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1 Mathematical Details
• Derivation of Eq. (2): According to the transition distribution of Eq. (1) of our manuscript, xt

can be sampled via the following reparameterization trick:
xt = xt−1 + αte0 + κ

√
αtξt, (A.1)

where ξt ∼ N (x|0, I), αt = ηt − ηt−1 for t > 1 and α1 = η1.
Applying this sampling trick recursively, we can build up the relation between xt and x0 as
follows:

xt = x0 +

t∑
i=1

αie0 + κ

t∑
i=1

√
αiξi

= x0 + ηte0 + κ

t∑
i=1

√
αiξi, (A.2)

where ξi ∼ N (x|0, I).
We can further merge ξ1, ξ2, · · · , ξt and simplify Eq. (A.2) as follows:

xt = x0 + ηte0 + κ
√
ηtξt. (A.3)

Then the marginal distribution of Eq. (2) in the main text is obtained based on Eq. (A.3).
• Derivation of Eq. (6): According to Bayes’s theorem, we have

q(xt−1|xt,x0,y0) ∝ q(xt|xt−1,y0)q(xt−1|x0,y0), (A.4)
where

q(xt|xt−1,y0) = N (xt;xt−1 + αte0, κ
2αtI),

q(xt−1|x0,y0) = N (xt−1;x0 + ηt−1e0, κ
2ηt−1I). (A.5)

We now focus on the quadratic form in the exponent of q(xt−1|xt,x0,y0), namely,

− (xt − xt−1 − αte0)(xt − xt−1 − αte0)
T

2κ2αt
− (xt−1 − x0 − ηt−1e0)(xt−1 − x0 − ηt−1e0)

T

2κ2ηt−1

= −1

2

[
1

κ2αt
+

1

κ2ηt−1

]
xt−1x

T
t−1 +

[
xt − αte0

κ2αt
+

x0 + ηt−1e0
κ2ηt−1

]
xT
t−1 + const

= − (xt−1 − µ)(xt−1 − µ)T

2λ2
+ const (A.6)

where
µ =

ηt−1

ηt
xt +

αt

ηt
x0, λ

2 = κ2 ηt−1

ηt
αt, (A.7)

and const denotes the item that is independent of xt−1. This quadratic form induces the Gaussian
distribution of Eq. (6) in our manuscript.
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Table 1: Quantitative comparison of different methods on the task of x4 (64→256) bicubic SR . We
mark the number of sampling steps for each method by the format of “method-steps”.

Methods PSNR↑ SSIM↑ LPIPS↓ CLIPIQA↑ MUSIQ↑ # Parameters (M) Runtime (s)
IRSDE-100 [4] 24.48 0.602 0.304 0.513 45.382 137.2 5.927
DDRM-15 [2] 25.56 0.674 0.471 0.372 24.746 552.8 1.184
I2SB-15 [3] 26.76 0.730 0.206 0.489 53.936 552.8 1.832
ResShift-15 26.73 0.736 0.126 0.683 58.067 121.3 0.105

(a) LR Image (b) DDRM-15 (c) I2SB-15 (d) IRSDE-100 (e) ResShift-15 (f) Ground Truth

Figure 1: Visual comparisons of different methods on the task of x4 (64→256) bicubic super-
resolution. Please zoom in for a better view.

2 Experiment

2.1 Degradation Settings of the Synthetic Dataset

We synthesize the testing dataset ImageNet-Test based on the degradation model in RealESRGAN [6]
but removing the second-order operation. We observed that the LR image generated by the pipeline
with second-order degradation exhibited significantly more pronounced corruption than most of the
real-world LR images, we thus discarded the second-order operation to align the authentic degradation
better. Next, we gave the detailed configuration on the blurring kernel, downsampling operator, and
noise types.

Blurring kernel. The blurring kernel is randomly sampled from the isotropic Gaussian and
anisotropic Gaussian kernels with a probability of [0.6, 0.4]. The window size of the kernel is
set to 13. For isotropic Gaussian kernel, the kernel width is uniformly sampled from [0.2, 0.8]. For
an anisotropic Gaussian kernel, the kernel widths along x-axis and y-axis are both randomly sampled
from [0.2, 0.8].

Downampling. We downsample the image using the “interpolate” function of PyTorch [5]. The
interpolation mode is random selected from “area”, “bilinear”, and “bicubic”.

Noise. We first added Gaussian and Poisson noise with a probability of [0.5, 0.5]. For Gaussian noise,
the noise level is randomly chosen from [1,15]. For Poisson noise, we set the scale parameter in [0.05,
0.3]. Finally, the noisy image is further compressed using JPEG with a quality factor ranged in [70,
95].

2.2 Evaluation on Bicubic Degradation

In this section, we conduct an evaluation of the proposed ResShift on the task of x4 (64→256) bicubic
SR, against three recent diffusion-based methods, including DDRM [2], IRSDE [4], and I2SB [3]. To
ensure a fair comparison, we retrain a new model specifically tailored for bicubic degradation, given
that all three comparison methods were originally designed or trained under the same degradation
setting. Our testing dataset comprises 3,000 images randomly selected from the validation dataset of
ImageNet [1]. During the evaluation phase, we expedite the inference process to 15 steps using the
default sampler for both I2SB and DDRM. However, it is worth noting that we retained the sampling
steps of 100 for IRSDE, consistent with its configuration in training, since we empirically found that
accelerating the inference of IRSDE led to a severe performance drop.
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(a) Zoomed LR Image (c) RealSR_JPEG
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(e) RealESRGAN

(f) SwinIR

(b) ESRGAN

Figure 2: One typical failed case in the real-world dataset of RealSet65.

The quantitative comparison results are listed in Table 1, revealing a conspicuous superiority of
our proposed ResShift beyond the alternative methods across various assessment metrics, parameter
counts, and inference throughput. This performance difference underscores the effectiveness and
efficiency of the proposed diffusion model. The visual comparison of two exemplar cases is depicted
in Fig. 1. Our approach demonstrates superior capability in recovering rich and realistic image details,
consistent with the quantitative observations.

2.3 Limitation

Albeit its overall strong performance, the proposed ResShift occasionally exhibits failures. One such
instance is illustrated in Figure 2, where it cannot produce satisfactory results for a severely degraded
comic image. It should be noted that other comparison methods also struggle to address this particular
example. This is not an unexpected outcome as most modern SR methods are trained on synthetic
datasets simulated by manually assumed degradation models [7, 6], which still cannot cover the full
range of complicated real degradation types. Therefore, developing a more practical degradation
model for SR is an essential avenue for future research.
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Figure 3: Qualitative comparisons of different methods on real-world datasets. Please zoom in for a
better view.
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Figure 4: Qualitative comparisons of different methods on real-world datasets. Please zoom in for a
better view.
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