
Supplementary

A Derivation of transition points

Recall that the mean generalization error of mixed strategy q is:

EL(T) = p · E(qB) + (1− p) · E(α(1− q)B).

for the differentiable function E. The mixture coefficient q, which obtains the minimal generalization
error, must satisfy

0 =
∂EL(T)

∂q
= pBE′(qB)− (1− p)αBE′(α(1− q)B)

=⇒ E
′
(qB)

E′ (α (1− q)B)
=

α (1− p)

p
(5)

In Eq. 5, with specific values for p and q, solving for B can determine the budget at which selecting
qB examples from Dlow yields the best generalization error. By setting p = q, we find a budget
Beq , where the optimal strategy is to keep the distribution unchanged, namely, active learning is not
needed. Any smaller budget would necessitate a low-budget strategy, while a higher budget would
require a high-budget strategy.

In practice, we only control the source from which the active set of examples A is sampled, but not
the source of the remaining B − |A| examples. Sampling from Dlow all the examples in |A|, results
in a total of

(
p+ |A|(1−p)

B

)
B examples being sampled from Dlow overall. Plugging such q in Eq. 5,

we obtain the maximal budget B for which this strategy is favorable. We refer to this budget as Blow.
Similarly, the concept applies to Bhigh, which defined the smallest budget for which sampling A
from Dhigh is optimal.

Formally, the transition points can now be defined as follows:

• Beq is obtained by solving (5) with q = p.

• Blow is obtained by solving (5) with q = p+ |A|(1−p)
B .

• Bhigh is obtained by solving (5) with q = p− |A|(1−p)
B .

B Hyper-parameters

B.1 Supervised training

When training on CIFAR-10 and CIFAR-100, we used a ResNet-18 trained over 50 epochs. We
used an SGD optimizer, with 0.9 Nesterov momentum, 0.0003 weight decay, cosine learning rate
scheduling with a base learning rate of 0.025, and batch size of 100 examples. We used random
croppings and horizontal flips for augmentations. An example use of these parameters can be found
at [28].

When training ImageNet-50, we used the same hyper-parameters as CIFAR-10/100, only changing
the base learning rate to 0.01 and the batch size to 50.

B.2 Unsupervised representation learning

CIFAR-10/100 We trained SimCLR using the code provided by [38] for CIFAR-10 and CIFAR-100.
Specifically, we used ResNet18 with an MLP projection layer to a 128 vector, trained for 500 epochs.
All the training hyper-parameters were identical to those used by SCAN. After training, we used
the 512 dimensional penultimate layer as the representation space. As in SCAN, we used an SGD
optimizer with 0.9 momentum and an initial learning rate of 0.4 with a cosine scheduler. The batch
size was 512 and a weight decay of 0.0001. The augmentations were random resized crops, random
horizontal flips, color jittering, and random grayscaling. We refer to [38] for additional details. We
used the L2 normalized penultimate layer as embedding.

14

ImageNet-50 We extracted embedding from the official (ViT-S/16) DINO weights pre-trained on
ImageNet. We used the L2 normalized penultimate layer as embedding.

(a) SimCLR (b) SCAN (c) MoCo

Figure 8: Similar to Fig. 6, but removing examples according to different feature spaces in CIFAR-10. Accuracy
gain when using S′

low to select points for removal as compared to random selection (orange), or S′
high to select

points for removal (green). Negative gain implies that the strategy is beneficial, and vice versa.

C Additional experimental results

C.1 High budget strategies

In Section. 4, we are required to use a high budget strategy S′
high, which relies in its computation

only on the unlabeled set U. We use inverse-TypiClust, which is calculated similarly to TypiClust,
only using the most atypical example at each iteration instead of the most typical example. In Fig. 10,
we plot the performance of such a strategy on CIFAR-10, as a function of budget B, similarly to the
analysis in Fig. 4.

We see that while inverse-TypiClust is not a competitive high-budget strategy, it still outperforms
random sampling in the high-budget regime, making it a suitable AL strategy for this regime.

C.2 Different choices for low and high budget strategies in the decision process

In Fig. 6, we plot the accuracy of TypiClust as S′
low and Inverse-Typicluse as S′

high, under different
budgets against training without active learning. SelectAL utilizes these strategies for selection. When
S′high outperforms random and S′low underperforms, SelectAL opts for a low-budget strategy.
Conversely, if S′high underperforms while S′low outperforms random, a high-budget strategy is
chosen.

In Fig. 9, we plot the same experiment as done in Fig. 6, choosing BADGE as S′
high and ProbCover

as S′
low. We see that while the accuracy improvements of these strategies may differ, the decision

made by SelectAL remains the same: SelectAL performs the same selections in every given budget.
These results suggest that SelectAL works with a variety of underlying strategies.

Figure 9: Similar to Fig. 6, using BADGE as S′
high and ProbCover as S′

low.

15

C.3 Other feature spaces

C.3.1 Other feature spaces: removing data

In section 3.2, we propose an active learning method that determines the budget size by removing
examples in a given feature space. The feature space used in section 3.2 was obtained by SimCLR, as
these features proved beneficial to several low-budget active learning methods.

In this section, we check the dependency of MiSAL on the specific choice of feature space. In
Fig. 8, we plot the strategy selection test as described in Alg. 1 in Section 3.1. The plotted results
are trained on CIFAR-10. In order to generate the 3 subsets of labeled examples datal, datah and
datar, we remove 5% of the labeled data (but not less than 1 datapoint per class). This test is done
using 3 different feature spaces 1. MoCo [17], a transformer based approach. 2. SimCLR, as done in
section 3.2. 3. SCAN [38].

Similarly to the results reported in section 3.2, we can see that using any of the 3 feature spaces
resulted in a similar result – MiSAL would behave similarly regardless of the choice of the underlying
feature space.

C.3.2 Other feature spaces in TypiClust

In Table 1 and Table 2, we plot the results of different AL strategies across different datasets and
budgets. Low-budget strategies such as TypiClust and ProbCover require the choice of feature space
to work properly. Following the original papers, we used the feature space given by SimCLR trained
on the entire unlabeled pool U.

To check whether the choice of the feature space affects the results of the low-budget performance,
we trained TypiClust on the TinyImageNet with various choices of feature spaces.

Figure 10: Accuracy gain by inverse-TypiClust, as
compared to random query sampling.

Figure 11: Comparing TypiClust with different repre-
sentations on TinyImageNet for 5 AL iterations in the
low budget regime. The active set size is |A| = 1000.
The final test accuracy in each iteration is reported.
The shaded area reflects standard error. All results are
with respect to the ’random’ representation, which is
the pixel value of each image.

In Fig. 11, we plot 5 active learning iterations with an active set of |A| = 1000 of ResNet-50 trained
on TinyImageNet. We considered 5 different feature spaces: 1. MoCo [17], a transformer based
approach. 2. DINO [3], an SSL-based approach. 3. SimCLR, which was used in the original TypiClust
paper. 4. SWAV an SSL-based approach. 5. A simple autoencoder on the pixel values (AE). We found
that except for the AE, all methods perform similarly, suggesting that the choice of the representation
space has little effect on the training of low-budget methods such as TypiClust.

16

	Derivation of transition points
	Hyper-parameters
	Supervised training
	Unsupervised representation learning

	Additional experimental results
	High budget strategies
	Different choices for low and high budget strategies in the decision process
	Other feature spaces
	Other feature spaces: removing data
	Other feature spaces in TypiClust

