies
a given property. We generate 2n×n matrices
of size n × n, containing all binary functions
definable on {1, . . . , n}2, and filter only binary matrices representing partial orders. Then, we verify
that the partial ordered set L is a lattice, by checking that any pair of nodes always has a unique
infimum and supremum. This directly verifies that ∧L and ∨L satisfy Definition 2.1. Finally, we
check whether the lattice satisfies the target property or not, and append it and the property label
to our dataset. We remark that checking the validity of a single ternary equation on a medium-size
lattice is not computationally prohibitive (i.e., it “only” requires checking n3 identities), but the
number of existing lattices increases exponentially as n increases. For instance, it is known that there
are at least 2,000,000 non-isomorphic lattices with n = 10 elements (4). Therefore, we only sample
a fixed number of lattices per cardinality starting from a certain node cardinality. While this may
seem a strong bias, we notice that known and relevant lattice omissions often rely on lattices with
few nodes (5; 9). To empirically verify that this is not a significant limitation, in our experiments we
deliberately investigate the generalization capacity of GNNs when trained on small-size lattices and
tested on larger ones. This way we can use GNNs to predict the satisfiability of equational properties

3The dataset generator and the datasets are available at https://github.com/fragiannini/AI4UA.

3

https://github.com/fragiannini/AI4UA

MESSAGE PASSING

HARD
GUMBEL-SOFTMAX

INTERPRETABLE
CLASSIFIER

CONCEPT
"2-node neighborhood"

CONCEPT
"3-node neighborhood"

INTERPRETABLE
AGGREGATION

(SUM/MAX)

(LINEAR MODEL)

1 0 0

0 0 1

"NON DISTRIBUTIVE"

Figure 3: An interpretable graph layer (i) aggregates node features with message passing, (ii) generates
a node-level concept space with a hard Gumbel-Softmax activation Θ, (iii) generates a graph-level
concept space with an interpretable permutation invariant pooling function ⊞ on node-level concepts,
and (iv) predicts a task label with an interpretable classifier f using graph-level concepts.

on large graph structures without explicitly checking them. Using Algorithm 1, we generated the
first large-scale AI-compatible datasets of lattices containing more than 29, 000 graphs and the labels
of 5 key properties of lattice (quasi-)varieties i.e., modularity, distributivity, semi-distributivity, join
semi-distributivity, and meet semi-distributivity, whose definitions can be found in Appendix A.

Scalability and Complexity. The scalability of the dataset generation process is related to two
main points: (i) dealing with the exponential growth of the number of lattices, (ii) how to feasibly
generate a lattice of a finite amount of elements. (i) Since the number of lattices definable on a set
L = {0, ...n − 1} increases exponentially with n, it is not feasible to realize a dataset containing
all the lattices of n elements. However, this is also unnecessary for the scope of this work, which
aims at automatically identifying (small) topological patterns responsible for the failure of certain
algebraic properties. In addition, the majority of the graphs generated are isomorphic, thus not
particularly informative for our task. Because of this, we only generate a portion of all the lattices
up to a certain value M > 0, and then take a fixed number of samples ns up to N (we take M = 8,
ns = 20, N = 50 in the paper). (ii) The construction of a lattice with n elements is briefly sketched
in Algorithm 1. We refer to Appendix B for the technical details on the design of the used functions.

3.2 Interpretable Graph Networks (iGNNs)

In this section, we design an interpretable graph network (iGNN, Figure 3) that satisfies the notion
of "interpretability" introduced by Rudin (38). According to this definition, a machine learning
(ML) system is interpretable if and only if (1) its inputs are semantically meaningful, and (2) its
model inference is simple for humans to understand (e.g., sparse and/or symbolic). This definition
covers ML systems that take tabular datasets or sets of concepts as inputs, and (piece-wise) linear
models such as logistic regression or decision trees. To achieve this goal in GNNs, we introduce
an interpretable graph layer that learns semantically meaningful concepts and uses them as inputs
for a simple linear classification layer. We then show how this layer can be included into existing
architectures or into hierarchical iGNNs, which consist of a sequence of interpretable graph layers.
We notice that in devising our approach, we preferred to rely on linear classifiers as they are fully
differentiable, hence allowing us to realize a fully interpretable and differentiable model from the
input to the classification head. However,in practice any interpretable and differentiable classifier
could be used in place of this linear layer.

3.2.1 Interpretable Graph Layer

The interpretable graph layer (Figure 3) serves three main functions: message passing, concept
generation, and task predictions. The first step of the interpretable graph layer involves a standard
message passing operation (Eq. 1 right), which aggregates information from node neighbors. This
operation enables to share and process relational information across nodes and it represents the basis
of any GNN layer.

Node-level concepts. An interpretable concept space is the first step towards interpretability.
Following Ghorbani et al. (10), a relevant concept is a “high-level human-understandable unit of

4

information” shared by input samples and thus identifiable with clustering techniques. Message
passing algorithms do cluster node embeddings based on the structure of node neighborhoods,
as observed by Magister et al. (28). However, the real-valued large embedding representations
hi ∈ Rq, q ∈ N generated by message passing can be challenging for humans to interpret. To address
this, we use a hard Gumbel-Softmax activation Θ : Rq 7→ {0, 1}q , following Azzolin et al. (2):

ci = Θ
(
hi

)
hi = ϕ

(
xi,

⊕
j∈Ni

ψ(xi,xj)
)

(1)

where ψ is a learnable function ignoring or assuming constant input features and ϕ is a learnable
function aggregating information from a node neighborhood Ni, and ⊕ is a permutation invariant
aggregation function (such as sum or mean). During the forward pass, the Gumbel-Softmax activation
Θ produces a one-hot encoded representation of each node embedding. Since nodes sharing the
same neighborhood have similar embeddings hi due to message passing, they will also have the
same one-hot vector ci due to the Gumbel-Softmax, and vice versa - we can then interpret nodes
having the same one-hot concept ci as nodes having similar embeddings hi and thus sharing a similar
neighborhood. More formally, we can assign a semantic meaning to a reference concept γ ∈ {0, 1}q
by visualizing concept prototypes corresponding to the inverse images of a node concept vector.
In practice, we can consider a subset of the input lattices Γ corresponding to the node’s (p-hop)
neighborhood covered by message passing:

Γ(γ, p) =
{
L⟨i,p⟩ | i ∈ L ∧ L ∈ D ∧ ci = γ

}
(2)

where D is the set of all training lattices, and L⟨i,p⟩ is the graph corresponding to the p-hop neighbor-
hood (p ∈ {1, . . . , |L|}) of the node i ∈ L, as suggested by Ghorbani et al. (10); Magister et al. (28).
This way, by visualizing concept prototypes as subgraph neighborhoods, the meaning of the concept
representation becomes easily interpretable to humans (Figure 3), aiding in the understanding of the
reasoning process of the network.

Example 3.1 (Interpreting node-level concepts). Consider the problem of classifying distributive
lattices with a simplified dataset including N5 and M3 only, and where each node has a
constant feature xi = 1. As these two lattices only have nodes with 2 or 3 neighbours, one layer of
message passing will then generate only two types of node embeddings e.g., hII = [0.2,−0.4, 0.3]

for nodes with a 2-nodes neighborhood (e.g.,), and hIII = [0.6, 0.2,−0.1] for nodes with a

3-nodes neighborhood (e.g.,). As a consequence, the Gumbel-Softmax will only generate two
possible concept vectors e.g., cII = [0, 0, 1] and cIII = [1, 0, 0]. Hence, for instance the concept

belongs to cII , while belongs to cIII .

Graph-level concept embeddings. To generate a graph-level concept space in the interpretable
graph layer, we can utilize the node-level concept space produced by the Gumbel-Softmax. Normally,
graph-level embeddings are generated by applying a permutation invariant aggregation function on
node embeddings. However, in iGNNs we restrict the options to (piece-wise) linear permutation
invariant functions in order to follow our interpretability requirements dictated by Rudin (38). This
restriction still includes common options such as max or sum pooling. Max pooling can easily be
interpreted by taking the component-wise max over the one-hot encoded concept vectors ci. After
max pooling, the graph-level concept vector has a value of 1 at the k-th index if and only if at least
one node activates the k-th concept i.e., ∃i ∈ L, cik = 1. Similarly, we can interpret the output of a
sum pooling: a graph-level concept vector takes a value v ∈ N at the k-th index after sum pooling if
and only if there are exactly v nodes activating the k-th concept i.e., ∃i0, . . . , iv ∈ L, cik = 1.

Example 3.2 (Interpreting graph-level concepts). Following Example 3.1, let us use sum pooling
to generate graph-level concepts. For an N5 graph, we have 5 nodes with exactly the same 2-node
neighborhood. Therefore, sum pooling generates a graph-level embedding [0, 0, 5], which certifies

that we have 5 nodes of the same type e.g., . For an M3 graph, the top and bottom nodes have a
3-node neighborhood e.g., , while the middle nodes have a 2-node neighborhood e.g., . This
means that sum pooling generates a graph-level embedding [2, 0, 3], certifying that we have 2 nodes

of type and 3 nodes of type .

5

Interpretable classifier. To prioritize the identification of relevant concepts, we use a classifier to
predict the task labels using the concept representations. A black-box classifier like a multi-layer
perceptron (36) would not be ideal as it could compromise the interpretability of our model, so
instead we use an interpretable linear classifier such as a single-layer network (20). This allows for
a completely interpretable and differentiable model from the input to the classification head, as the
input representations of the classifier are interpretable concepts and the classifier is a simple linear
model which is intrinsically interpretable as discussed by Rudin (38). In fact, the weights of the
perceptron can be used to identify which concepts are most relevant for the classification task. Hence,
the resulting model can be used not only for classification, but also to interpret and understand the
problem at hand.

3.2.2 Interpretable architectures

The interpretable graph layer can be used to instantiate different types of iGNNs. One approach is to
plug this layer as the last message passing layer of a standard GNN architecture:

ŷ = f
(
⊞i∈K

(
Θ
(
ϕ(K)

(
h
(K−1)
i ,

⊕
j∈Ni

ψ(K)(h
(K−1)
i ,h

(K−1)
j)

))))
(3)

h
(l)
i = ϕ(l)

(
h
(l−1)
i ,

⊕
j∈Ni

ψ(l)(h
(l−1)
i ,h

(l−1)
j)

)
l = 1, . . . ,K (4)

where f is an interpretable classifier (e.g., single-layer network), ⊞ is an interpretable piece-wise
linear and permutation-invariant function (such as max or sum), Θ is a Gumbel-Softmax hard
activation function, and h0

i = xi. In this way, we can interpret the first part of the network as a feature
extractor generating well-clustered latent representations from which concepts can be extracted. This
approach is useful when we only care about the most complex neighborhoods/concepts. Another
approach is to generate a hierarchical transparent architecture where each GNN layer is interpretable:

ŷ(l) = f
(
⊞i∈K

(
Θ
(
h
(l)
j

)))
l = 1, . . . ,K (5)

In this case, we can interpret every single layer of our model with concepts of increasing complexity.
The concepts extracted from the first layer represent subgraphs corresponding to the 1-hop neighbor-
hood of a node, those extracted at the second layer will correspond to 2-hop neighborhoods, and so on.
These hierarchical iGNNs can be useful to get insights into concepts with different granularities. By
analyzing the concepts extracted at each layer, we gain a better understanding of the GNN inference
and of the importance of different (sub)graph structures for the classification task.

3.2.3 Training

For the classification layer, the choice of the activation and loss functions for iGNNs depends on the
nature of the task at hand and does not affect their interpretability. For classification tasks, we use
standard activation functions such as softmax or sigmoid, along with standard loss functions like
cross-entropy. For hierarchical iGNNs (HiGNNs), we apply the same loss function at each layer of
the concept hierarchy, as their layered architecture enables intermediate supervisions. This ensures
that each layer is doing its best to extract the most relevant concepts to solve the task. Internal losses
can also be weighted differently to prioritize the formation of optimal concepts of a specific size,
allowing the HiGNN to learn in a progressive and efficient way.

4 Experimental Analysis

4.1 Research questions

In this section we analyze the following research questions:

• Generalization - Can GNNs generalize when trained to predict universal algebra’s proper-
ties? Can interpretable GNNs generalize as well?

• Interpretability - Do interpretable GNNs concepts empirically validate universal algebra’s
conjectures? How can concept-based explanations suggest novel conjectures?

6

4.2 Setup

Baselines. For our comparative study, we evaluate the performance of iGNNs and their hierarchical
version against equivalent GNN models (i.e., having the same hyperparameters such as number
layers, training epochs, and learning rate). For vanilla GNNs we resort to common practice replacing
the Gumbel-Softmax with a standard leaky ReLU activation. We exclude from our main baselines
prototype or concept-based GNNs pre-defining graph structures for explanations, as for most datasets
these structures are unknown. Appendix C covers implementation details. We show more extensive
results including local and post-hoc explanations in Appendix G.

Evaluation. We employ three quantitative metrics to assess a model’s generalization and inter-
pretability. We use the Area Under the Receiver Operating Characteristic (AUC ROC) curve to assess
task generalization. We evaluate generalization under two different conditions: with independently
and identically distributed train/test splits, and out-of-distribution by training on graphs up to eight
nodes, while testing on graphs with more than eight nodes (“strong generalization” (41)). We further
assess generalization under binary and multilabel settings (classifying 5 properties of a lattice at
the same time). To evaluate interpretability, we use standard metrics such as completeness (44) and
fidelity (37). Completeness4 assesses the quality of the concept space on a global scale using an
interpretable model to map concepts to tasks, while fidelity measures the difference in predictions
obtained with an interpretable surrogate model and the original model. Finally, we evaluate the mean-
ingfulness of our concept-based explanations by visualizing and comparing the generated concepts
with ground truth lattices like e.g. M3 and N5, whose omission is known to be significant for modular
and distributive properties. All metrics in our evaluation, across all experiments, are computed on
test sets using 5 random seeds, and reported using the mean and 95% confidence interval.

5 Key Findings

5.1 Generalization

iGNNs improve interpretability without sacrificing task accuracy (Figure 4). Our experimental
evaluation reveals that interpretable GNNs are able to strike a balance between completeness and
fidelity, two crucial metrics that are used to assess generalization-interpretability trade-offs (37). We
observe that the multilabel classification scenario, which requires models to learn a more varied
and diverse set of concepts, is the most challenging and results in the lowest completeness scores
on average. We also notice that the more challenging out-of-distribution scenario results in the
lowest completeness and fidelity scores across all datasets. More importantly, our findings indicate
that iGNNs achieve optimal fidelity scores, as their classification layer consists of a simple linear
function of the learnt concepts which is intrinsically interpretable (38). On the contrary, interpretable
surrogate models of black-box GNNs exhibit, as expected, lower fidelity scores, confirming analogous
observations in the explainable AI literature (37; 38). In practice, this discrepancy between the original
black-box predictions and the predictions obtained with an interpretable surrogate model questions
the actual usefulness of black-boxes when interpretable alternatives achieve similar results in solving
the problem at hand, as extensively discussed by Rudin (38). Overall, these results demonstrate how
concept spaces are highly informative to solve universal algebra’s tasks and how the interpretable
graph layer may improve GNNs’ interpretability without sacrificing task accuracy. We refer the
reader to Appendix E for detailed discussion on quantitative analysis of concept space obtained by
iGNNs under different generalization settings with comparisons to their black-box counterparts.

GNNs strongly generalize on universal algebra’s tasks (Figure 5). Our experimental findings
demonstrate the strong generalization capabilities of GNNs across the universal algebra tasks we
designed. Indeed, we stress GNNs test generalization abilities by training the models on graphs of size
up to n (with n ranging from 5 to 8), and evaluating their performance on much larger graphs of size
up to 50. We designed this challenging experiment in order to understand the limits and robustness
of interpretable GNNs when facing a significant data distribution shift from training to test data.
Remarkably, iGNNs exhibit robust generalization abilities (similar to their black-box counterparts)
when trained on graphs up to size 8 and tested on larger graphs. This evidence confirms the hypothesis
that interpretable models can deliver reliable and interpretable predictions, as suggested by Rudin

4We assess the recall of the completeness as the datasets are very unbalanced towards the negative label.

7

80 90 100

COMPLETENESS %

80

85

90

95

100

F
ID

E
L

IT
Y

%

multilabel

60 80 100

COMPLETENESS %

20

40

60

80

100
Distributive

60 80 100

COMPLETENESS %

40

60

80

100
Modular

80 90 100

COMPLETENESS %

70

80

90

100
MeetSemiDistributive

80 90 100

COMPLETENESS %

85

90

95

100
JoinSemiDistributive

85 90 95 100

COMPLETENESS %

85

90

95

100
SemiDistributive

GSAT

GSAT (strong)

Black-Box + GCExplainer

Black-Box + GCExplainer (strong)

HiGNN

HiGNN (strong)

iGNN

iGNN (strong)

Figure 4: Accuracy-interpretability trade-off in terms of concept completeness (accuracy) and model
fidelity (interpretability). iGNNs attain optimal fidelity as model inference is inherently interpretable,
outmatching equivalent black-box GNNs. All models attain similar results in terms of completeness.

(38). However, we observe that black-box GNNs slightly outperform iGNNs when trained on even
smaller lattices. We hypothesize that this is due to the more constrained architecture of iGNNs,
which imposes tighter bounds on their expressiveness when compared to standard black-box GNNs.

5 6 7 8
50

60

70

80

90

100
Distributive

5 6 7 8
50

60

70

80

90

100
Modular

5 6 7 8
50

60

70

80

90

100
Multilabel

Maximum Number of Nodes in Training

T
es

t
A

U
C

R
O

C
(%

)

Black-Box GNN iGNN HiGNN

Figure 5: Strong generalization performance with respect to the maxi-
mum number of nodes used in training.

Notably, training with
graphs of size up to 5 or
6 significantly diminishes
GNNs generalization in
the tasks we designed.
We hypothesize that this
is due to the scarcity
of non-distributive and
non-modular lattices during
training, but it may also
suggest that some patterns
of size 7 and 8 might be
quite relevant to generalize
to larger graphs. Unfortunately, running generalization experiments with n ≤ 4 was not possible
since all such lattices trivially omitted N5 and M3. It is worth mentioning that GNNs performed
well even in the challenging multilabel case, where they had to learn a wider and more diverse set of
concepts and tasks. In all experiments, we observe a plateau of the AUC ROC scores for n = 8, thus
suggesting that a training set including graphs of this size might be sufficient to learn the relevant
patterns allowing the generalization to larger lattice varieties. For detailed numerical results across
all tasks, we refer the reader to Table 1 in Appendix D. Overall, these results emphasize the potential
of GNNs in addressing complex problems in universal algebra, providing an effective tool to handle
lattices that are difficult to analyze manually with pen and paper.

5.2 Interpretability

Concept-based explanations empirically validate universal algebra’s conjec-
tures (Figure 6). We present empirical evidence to support the validity of theo-
rems 2.3 and 2.4 by examining the concepts generated for modular and distribu-
tive tasks. For this investigation we leverage the interpretable structure of iGNNs.

415768
Concept ID [Distributive]

−0.4

−0.3

−0.2

−0.1

0.0

O
m

is
si

on
R

el
ev

an
ce

1531096
Concept ID [Modular]

−0.3

−0.2

−0.1

0.0

O
m

is
si

on
R

el
ev

an
ce

Figure 6: Ranking of relevant clusters of lattices (x-axis) accord-
ing to the interpretable GNN linear classifier weights (y-axis, the
lower the more relevant the cluster). N5 is always the most impor-
tant sub-lattice to omit for modularity, while both M3 and N5 are
relevant for distributivity, thus validating theorems 2.3 and 2.4.

Similarly to Ribeiro et al. (37),
we visualize in Figure 6 the
weights of our trained linear clas-
sifier representing the relevance
of each concept. We remark that
the visualization is limited to the
(top-5) most negative weights, as
we are interested in those con-
cepts that negatively affect the
prediction of a property. In the
same plot, we also show the
prototype of each concept rep-
resented by the 2-hop neighbor-

8

hood of a node activating the concept, following a similar procedure as Ghorbani et al. (10); Magister
et al. (28); Azzolin et al. (2). Using this visualization, we investigate the presence of certain concepts
when classifying modular and distributive lattices. For the modularity task, our results show that the
lattice N5 appears among non-modular concepts, but is never found in modular lattices, while the
lattice M3 appears among both modular and non-modular concepts, which is consistent with Theorem
2.3. In the case of distributivity, we observe that both M3 and N5 are present among non-distributive
concepts, and are never found in distributive lattices, which is also in line with Theorem 2.4. These
findings provide a large-scale empirical evidence for the validity of theorems 2.3 and 2.4, and further
demonstrate the effectiveness of graph neural networks in learning and analyzing lattice properties.
Overall, these results highlight how interpretable GNNs can not only learn the properties of universal
algebra but also identify structures that are unique to one type of lattice (e.g., non-modular) and
absent from another (e.g., modular), thus providing human-interpretable explanations for what the
models learn.

Contrastive explanations highlight topological differences between properties of lattice va-
rieties (Figure 7). We leverage interpretable GNNs to analyze the key topological differences
of classical lattice properties such as join and meet semi-distribuitivity characterized by relevant
quasi-equations (cf. Appendix A.5). To this end, we visualize specific concept prototypes corre-
sponding to lattices that are not meet semi-distributive against lattices that are meet semi-distributive.

Meet Semi-Distributive Meet Semi-Distributive Meet Semi-Distributive

Non Join Semi-Distributive Lattice Varieties
Join Semi-Distributive Join Semi-Distributive Join Semi-Distributive

Non Meet Semi-Distributive Lattice Varieties

Figure 7: Contrastive explanations showing lattice varieties with a
a pair of discording labels to highlight the key difference between
join and meet semi-distributivity.

We observe N5 but not M3

among the concepts of meet
semi-distributive lattices, while
we observe both N5 and M3

only in concepts that are not meet
semi-distributive. This observa-
tion suggests that N5 is not a key
lattice for meet semi-distributive
lattices, unlike distributive lattices. Furthermore, we find that the lattice pattern is relevant for non
meet semidistributivity, while its dual is relevant for non join semidistributivity, thus empirically
confirming the hypotheses of Jónsson and Rival (19). These findings are significant because they
demonstrate how analyzing concepts in interpretable GNNs can provide universal algebraists with a
powerful and automatic tool to formulate new conjectures based on identifying simple lattices that
play a role in specific properties. By leveraging the power of interpretable GNNs, we may uncover
previously unknown connections between different properties and identify new patterns and structures
that could lead to the development of new conjectures and theorems in universal algebra, providing
exciting opportunities for future research in universal algebra.

6 Discussion

Relations with Graph Neural Network explainability. Graph Neural Networks (GNNs,(39))
process relational data generating node representations by combining the information of a node with
that of its neighbors, thanks to a general learning paradigm known as message passing (11). A number
of post-hoc explainability techniques have been proposed to explain the reasoning of GNNs. Inspired
by vision approaches (40; 37; 10), early explainability techniques focused on feature importance (35),
while subsequent works aimed to extract local explanations (45; 27; 42) or global explanations using
conceptual subgraphs by clustering the activation space (28; 46; 29; 22). However, all these techniques
either rely on pre-defined subgraphs for explanations (which are often unknown in UA) or provide
post-hoc explanations which may be brittle and unfaithful as extensively demonstrated by Rudin
(38). On the contrary, our experiments show that iGNNs generate interpretable predictions according
to Rudin (38) notion of interpretability via linear classifiers applied on sparse human-understandable
concept representations.

Limitations. The approach proposed in this paper focuses on universal algebra conjectures charac-
terized both algebraically and topologically. Our methodology is limited to finite lattices, which may
not capture all relevant information about infinite algebraic structures. However, the insights gained
from finite-lattice explanations can still provide valuable information regarding a given problem
(albeit with potentially limited generalization). Moreover, our approach is restricted to topological

9

properties on graphs, while non-structural properties may require the adoption of other kinds of
(interpretable) models.

Broader impact and perspectives. AI techniques are becoming increasingly popular for solv-
ing previously intractable mathematical problems and proposing new conjectures (23; 26; 7; 12).
However, the use of modern AI methods in universal algebra was a novel and unexplored field
until the development of the approach presented in this paper. To this end, our method uses inter-
pretable graph networks to suggest graph structures that characterize relevant algebraic properties
of lattices. With our approach, we empirically validated Dedekind (9) and Birkhoff (5) theorems
on distributive and modular lattices, by recovering relevant lattices. This approach can be readily
extended—beyond equational properties determined by the omission of a sublattice in a variety (43)—
to any structural property of lattices, including the characterization of congruence lattices of algebraic
varieties (1; 21; 31; 43). Our methodology can also be applied (beyond universal algebra) to investi-
gate (almost) any mathematical property that can be topologically characterized on a graph, such as
the classes of graphs/diagraphs with a fixed set of polymorphisms (25; 3; 32).

Conclusion. This paper presents the first-ever AI-assisted approach to investigate equational and
topological conjectures in the field of universal algebra. To this end, we present a novel algorithm to
generate datasets suitable for AI models to study equational properties of lattice varieties. While topo-
logical representations would enable the use of graph neural networks, the limited transparency and
brittle explainability of these models hinder their use in validating existing conjectures or proposing
new ones. For this reason, we introduce a novel neural layer to build fully interpretable graph net-
works to analyze the generated datasets. The results of our experiments demonstrate that interpretable
graph networks: enhance interpretability without sacrificing task accuracy, strongly generalize when
predicting universal algebra’s properties, generate simple explanations that empirically validate
existing conjectures, and identify subgraphs suggesting the formulation of novel conjectures. These
promising results demonstrate the potential of our methodology, opening the doors of universal
algebra to AI with far-reaching impact across all mathematical disciplines.

Acknowledgments and Disclosure of Funding

This paper was supported by TAILOR and by HumanE-AI-Net projects funded by EU Horizon
2020 research and innovation programme under GA No 952215 and No 952026, respectively. This
paper has been also supported by the Austrian Science Fund FWF project P33878 “Equations in
Universal Algebra” and the European Union’s Horizon 2020 research and innovation programme
under grant agreement No 848077. This project has also received funding from the European Union’s
Horizon-MSCA-2021 research and innovation program under grant agreement No 101073307.

References
[1] Paolo Aglianò, Stefano Bartali, and Stefano Fioravanti. On Freese’s technique. International

Journal of Algebra and Computation, 2023. doi: https://doi.org/10.1142/S0218196723500601.
URL https://arxiv.org/abs/2302.11452.

[2] Steve Azzolin, Antonio Longa, Pietro Barbiero, Pietro Liò, and Andrea Passerini. Global ex-
plainability of gnns via logic combination of learned concepts. arXiv preprint arXiv:2210.07147,
2022.

[3] Libor Barto, Marcin Kozik, and Todd Niven. The csp dichotomy holds for digraphs with no
sources and no sinks (a positive answer to a conjecture of bang-jensen and hell). SIAM Journal
on Computing, 38(5):1782–1802, 2009.

[4] Joel Berman and Paweł Idziak. Counting finite algebras in the post varieties. International
Journal of Algebra and Computation, 10(03):323–337, 2000.

[5] Garrett Birkhoff. On the structure of abstract algebras. In Mathematical proceedings of the
Cambridge philosophical society, volume 31, pages 433–454. Cambridge University Press,
1935.

[6] Stanley Burris and H. P. Sankappanavar. A Course in Universal Algebra. Springer, 1981.

10

https://arxiv.org/abs/2302.11452

[7] Alex Davies, Petar Veličković, Lars Buesing, Sam Blackwell, Daniel Zheng, Nenad Tomašev,
Richard Tanburn, Peter Battaglia, Charles Blundell, András Juhász, Marc Lackenby, Geordie
Williamson, Demis Hassabis, and Pushmeet Kohli. Advancing mathematics by guiding
human intuition with AI. Nature, 600(7887):70–74, December 2021. doi: 10.1038/
s41586-021-04086-x. URL https://doi.org/10.1038/s41586-021-04086-x.

[8] Alan Day. A characterization of modularity for congruence lattices of algebras*. Canadian
Mathematical Bulletin, 12(2):167–173, 1969. doi: 10.4153/CMB-1969-016-6.

[9] Richard Dedekind. Über die von drei Moduln erzeugte Dualgruppe. Math. Ann., 1900.

[10] Amirata Ghorbani, James Wexler, James Y Zou, and Been Kim. Towards automatic concept-
based explanations. Advances in Neural Information Processing Systems, 32, 2019.

[11] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning,
pages 1263–1272. PMLR, 2017.

[12] Yang-Hui He. Machine-learning mathematical structures. International Journal of Data Science
in the Mathematical Sciences, pages 1–25, 2022.

[13] Jobst Heitzig and Jürgen Reinhold. Counting finite lattices. Algebra universalis, 48(1):43–53,
2002.

[14] Qiang Huang, Makoto Yamada, Yuan Tian, Dinesh Singh, and Yi Chang. Graphlime: Local
interpretable model explanations for graph neural networks. IEEE Transactions on Knowledge
and Data Engineering, 2022.

[15] Martin Hyland and John Power. The category theoretic understanding of universal alge-
bra: Lawvere theories and monads. Electronic Notes in Theoretical Computer Science,
172:437–458, 2007. ISSN 1571-0661. doi: https://doi.org/10.1016/j.entcs.2007.02.019.
URL https://www.sciencedirect.com/science/article/pii/S1571066107000874.
Computation, Meaning, and Logic: Articles dedicated to Gordon Plotkin.

[16] Peter Jipsen and Henry Rose. Varieties of Lattices. Springer Berlin, 1992.

[17] Bjarni Jonnson. Algebras whose congruence lattices are distributive. MATHEMATICA
SCANDINAVICA, 21:110–121, Dec. 1967. doi: 10.7146/math.scand.a-10850. URL https:
//www.mscand.dk/article/view/10850.

[18] Bjarni Jónsson. On the representation of lattices. Mathematica Scandinavica, 1953.

[19] Bjarni Jónsson and Ivan Rival. Lattice varieties covering the smallest non-modular lattice
variety. Pacific J. Math., Volume 82, 1978.

[20] Samandarov Erkaboy Karimboyevich and Abdurakhmonov Olim Nematullayevich. Single layer
artificial neural network: Perceptron. European Multidisciplinary Journal of Modern Science,
5:230–238, Apr. 2022. URL https://emjms.academicjournal.io/index.php/emjms/
article/view/253.

[21] Keith Kearnes and Emil Kiss. The shape of congruence lattices. Memoirs of the American Math.
Soc., 2013.

[22] Oguzhan Keskin, Alisia Maria Lupidi, Stefano Fioravanti, Lucie Charlotte Magister, Pietro
Barbiero, Pietro Lio, and Francesco Giannini. Bridging equational properties and patterns on
graphs: an ai-based approach. In Topological, Algebraic and Geometric Learning Workshops
2023, pages 156–168. PMLR, 2023.

[23] Guillaume Lample and François Charton. Deep learning for symbolic mathematics. In Interna-
tional Conference on Learning Representations.

[24] Guillaume Lample and François Charton. Deep learning for symbolic mathematics. arXiv
preprint arXiv:1912.01412, 2019.

11

https://doi.org/10.1038/s41586-021-04086-x
https://www.sciencedirect.com/science/article/pii/S1571066107000874
https://www.mscand.dk/article/view/10850
https://www.mscand.dk/article/view/10850
https://emjms.academicjournal.io/index.php/emjms/article/view/253
https://emjms.academicjournal.io/index.php/emjms/article/view/253

[25] Barto Libor and Kozik Marcin. Absorbing Subalgebras, Cyclic Terms, and the Constraint
Satisfaction Problem. Logical Methods in Computer Science, Volume 8, Issue 1, 2012.

[26] Donald W Loveland. Automated theorem proving: A logical basis. Elsevier, 2016.

[27] Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang
Zhang. Parameterized explainer for graph neural network. Advances in neural information
processing systems, 33:19620–19631, 2020.

[28] Lucie Charlotte Magister, Dmitry Kazhdan, Vikash Singh, and Pietro Liò. Gcexplainer:
Human-in-the-loop concept-based explanations for graph neural networks. arXiv preprint
arXiv:2107.11889, 2021.

[29] Lucie Charlotte Magister, Pietro Barbiero, Dmitry Kazhdan, Federico Siciliano, Gabriele
Ciravegna, Fabrizio Silvestri, Mateja Jamnik, and Pietro Lio. Encoding concepts in graph neural
networks. arXiv preprint arXiv:2207.13586, 2022.

[30] Siqi Miao, Mia Liu, and Pan Li. Interpretable and generalizable graph learning via stochastic
attention mechanism. In International Conference on Machine Learning, pages 15524–15543.
PMLR, 2022.

[31] J. B. Nation. Varieties whose congruences satisfy certain lattice identities. Algebra Universalis,
1974.

[32] Miroslav Olšák. The local loop lemma. Algebra universalis, 2020.

[33] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. arXiv preprint arXiv:1912.01703, 2019.

[34] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-
learn: Machine learning in python. the Journal of machine Learning research, 12:2825–2830,
2011.

[35] Phillip E Pope, Soheil Kolouri, Mohammad Rostami, Charles E Martin, and Heiko Hoff-
mann. Explainability methods for graph convolutional neural networks. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 10772–10781, 2019.

[36] Marius-Constantin Popescu, Valentina Balas, Liliana Perescu-Popescu, and Nikos Mastorakis.
Multilayer perceptron and neural networks. WSEAS Transactions on Circuits and Systems, 8,
07 2009.

[37] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i trust you?" explaining
the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, pages 1135–1144, 2016.

[38] Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions
and use interpretable models instead. Nature machine intelligence, 1(5):206–215, 2019.

[39] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

[40] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034,
2013.

[41] Petar Veličković, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell. Neural
execution of graph algorithms. In International Conference on Learning Representations, 2019.

[42] Minh Vu and My T Thai. Pgm-explainer: Probabilistic graphical model explanations for graph
neural networks. Advances in neural information processing systems, 33:12225–12235, 2020.

[43] Philip M Whitman. Free lattices. Annals of Mathematics, pages 325–330, 1941.

12

[44] Chih-Kuan Yeh, Been Kim, Sercan Arik, Chun-Liang Li, Tomas Pfister, and Pradeep Ravikumar.
On completeness-aware concept-based explanations in deep neural networks. Advances in
Neural Information Processing Systems, 33:20554–20565, 2020.

[45] Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:
Generating explanations for graph neural networks, 2019.

[46] Zaixi Zhang, Qi Liu, Hao Wang, Chengqiang Lu, and Cheekong Lee. Protgnn: Towards
self-explaining graph neural networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 9127–9135, 2022.

13

A Algebra definitions

A.1 Formal defintions for Universal Algebra

Universal algebra is the field of mathematics that studies algebraic structures, which are defined as a
set A along with its own collection of operations. In this section, we recall some basic definitions and
theorems from Burris and Sankappanavar (6); Day (8); Jonnson (17), about elements of universal
algebra and lattice theory.

Definition A.1. N-ary function For a non-empty set A and n non-negative integer we define
A0 = {∅} and, for n > 0, An is the set of n-tuples of elements from A. An n-ary operation on A is
any function f from An to A; n is the arity of f . An operation f on A is called an n-ary operation if
its arity is n.

Definition A.2. Algebraic Structure An algebra A is a pair (A,F) where A is a non-empty set
called universe and F is a set of finitary operations on A.

Apart from the operations on A, an algebra is further defined by axioms, that in the particular case of
universal algebras are in the form of identities.
Definition A.3. A lattice L is an algebraic structure composed by a non-empty set L and two binary
operations ∨ and ∧ satisfying the following axioms and their duals obtained exchanging ∨ and ∧:

x ∨ y ≈ y ∨ x (commutativity)
x ∨ (y ∨ z) ≈ (x ∨ y) (associativity)
x ∨ x ≈ x (idempotency)
x ≈ x ∨ (x ∧ y) (absorption)

Theorem A.4 ((6)). A partially ordered set L is a lattice if and only if for every a, b ∈ L both
supremum and infimum of {a, b} exist (in L) with a ∨ b being the supremum and a ∧ b the infimum.
Definition A.5. Let L be a lattice. Then L is modular (distributive, ∨-semi-distributive, ∧-semi-
distributive) if it satisfies the following:

x ≤ y → x ∨ (y ∧ z) ≈ y ∧ (x ∨ z) (modularity)
x ∨ (y ∧ z) ≈ (x ∨ y) ∧ (x ∨ z) (distributivity)
x ∨ y ≈ x ∨ z → x ∨ (y ∧ z) ≈ x ∨ y (∨-semi-distributivity)
x ∧ y ≈ x ∧ z → x ∧ (y ∨ z) ≈ x ∧ y (∧-semi-distributivity).

Furthermore a lattice L is semi-distributive if is both ∨-semi-distributive and ∧-semi-distributive

Figure 8: N5, a non-modular non-distributive and M3, a modular non-distributive lattice.
Theorem A.6. If a lattice L is distributive, then L is also modular.

Proof. By assuming x ≤ y, we have x ∨ y = y. Hence, from the distributive property we get:
x ∨ (y ∧ z) ≈ (x ∨ y) ∧ (x ∨ z) ≈ y ∧ (x ∨ z)

14

Definition A.7. Congruence Lattice
An equivalence relation on a set A is a binary relation ∼ that satisfies three properties: reflexivity,
symmetry, and transitivity.

Reflexivity: For every element a in A, a is related to itself, denoted as a ∼ a;

Symmetry: For any elements a and b in A, if a ∼ b, then b ∼ a;

Transitivity: For any elements a, b, and c in A, if a ∼ b and b ∼ c, then a ∼ c.

In other words, an equivalence relation partitions the set A into subsets, called equivalence classes,
such that elements within the same class are equivalent to each other under the relation ∼.

Let A be an algebra. A congruence θ of A is a equivalent relation on A, that is compatible with the
operations of A. Formally, for every n-ary operation f of A: if (a1, b1), (a2, b2), . . . , (an, bn) ∈ θ,
then (f(a1, a2, . . . , an), f(b1, b2, . . . , bn)) ∈ θ. For every algebra A on the set A, the identity
relation on A, and A× A are trivial congruences. An algebra with no other congruences is called
simple. Let Con(A) be the set of congruences on the algebra A. Since congruences are closed
under intersection, we can define a meet operation: ∧ : Con(A)× Con(A) → Con(A) by simply
taking the intersection of the congruences E1 ∧E2 = E1 ∩E2. Congruences are not closed under
union, however we can define the following closure operator of a binary relation E, with respect to a
fixed algebra A, such that its image is congruence: ⟨E⟩A =

⋂{F ∈ Con(A) | E ⊆ F}. Note that
the closure of a binary relation is a congruence and thus depends on the operations in A, not just
on the base set. Now define ∨ : Con(A) × Con(A) → Con(A) as E1 ∨ E2 = ⟨E1 ∪ E2⟩A. For
every algebra A, (Con(A),∧,∨) with the two operations defined above forms a lattice, called the
congruence lattice of A.

A type F is defined as a set of operation symbols along with their respective arities. Each operation
symbol represents a specific operation that can be performed on the elements of the algebraic system.
To refer to the specific operation performed by a given symbol f on an algebra A of type F , we
denote it as fA. This notation allows us to differentiate and access the particular operation carried
out by f within the context of A.
Definition A.8. Subalgebra Let A and B be two algebras of the same type. Then B is a subalgebra
of A if B ⊆ A and every fundamental operation of B is the restriction of the corresponding operation
of A, i.e., for each function symbol f , fB is fA restricted to B.
Definition A.9. Homomorphic image Suppose A and B are two algebras of the same type F , i.e.
for each operation of A, there exists a corresponding operation B with the same arity, and vice versa.
A mapping α : A→ B is called a homomorphism from A to B if

αfA(a1, . . . , an) = fB(αa1, . . . , αan)

for each n-ary f in F and each sequence a1, . . . , an from A. If, in addition, the mapping α is onto
then B is said to be a homomorphic image of A.
Definition A.10. Direct product Let A1 and A2 be two algebras of the same type F . We define
the direct product A1 ×A2 to be the algebra whose universe is the set A1 ×A2, and such that for
f ∈ F and ai ∈ A1, a′i ∈ A2, 1 ≤ i ≤ n,

fA1×A2(⟨a1, a′1⟩, . . . , ⟨an, a′n) = ⟨fA1(a1, . . . , an), f
A2(a′1, . . . , a

′
n)⟩

The collection of algebraic structures defined by equational laws are called varieties. (15)

Definition A.11. Variety A nonempty class K of algebras of type F is called a variety if it is closed
under subalgebras, homomorphic images, and direct products.

B Algorithm 1 details

In the following, we report some technical details on how the dataset generator sketched in Algorithm
1 is actually implemented. First, notice that a brute-force approach is infeasible for large lattices, as
given a set of n nodes, the number of binary relations on this set is 2n

2

. To cope with this issue, first

15

for each candidate lattice L we consider a squared n× n matrix ≤L representing its order that has 1
value in a position (i, j) if and only if the element i is less or equal to the element j in L (i.e. i ≤L j)
and 0 otherwise. Then we constraint each matrix to have 1 in the diagonal (reflexivity), 0 in each
(i, j) with j < i, where “<” denotes denotes the order on N (this choice both prunes the majority of
isomorphic lattices and yields anti-symmetricity). All the other pairs of elements (i, j) can either be
such that i ≤L j or incomparable (i.e. i ≰L j and j ≰L i), and we consider all these possible cases.
Finally, we apply matrix multiplications to get a transitive closure of the order relation (convergence
guaranteed in at most n− 2 steps) and hence ≤L represents a partial order. To assure that the order
represents a lattice, we have to check that each pair of elements (i, j) admits a (unique!) infimum
and supremum. This step and checking lattice equational properties are implemented tensorially to
leverage GPU quicker computations, hence being particularly advantageous when the dimensions
of the lattices is such that the computational cost of Algorithm 1 surpasses the overhead of GPU
communication. Finally, we notice that even avoiding the isomorphic lattices, for n = 18 there are
around 165Bn non-isomorphic different lattices (13). This is why we sampled a fixed number of
lattices as n increases, e.g. 20 samples for cardinality after a certain threshold, instead of keeping
generating all the possible lattices for each value of n, which is not particularly relevant for our task.
Whereas it allows us to study the strong generalization capability of GNNs trained on e.g. up to
n = 8 nodes and then evaluated on lattices of higher dimensions, e.g. n = 50 nodes (see Figure 5).
Notice that checking e.g. the distributivity for n = 50 is deterministic but requires checking 503

identities.

Running time. The running time of the algorithm increases polynomially in the size n of the
given lattice (it is O(n3) for checking each of the equational properties, e.g. distributivity/modularity,
and O(n4) to check if a candidate binary relation is actually a lattice). In a machine with a single
quad-core CPU, it requires 20 minutes to generate all the lattices up to N = 8 and sampling ns = 20
lattices for n ∈ [9, 50] (the dataset we used in the paper).

C Baselines’ details

In practice, we train all models using eight message passing layers and different embedding sizes
ranging from 16 to 64. We train all models for 200 epochs with a learning rate of 0.001. For
interpretable models, we set the Gumbel-Softmax temperature to the default value of 1 and the
activation behavior to "hard," which generates one-hot encoded embeddings in the forward pass,
but computes the gradients using the soft scores. For the hierarchical model, we set the internal
loss weight to 0.1 (to score it roughly 10% less w.r.t. the main loss). Overall, our selection of
baselines aims at embracing a wide set of training setups and architectures to assess the effectiveness
and versatility of GNNs for analyzing lattice properties in universal algebra. To demonstrate the
robustness of our approach, we implemented different types of message passing layers, including
graph convolution and GIN.

D Generalization results details

Here we report the raw numbers for the weak and strong generalization results reported as a figure in
the main paper. The results are obtained by setting maximum lattice size to 8 in training and using
lattices of size 9 or larger during evaluation. All models provide near perfect performance for binary
classification and perform slightly worse but still very competitively for multi-label classification.
This demonstrates the strong generalization capability of GNNs for universal algebra tasks, and may
be an ideal starting point to finding new relevant patterns in UA properties.

In Table 1 we also include a quantitative comparison with GSAT (30), and observe that GSAT and
iGNNs obtain comparable results in terms of task generalization and concept completeness (cf. Table
4) when trained on the proposed UA’s tasks.

E Concept completeness and purity

Our experimental results (Tables 2 & 4) demonstrate that interpretable GNNs produce concepts with
high completeness and low purity, which are standard quantitative metrics used to evaluate the quality
of concept-based approaches. Completeness score is the accuracy of a classifier, such as decision

16

Table 1: Generalization performance of different graph neural models in solving universal algebra’s
tasks. Values represents the mean and the standard error of the mean of the area under the receiver
operating curve (AUCROC, %).

weak generalization strong generalization
GCExplainer GSAT iGNN HiGNN GCExplainer GSAT iGNN HiGNN

Distributive 99.80± 0.04 96.73± 0.44 99.56± 0.12 99.45± 0.06 99.51± 0.20 97.26± 0.30 99.44± 0.05 99.42± 0.04
Join Semi Distributive 99.49± 0.02 98.33± 0.06 98.31± 0.15 98.28± 0.04 98.77± 0.15 97.76± 0.07 97.50± 0.14 97.48± 0.14
Meet Semi Distributive 99.52± 0.04 98.36± 0.04 98.19± 0.06 98.25± 0.08 98.90± 0.03 97.85± 0.10 97.18± 0.14 96.89± 0.37
Modular 99.77± 0.02 96.62± 0.31 99.18± 0.11 99.35± 0.09 99.32± 0.22 96.35± 0.31 99.21± 0.14 99.11± 0.22
Semi Distributive 99.66± 0.03 98.76± 0.04 98.57± 0.02 98.50± 0.06 99.19± 0.04 98.14± 0.12 97.28± 0.48 96.88± 0.47
Multi Label 99.60± 0.02 95.00± 0.52 96.32± 0.34 95.98± 0.50 98.62± 0.43 94.45± 0.38 95.29± 0.55 95.27± 0.32

tree, which takes concepts as inputs and predicts a label. Purity score is the number of graph edits,
such as node/edge addition/eliminations, necessary to match two graphs in a cluster. A concept space
is said to be pure if the purity score is zero.

We employ decision tree as the classifier, but compute recall instead of accuracy to calculate com-
pleteness score since the datasets are heavily unbalanced towards the negative labels. We compute
purity scores for each cluster and report the average of those scores as the final purity score. Our
approach achieves at least 73% and up to 87% recall, which shows that our interpretable models
consistently avoid false negatives in the abundance of negative labels. We obtain around 3-4 purity
scores, which suggests that our interpretable models extract relatively pure concept spaces in the
presence of large lattices.

Furthermore, the hierarchical structure of interpretable GNNs enables us to evaluate the quality
of intermediate concepts layer by layer. This hierarchy provides insights into why we may need
more layers, and it can be used as a valuable tool to find the optimal setup and tune the size of the
architecture. Additionally, it can also be used to compare the quality of concepts at different layers of
the network. To that end, we compare the purity scores of the concept spaces obtained by the second
layer and the final layer of HiGNN. As shown in Table 3, deeper layers may produce higher quality
concepts for distributivity and join semi-distributivity whereas earlier layers may result in more
reliable concepts for the remaining properties. Overall, these results quantitatively assess and validate
the high quality of the concepts learned by the interpretable GNNs, highlighting the effectiveness of
this approach for learning and analyzing complex algebraic structures.

Table 2: Concept purity scores of graph neural models in solving universal algebra’s tasks. Lower is
better.

WEAK PURITY STRONG PURITY
GCExplainer iGNN HiGNN GCExplainer iGNN HiGNN

Distributive 3.30± 0.36 3.64± 0.30 3.09± 0.56 3.29± 0.38 4.00± 0.77 4.15± 0.67
Join Semi Distributive 2.38± 0.37 3.96± 0.51 3.74± 0.62 3.45± 0.34 3.98± 0.68 4.29± 0.61
Meet Semi Distributive 3.24± 0.63 3.55± 0.62 3.39± 0.29 3.36± 0.32 4.25± 0.39 4.97± 0.44
Modular 3.10± 0.35 3.50± 0.46 4.44± 0.56 3.14± 0.24 3.19± 1.01 4.25± 0.69
Semi Distributive 2.84± 0.51 3.70± 0.54 4.11± 0.46 3.70± 0.55 3.92± 0.28 4.08± 0.85

Table 3: Concept purity scores of different layers of HiGNN. Lower is better.
WEAK PURITY STRONG PURITY

2nd Layer Last Layer 2nd Layer Last Layer
Distributive 3.26± 0.43 3.09± 0.56 4.66± 0.98 4.15± 0.67
Join Semi Distributive 4.25± 0.69 3.74± 0.62 4.30± 0.39 4.29± 0.61
Meet Semi Distributive 3.64± 0.39 3.39± 0.29 4.41± 0.27 4.97± 0.44
Modular 3.89± 0.63 4.44± 0.56 4.19± 0.56 4.25± 0.69
Semi Distributive 3.55± 0.58 4.11± 0.46 3.16± 0.59 4.08± 0.85

Table 4: Concept completeness scores of graph neural models in solving universal algebra’s tasks.
Higher is better.

WEAK COMPLETENESS STRONG COMPLETENESS
GCExplainer iGNN GSAT HiGNN GCExplainer iGNN GSAT HiGNN

Distributive 96.53± 0.72 99.54± 0.13 58.36± 5.22 99.42± 0.09 95.61± 0.76 99.48± 0.06 66.59± 1.19 99.46± 0.06
Join Semi-Distributive 96.64± 0.14 98.45± 0.25 83.72± 4.82 98.19± 0.11 93.98± 0.97 97.59± 0.13 90.57± 0.66 97.51± 0.31
Meet Semi-Distributive 96.46± 0.11 98.17± 0.11 78.78± 1.45 98.30± 0.03 95.18± 0.44 97.20± 0.14 85.46± 2.68 96.36± 0.43
Modular 96.28± 0.86 99.08± 0.03 61.62± 1.24 99.40± 0.12 94.49± 1.08 99.10± 0.20 66.83± 2.60 99.33± 0.07
SemiDistributive 97.47± 0.04 98.62± 0.08 83.58± 1.79 98.57± 0.09 96.31± 0.02 97.07± 0.81 85.68± 2.23 97.00± 0.75
Multilabel 95.79± 0.47 88.21± 0.88 74.85± 1.35 87.44± 3.85 93.33± 0.87 87.16± 0.31 82.35± 1.30 86.86± 1.29

17

Graph Concept 0
Concept label: [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]

Graph Concept 1
Concept label: [0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0]

Graph Concept 2
Concept label: [0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1]

Graph Concept 3
Concept label: [0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0]

Graph Concept 4
Concept label: [0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0]

Graph Concept 5
Concept label: [0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0]

Graph Concept 6
Concept label: [0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0]

Graph Concept 7
Concept label: [0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,1]

Graph Concept 8
Concept label: [0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,1]

Graph Concept 9
Concept label: [0,0,0,0,0,0,0,0,1,0,0,0,1,1,0,0]

Graph Concept 10
Concept label: [0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1]

Graph Concept 11
Concept label: [0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,1]

Graph Concept 12
Concept label: [0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,1]

Graph Concept 13
Concept label: [0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1]

Graph Concept 14
Concept label: [0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,0]

Graph Concept 15
Concept label: [0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1]

Graph Concept 16
Concept label: [0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,1]

Graph Concept 17
Concept label: [0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,1]

Figure 9: Examples of graph concepts.

F Concept visualization

Figure 9 visualizes 18 randomly sampled graph concepts (out of the 7896 graph concepts represented
by different graph encodings) following the visualization procedure introduced by (28). The figure
shows for each concept an example of four (randomly sampled) graphs having the same concept label
in the 7-th layer of the hierarchical iGNN trained on the multilabel dataset. Graphs belonging to the
same concept show a coherency in their structure and similar patterns. These patterns represent the
knowledge extracted and discovered by the hierarchical iGNN.

18

G Explanations of post-hoc explainers

We compared our Explainable Hierarchical GNN against a standard explainer (namely GNNExplainer
(45)) to further support our results. GNNExplainer is the first general, model-agnostic approach for
providing interpretable explanations for predictions of any GNN-based model on any graph-based
machine learning task and it is widely used in the scientific community as one of the staple explainers
in GNN’s XAI. In this particular setting, GNNExplainer was configured as follows: model-wise
explanation on multiclass-node level classification task, with HiGNN as the model of choice, and
GNNExplainer as the desired algorithm, trained for 200 epochs. The explainer takes as input a single
graph in the dataset and outputs and explanation for its classification. GNNExplainer will enforce a
classification based on the presence or omission of M3 and/or N5 and it is possible to visualize the
subgraph that lead to this classification by leveraging the visualize_graph function. By doing this,
we retrieve the following visualizations:

Figure 10: Visualizations obtained with GNNExplainer on weak distributive generalization (on the
left) and strong multiclass generalization (on the right)

On the right, the substructure identified as N5 by GNNExplainer which lead to the classification of
said graph as non modular and non distributive. On the right, in green M3. Our hierarchical model
arrives to the same conclusions as the standard explainer but can also be augmented with a standard
explainer.

H Code, Licences, Resources

Libraries For our experiments, we implemented all baselines and methods in Python 3.7 and relied
upon open-source libraries such as PyTorch 1.11 (33) (BSD license) and Scikit-learn (34) (BSD
license). To produce the plots seen in this paper, we made use of Matplotlib 3.5 (BSD license). We
will release all of the code required to recreate our experiments in an MIT-licensed public repository.

Resources All of our experiments were run on a private machine with 8 Intel(R) Xeon(R) Gold
5218 CPUs (2.30GHz), 64GB of RAM, and 2 Quadro RTX 8000 Nvidia GPUs. We estimate that
approximately 100-GPU hours were required to complete all of our experiments.

19

	Introduction
	Background
	Methods
	A Tool to Generate Datasets of Lattice Varieties
	Interpretable Graph Networks (iGNNs)
	Interpretable Graph Layer
	Interpretable architectures
	Training

	Experimental Analysis
	Research questions
	Setup

	Key Findings
	Generalization
	Interpretability

	Discussion
	Algebra definitions
	Formal defintions for Universal Algebra

	Algorithm 1 details
	Baselines' details
	Generalization results details
	Concept completeness and purity
	Concept visualization
	Explanations of post-hoc explainers
	Code, Licences, Resources

