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Abstract

Diffusion-based image super-resolution (SR) methods are mainly limited by the low
inference speed due to the requirements of hundreds or even thousands of sampling
steps. Existing acceleration sampling techniques inevitably sacrifice performance
to some extent, leading to over-blurry SR results. To address this issue, we propose
a novel and efficient diffusion model for SR that significantly reduces the number of
diffusion steps, thereby eliminating the need for post-acceleration during inference
and its associated performance deterioration. Our method constructs a Markov
chain that transfers between the high-resolution image and the low-resolution
image by shifting the residual between them, substantially improving the transition
efficiency. Additionally, an elaborate noise schedule is developed to flexibly control
the shifting speed and the noise strength during the diffusion process. Extensive
experiments demonstrate that the proposed method obtains superior or at least
comparable performance to current state-of-the-art methods on both synthetic and
real-world datasets, even only with 15 sampling steps. Our code and model are
available at https://github.com/zsyOAOA/ResShift.

1 Introduction

Image super-resolution (SR) is a fundamental problem in low-level vision, aiming at recovering the
high-resolution (HR) image given the low-resolution (LR) one. This problem is severely ill-posed
due to the complexity and unknown nature of degradation models in real-world scenarios. Recently,
diffusion model [1, 2], a newly emerged generative model, has achieved unprecedented success
in image generation [3]. Furthermore, it has also demonstrated great potential in solving several
downstream low-level vision tasks, including image editing [4, 5], image inpainting [6, 7], image
colorization [8, 9]. There is also ongoing research exploring the potential of diffusion models to
tackle the long-standing and challenging SR task.

One common approach [10, 11] involves inserting the LR image into the input of current diffusion
model (e.g., DDPM [2]) and retraining the model from scratch on the training data for SR. Another
popular way [7, 12, 13, 14] is to use an unconditional pre-trained diffusion model as a prior and
modify its reverse path to generate the expected HR image. Unfortunately, both strategies inherit
the Markov chain underlying DDPM, which can be inefficient in inference, often taking hundreds or
even thousands of sampling steps. Although some acceleration techniques [15, 16, 17] have been
developed to compress the sampling steps in inference, they inevitably lead to a significant drop in
performance, resulting in over-smooth results as shown in Fig. 1, in which the DDIM [16] algorithm
is employed to speed up the inference. Thus, there is a need to design a new diffusion model for SR
that achieves both efficiency and performance, without sacrificing one for the other.

Let us revisit the diffusion model in the context of image generation. In the forward process, it builds
up a Markov chain to gradually transform the observed data into a pre-specified prior distribution,
typically a standard Gaussian distribution, over a large number of steps. Subsequently, image
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(a) LR Image

(j) LDM-15

(k) Ours-15(i) LDM-30

(e) LDM-50

(h) LDM-100

(d) LDM-500

(g) SwinIR

(c) DASR(b) BSRGAN
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Figure 1: Qualitative comparisons on one typical real-world example of the proposed method and
recent state of the arts, including BSRGAN [18], RealESRGAN [19], SwinIR [20], DASR [21], and
LDM [11]. As for LDM and our method, we mark the number of sampling steps with the format of
“LDM (or Ours)-A” for more intuitive visualization, where “A” is the number of sampling steps. Note
that LDM contains 1000 diffusion steps in training and is accelerated to “A” steps using DDIM [16]
during inference. Please zoom in for a better view.

generation can be achieved by sampling a noise map from the prior distribution and feeding it into
the reverse path of the Markov chain. While the Gaussian prior is well-suited for the task of image
generation, it may not be optimal for SR, where the LR image is available. In this paper, we argue that
the reasonable diffusion model for SR should start from a prior distribution based on the LR image,
enabling an iterative recovery of the HR image from its LR counterpart instead of Gaussian white
noise. Additionally, such a design can reduce the number of diffusion steps required for sampling,
thereby improving inference efficiency.

Following the aforementioned motivation, we propose an efficient diffusion model involving a shorter
Markov chain for transitioning between the HR image and its corresponding LR one. The initial state
of the Markov chain converges to an approximate distribution of the HR image, while the final state
converges to an approximate distribution of the LR image. To achieve this, we carefully design a
transition kernel that shifts the residual between them step by step. This approach is more efficient
than existing diffusion-based SR methods since the residual information can be quickly transferred
in dozens of steps. Moreover, our design also allows for an analytical and concise expression for
the evidence lower bound, easing the induction of the optimization objective for training. Based on
this constructed diffusion kernel, we further develop a highly flexible noise schedule that controls
the shifting speed of the residual and the noise strength in each step. This schedule facilitates a
fidelity-realism trade-off of the recovered results by tuning its hyper-parameters.

In summary, the main contributions of this work are as follows:

• We present an efficient diffusion model for SR, which renders an iterative sampling procedure
from the LR image to the desirable HR one by shifting the residual between them during inference.
Extensive experiments demonstrate the superiority of our approach in terms of efficiency, as it
requires only 15 sampling steps to achieve appealing results, outperforming or at least being
comparable to current diffusion-based SR methods that require a long sampling process. A
preview of our recovered results compared with existing methods is shown in Fig. 1.

• We formulate a highly flexible noise schedule for the proposed diffusion model, enabling more
precise control of the shifting of residual and noise levels during the transition.

2 Methodology

In this section, we present a diffusion model, ResShift, which is tailored for SR. For ease of presenta-
tion, the LR and HR images are denoted as y0 and x0, respectively. Furthermore, we assume y0 and
x0 have identical spatial resolution, which can be easily achieved through pre-upsampling the LR
image y0 using nearest neighbor interpolation if necessary.
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Figure 2: Overview of the proposed method. It builds up a Markov chain between the HR/LR image
pair by shifting their residual.

2.1 Model Design

The iterative generation paradigm of diffusion models has proven highly effective at capturing
complex distributions, inspiring us to approach the SR problem iteratively as well. Our proposed
method constructs a Markov chain that serves as a bridge between the HR and LR images as shown in
Fig. 2. This way, the SR task can be accomplished by reverse sampling from this Markov chain given
any LR image. Next, we will detail the process of building such a Markov chain specifically for SR.

Forward Process. Let’s denote the residual between the LR and HR images as e0, i.e., e0 = y0−x0.
Our core idea is to transit from x0 to y0 by gradually shifting their residual e0 through a Markov
chain with length T . A shifting sequence {ηt}Tt=1 is first introduced, which monotonically increases
with the timestep t and satisfies η1 → 0 and ηT → 1. The transition distribution is then formulated
based on this shifting sequence as follows:

q(xt|xt−1,y0) = N (xt;xt−1 + αte0, κ
2αtI), t = 1, 2, · · · , T, (1)

where αt = ηt−ηt−1 for t > 1 and α1 = η1, κ is a hyper-parameter controlling the noise variance, I
is the identity matrix. Notably, we show that the marginal distribution at any timestep t is analytically
integrable, namely

q(xt|x0,y0) = N (xt;x0 + ηte0, κ
2ηtI), t = 1, 2, · · · , T. (2)

The design of the transition distribution presented in Eq. (1) is based on two primary principles. The
first principle concerns the standard deviation, i.e., κ

√
αt, which aims to facilitate a smooth transition

between xt and xt−1. This is because the expected distance between xt and xt−1 can be bounded
by

√
αt, given that the image data falls within the range of [0, 1], i.e.,

max[(x0 + ηte0)− (x0 + ηt−1e0)] = max[αte0] < αt <
√
αt, (3)

where max[·] represents the pixel-wise maximizing operation. The hyper-parameter κ is introduced
to increase the flexibility of this design. The second principle pertains to the mean parameter, i.e.,
x0+αte0, which induces the marginal distribution in Eq. (2). Furthermore, the marginal distributions
of x1 and xT converges to δx0

(·)1 and N (·;y0, κ
2I), which act as two approximate distributions for

the HR image and the LR image, respectively. By constructing the Markov chain in such a thoughtful
way, it is possible to handle the SR task by inversely sampling from it given the LR image y0.

Reverse Process. The reverse process aims to estimate the posterior distribution p(x0|y0) via the
following formulation:

p(x0|y0) =

∫
p(xT |y0)

T∏
t=1

pθ(xt−1|xt,y0)dx1:T , (4)

where p(xT |y0) ≈ N (xT |y0, κ
2I), pθ(xt−1|xt,y0) is the inverse transition kernel from xt to xt−1

with a learnable parameter θ. Following most of the literature in diffusion model [1, 2, 8], we adopt
the assumption of pθ(xt−1|xt,y0) = N (xt−1;µθ(xt,y0, t),Σθ(xt,y0, t)). The optimization for
θ is achieved by minimizing the negative evidence lower bound, namely,

min
θ

∑
t

DKL [q(xt−1|xt,x0,y0)∥pθ(xt−1|xt,y0)] , (5)

1δµ(·) denotes the Dirac distribution centered at µ.
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where DKL[·∥·] denotes the Kullback-Leibler (KL) divergence. More mathematical details can be
found in Sohl-Dickstein et al. [1] or Ho et al. [2].

Combining Eq. (1) and Eq. (2), the targeted distribution q(xt−1|xt,x0,y0) in Eq. (5) can be rendered
tractable and expressed in an explicit form given below:

q(xt−1|xt,x0,y0) = N
(
xt−1

∣∣∣∣ηt−1

ηt
xt +

αt

ηt
x0, κ

2 ηt−1

ηt
αtI

)
. (6)

The detailed calculation of this derivation is presented in the supplementary material. Considering
that the variance parameter is independent of xt and y0, we thus set Σθ(xt,y0, t) = κ2 ηt−1

ηt
αtI . As

for the mean parameter µθ(xt,y0, t), it is reparameterized as follows:

µθ(xt,y0, t) =
ηt−1

ηt
xt +

αt

ηt
fθ(xt,y0, t), (7)

where fθ is a deep neural network with parameter θ, aiming to predict x0. We explored different
parameterization forms on µθ and found that Eq. (7) exhibits superior stability and performance.

Based on Eq. (7), we simplify the objective function in Eq. (5) as follows,

min
θ

∑
t
wt∥fθ(xt,y0, t)− x0∥22, (8)

where wt =
αt

2κ2ηtηt−1
. In practice, we empirically find that the omission of weight wt results in an

evident improvement in performance, which aligns with the conclusion in Ho et al. [2].

Extension to Latent Space. To alleviate the computational overhead in training, we move the
aforementioned model into the latent space of VQGAN [22], where the original image is compressed
by a factor of four in spatial dimensions. This does not require any modifications on our model other
than substituting x0 and y0 with their latent codes. An intuitive illustration is shown in Fig. 2.

2.2 Noise Schedule

The proposed method employs a hyper-parameter κ and a shifting sequence {ηt}Tt=1 to determine the
noise schedule in the diffusion process. Specifically, the hyper-parameter κ regulates the overall noise
intensity during the transition, and its impact on performance is empirically discussed in Sec. 4.2.
The subsequent exposition mainly revolves around the construction of the shifting sequence {ηt}Tt=1.

Equation (2) implies that the noise level in state xt is proportional to
√
ηt with a scaling factor κ.

This observation motivates us to focus on designing
√
ηt instead of ηt. Song and Ermon [23] show

that κ
√
η1 should be sufficiently small (e.g., 0.04 in LDM [11]) to ensure that q(x1|x0,y0) ≈ q(x0).

Combining with the additional constraint of η1 → 0, we set η1 to be the minimum value between
(0.04/κ)2 and 0.001. For the final step T , we set ηT as 0.999 ensuring ηT → 1. For the intermediate
timesteps, i.e., t ∈ [2, T − 1], we propose a non-uniform geometric schedule for

√
ηt as follows:

√
ηt =

√
η1 × bβt

0 , t = 2, · · · , T − 1, (9)

where

βt =

(
t− 1

T − 1

)p

× (T − 1), b0 = exp

[
1

2(T − 1)
log

ηT
η1

]
. (10)

Note that the choice of βt and b0 is based on the assumption of β1 = 0, βT = T − 1, and√
ηT =

√
η1 × bT−1

0 . The hyper-parameter p controls the growth rate of
√
ηt as shown in Fig. 3(h).

The proposed noise schedule exhibits high flexibility in three key aspects. First, for small values of
κ, the final state xT converges to a perturbation around the LR image as depicted in Fig. 3(c)-(d).
Compared to the corruption ended at Gaussian noise, this design considerably shortens the length
of the Markov chain, thereby improving the inference efficiency. Second, the hyper-parameter p
provides precise control over the shifting speed, enabling a fidelity-realism trade-off in the SR results
as analyzed in Sec. 4.2. Third, by setting κ = 40 and p = 0.8, our method achieves a diffusion
process remarkably similar to LDM [11]. This is clearly demonstrated by the visual results during the
diffusion process presented in Fig. 3(e)-(f), and further supported by the comparisons on the relative
noise strength as shown in Fig. 3(g).
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(a) HR Image

(f) Latent Diffusion Model (T=1000)

(e) ResShift (κ=40, p=0.8, T=1000)

Forward Process

(h)

(c) ResShift (κ=1.0, p=0.3, T=15)

(d) ResShift (κ=2.0, p=0.3, T=15) (g)(b) Zoomed LR 

Figure 3: Illustration of the proposed noise schedule. (a) HR image. (b) Zoomed LR image. (c)-(d)
Diffused images of ResShift in timesteps of 1, 3, 5, 7, 9, 12, and 15 under different values of κ by
fixing p = 0.3 and T = 15. (e)-(f) Diffused images of ResShift with a specified configuration of
κ = 40, p = 0.8, T = 1000 and LDM [11] in timesteps of 100, 200, 400, 600, 800, 900, and 1000. (g)
The relative noise intensity (vertical axes, measured by

√
1/λsnr, where λsnr denotes the signal-to-noise

ratio) of the schedules in (d) and (e) w.r.t. the timesteps (horizontal axes). (h) The shifting speed√
ηt (vertical axes) w.r.t. to the timesteps (horizontal axes) across various configurations of p. Note

that the diffusion processes in this figure are implemented in the latent space, but we display the
intermediate results after decoding back to the image space for the purpose of easy visualization.

3 Related Work

Diffusion Model. Inspired by the non-equilibrium statistical physics, Sohl-Dickstein et al. [1] firstly
proposed the diffusion model to fit complex distributions. Ho et al. [2] established a novel connection
between the diffusion model and the denoising scoring matching. Later, Song et al. [8] proposed a
unified framework to formulate the diffusion model from the perspective of the stochastic differential
equation (SDE). Attributed to its robust theoretical foundation, the diffusion model has achieved
impressive success in the generation of images [3, 11], audio [24], graph [25] and shapes [26].

Image Super-Resolution. Traditional image SR methods primarily focus on designing more rational
image priors based on our subjective knowledge, such as non-local similarity [27], low-rankness [28],
sparsity [29, 30], and so on. With the development of deep learning (DL), Dong et al. [31] proposed
the seminal work SRCNN to solve the SR task using a deep neural network. Then DL-based SR
methods rapidly dominated the research field. Various SR technologies were explored from different
perspectives, including network architecture [32, 33, 34, 35], image prior [36, 37, 38, 39], deep
unfolding [40, 41, 42], degradation model [18, 19, 43, 44].

Recently, some works have investigated the application of diffusion models in SR. A prevalent
approach is to concatenate the LR image with the noise in each step and retrain the diffusion model
from scratch [10, 11, 45]. Another popular way is to utilize an unconditional pre-trained diffusion
model as a prior and incorporate additional constraints to guide the reverse process [7, 12, 13, 46].
Both strategies often require hundreds or thousands of sampling steps to generate a realistic HR
image. While several acceleration algorithms [15, 16, 17] have been proposed, they typically sacrifice
the performance and result in blurry outputs. This work designs a more efficient diffusion model that
overcomes this trade-off between efficiency and performance, as detailed in Sec. 2.

Remark. Several parallel works [47, 48, 49] also exploit such an iterative restoration paradigm in SR.
Despite a similar motivation, our work and others have adopted different mathematical formulations
to achieve this goal. Delbracio and Milanfar [47] employed the Inversion by Direct Iteration (InDI)
to model this process, while Luo et al. [48] and Liu et al. [49] attempted to formulate it as a SDE. In
this paper, we design a discrete Markov chain to depict the transition between the HR and LR images,
offering a more intuitive and efficient solution to this problem.
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Table 1: Performance comparison of ResShift on the ImageNet-Test under different configurations.
Configurations Metrics

T p κ PSNR↑ SSIM↑ LPIPS↓ CLIPIQA↑ MUSIQ↑
10

0.3 2.0

25.20 0.6828 0.2517 0.5492 50.6617
15 25.01 0.6769 0.2312 0.5922 53.6596
30 24.52 0.6585 0.2253 0.6273 55.7904
40 24.29 0.6513 0.2225 0.6468 56.8482
50 24.22 0.6483 0.2212 0.6489 56.8463

15

0.3

2.0

25.01 0.6769 0.2312 0.5922 53.6596
0.5 25.05 0.6745 0.2387 0.5816 52.4475
1.0 25.12 0.6780 0.2613 0.5314 48.4964
2.0 25.32 0.6827 0.3050 0.4601 43.3060
3.0 25.39 0.5813 0.3432 0.4041 38.5324

15 0.3

0.5 24.90 0.6709 0.2437 0.5700 50.6101
1.0 24.84 0.6699 0.2354 0.5914 52.9933
2.0 25.01 0.6769 0.2312 0.5922 53.6596
8.0 25.31 0.6858 0.2592 0.5231 49.3182
16.0 24.46 0.6891 0.2772 0.4898 46.9794

LR Image (10, 0.3, 2.0)

(15, 0.3, 2.0)

(15, 0.3, 0.5)

(15, 0.3, 2.0)

(15, 0.5, 2.0)

(15, 0.3, 1.0)

(50, 0.3, 2.0)

(15, 3.0, 2.0)

(15, 0.3, 16.0)

(40, 0.3, 2.0)

(15, 2.0, 2.0)

(15, 0.3, 8.0)

(30, 0.3, 2.0)

(15, 1.0, 2.0)

(15, 0.3, 2.0)

Figure 4: Qualitative comparisons of ResShift under different combinations of (T , p, κ). For example,
“(15, 0.3, 2.0)” represents the recovered result with T = 15, p = 0.3, and κ = 2.0. Please zoom in
for a better view.

4 Experiments

This section presents an empirical analysis of the proposed ResShift and provides extensive exper-
imental results to verify its effectiveness on one synthetic dataset and three real-world datasets.
Following [18, 19], our investigation specifically focuses on the more challenging ×4 SR task. Due
to page limitation, some experimental results are put in the supplementary material.

4.1 Experimental Setup

Training Details. HR images with a resolution of 256 × 256 in our training data are randomly
cropped from the training set of ImageNet [50] following LDM [11]. We synthesize the LR images
using the degradation pipeline of RealESRGAN [19]. The Adam [51] algorithm with the default
settings of PyTorch [52] and a mini-batch size of 64 is used to train ResShift. During training, we
use a fixed learning rate of 5e-5 and update the weight parameters for 500K iterations. As for the
network architecture, we employ the UNet structure in DDPM [2]. To increase the robustness of
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Table 2: Efficiency and performance comparisons of ResShift to other methods on the dataset of
ImageNet-Test. “LDM-A” represents the results achieved by accelerated the sampling steps of
LDM [11] to “A”. Running time is tested on NVIDIA Tesla V100 GPU on the x4 (64→ 256) SR task.

Metrics Methods
BSRGAN RealESRGAN SwinIR LDM-15 LDM-30 LDM-100 ResShift

PSNR↑ 24.42 24.04 23.99 24.89 24.49 23.90 25.01
LPIPS↓ 0.259 0.254 0.238 0.269 0.248 0.244 0.231

CLIPIQA↑ 0.581 0.523 0.564 0.512 0.572 0.620 0.592
Runtime (s) 0.012 0.013 0.046 0.102 0.184 0.413 0.105

# Parameters (M) 16.70 16.70 28.01 113.60 118.59

ResShift to arbitrary image resolution, we replace the self-attention layer in UNet with the Swin
Transformer [53] block.

Testing Datasets. We synthesize a testing dataset that contains 3000 images randomly selected
from the validation set of ImageNet [50] based on the commonly-used degradation model, i.e.,
y = (x ∗ k) ↓ +n, where k is the blurring kernel, n is the noise, y and x denote the LR image and
HR image, respectively. To comprehensively evaluate the performance of ResShift, we consider more
complicated types of blurring kernels, downsampling operators, and noise types. The detailed settings
on them can be found in the supplementary material. It should be noted that we selected the HR
images from ImageNet [50] instead of the prevailing datasets in SR such as Set5 [54], Set14 [55], and
Urban100 [56]. The rationale behind this setting is rooted in the fact that these datasets only contain
very few source images, which fails to thoroughly evaluate the performance of various methods under
different degradation types. We name this dataset as ImageNet-Test for convenience.

Two real-world datasets are adopted to evaluate the efficacy of ResShift. The first is RealSR [57],
containing 100 real images captured by Canon 5D3 and Nikon D810 cameras. Additionally, we
collect another real-world dataset named RealSet65. It comprises 35 LR images widely used in recent
literature [19, 58, 59, 60, 61]. The remaining 30 images were obtained from the internet by ourselves.

Compared Methods. We evaluate the effectiveness of ResShift in comparison to seven recent
SR methods, namely ESRGAN [62], RealSR-JPEG [63], BSRGAN [18], RealESRGAN [19],
SwinIR [20], DASR [21], and LDM [11]. Note that LDM is a diffusion-based method with 1,000
diffusion steps. For a fair comparison, we accelerate LDM to the same number of steps with ResShift
using DDIM [16] and denote it as “LDM-A", where “A" indicates the number of inference steps. The
hyper-parameter η in DDIM is set to be 1 as this value yields the most realistic recovered images.

Metrics. The performance of various methods was assessed using five metrics, including PSNR,
SSIM [64], LPIPS [65], MUSIQ [66], and CLIPIQA [67]. It is worth noting that the latter two are
non-reference metrics specifically designed to assess the realism of images. CLIPIQA, in particular,
leverages the CLIP [68] model that is pre-trained on a massive dataset (i.e., Laion400M [69]) and thus
demonstrates strong generalization ability. On the real-world datasets, we mainly rely on CLIPIQA
and MUSIQ as evaluation metrics to compare the performance of different methods.

4.2 Model Analysis

We analyze the performance of ResShift under different settings on the number of diffusion steps T
and the hyper-parameters p in Eq. (10) and κ in Eq. (1).

Diffusion Steps T and Hyper-parameter p. The proposed transition distribution in Eq. (1) signifi-
cantly reduces the diffusion steps T in the Markov chain. The hyper-parameter p allows for flexible
control over the speed of residual shifting during the transition. Table 1 summarizes the performance
of ResShift on ImageNet-Test under different configurations of T and p. We can see that both of
T and p render a trade-off between the fidelity, measured by the reference metrics such as PSNR,
SSIM, and LPIPS, and the realism, measured by the non-reference metrics, including CLIPIQA and
MUSIQ, of the super-resolved results. Taking p as an example, when it increases, the reference
metrics improve while the non-reference metrics deteriorate. Furthermore, the visual comparison
in Fig. 4 shows that a large value of p will suppress the model’s ability to hallucinate more image
details and result in blurry outputs.

Hyper-parameter κ. Equation (2) reveals that κ dominates the noise strength in state xt. We report
the influence of κ to the performance of ResShift in Table 1. Combining with the visualization in
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Table 3: Quantitative results of different methods on the dataset of ImageNet-Test. The best and
second best results are highlighted in bold and underline.

Methods Metrics
PSNR↑ SSIM↑ LPIPS↓ CLIPIQA↑ MUSIQ↑

ESRGAN [62] 20.67 0.448 0.485 0.451 43.615
RealSR-JPEG [63] 23.11 0.591 0.326 0.537 46.981

BSRGAN [18] 24.42 0.659 0.259 0.581 54.697
SwinIR [20] 23.99 0.667 0.238 0.564 53.790

RealESRGAN [19] 24.04 0.665 0.254 0.523 52.538
DASR [21] 24.75 0.675 0.250 0.536 48.337

LDM-15 [11] 24.89 0.670 0.269 0.512 46.419
ResShift 25.01 0.677 0.231 0.592 53.660

(a) Zoomed LR (b) BSRGAN (c) RealESRGAN (d) SwinIR (f) LDM-15 (g) ResShift (h) Ground Truth(e) DASR

Figure 5: Qualitative comparisons of different methods on two synthetic examples of the ImageNet-
Test dataset. Please zoom in for a better view.

Fig. 4, we can find that excessively large or small values of κ will smooth the recovered results,
regardless of their favorable metrics of PSNR and SSIM. When κ is in the range of [1.0, 2.0], our
method achieves the most realistic quality indicated by CLIPIQA and MUSIQ, which is more
desirable in real applications. We thus set κ to be 2.0 in this work.

Efficiency Comparison. To improve inference efficiency, it is desirable to limit the number of
diffusion steps T . However, this causes a decrease in the realism of the restored HR images. To
compromise, the hyper-parameter p can be set to a relatively small value. Therefore, we set T = 15
and p = 0.3, and yield our model named ResShift. Table 2 presents the efficiency and performance
comparisons of ResShift to the state-of-the-art (SotA) approach LDM [11] and three other GAN-based
methodologies on ImageNet-Test dataset. It is evident from the results that the proposed ResShift
surpasses LDM [11] in terms of PSNR and LPIPS [65], and demonstrates a remarkable fourfold
enhancement in computational efficiency when compared to LDM-100. Despite showing considerable
potential in mitigating the efficiency bottleneck of the diffusion-based SR approaches, ResShift
still lags behind current GAN-based methods in speed due to its iterative sampling mechanism.

3.0e-3 3.2e-3 3.4e-3 3.6e-3 3.8e-3 3.9e-3
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Figure 7: Perception-distortion trade-off
of ResShift and LDM. The vertical and
horizontal axes represent the strength of
the perception and distortion, measured
by LPIPS and MSE, respectively.

Therefore, it remains imperative to explore further opti-
mizations of the proposed method to address this limita-
tion, which we leave in our future work.

Perception-Distortion Trade-off. There exists a well-
known phenomenon called perception-distortion trade-
off [70] in the field of SR. In particular, the augmentation
of the generative capability of a restoration model, such
as elevating the sampling steps for a diffusion-based
method or amplifying the weight of the adversarial loss
for a GAN-based method, will result in a deterioration
in fidelity preservation while concurrently enhancing the
authenticity of restored images. That is mainly because
the restoration model with powerful generation capability
tends to hallucinate more high-frequency image struc-
tures, thereby deviating from the underlying ground truth.
To facilitate a comprehensive comparison between our
ResShift and current SotA diffusion-based method LDM,
we plotted the perception-distortion curves of them in
Fig. 7, wherein the perception and distortion are mea-
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Table 4: Quantitative results of different methods on two real-world datasets. The best and second
best results are highlighted in bold and underline.

Methods
Datasets

RealSR RealSet65
CLIPIQA↑ MUSIQ↑ CLIPIQA↑ MUSIQ↑

ESRGAN [62] 0.2362 29.048 0.3739 42.369
RealSR-JPEG [63] 0.3615 36.076 0.5282 50.539

BSRGAN [18] 0.5439 63.586 0.6163 65.582
SwinIR [20] 0.4654 59.636 0.5782 63.822

RealESRGAN [19] 0.4898 59.678 0.5995 63.220
DASR [21] 0.3629 45.825 0.4965 55.708

LDM-15 [11] 0.3836 49.317 0.4274 47.488
ResShift 0.5958 59.873 0.6537 61.330

sured by LPIPS and mean square-error (MSE), respectively. This plot reflects the perception quality
and the reconstruction fidelity of ResShift and LDM across varying numbers of diffusion steps, i.e.,
10, 15, 20, 30, 40, and 50. As can be observed, the perception-distortion curve of our ResShift
consistently resides beneath that of the LDM, indicating its superior capacity in balancing perception
and distortion.

4.3 Evaluation on Synthetic Data

We present a comparative analysis of the proposed method with recent SotA approaches on the
ImageNet-Test dataset, as summarized in Table 3 and Fig. 5. Based on this evaluation, several
significant conclusions can be drawn as follows: i) ResShift exhibits superior or at least comparable
performance across all five metrics, affirming the effectiveness and superiority of the proposed method.
ii) The notably higher PSNR ans SSIM values attained by ResShift indicate its capacity to better
preserve fidelity to ground truth images. This advantage primarily arises from our well-designed
diffusion model, which starts from a subtle disturbance of the LR image, rather than the conventional
assumption of white Gaussian noise in LDM. iii) Considering the metrics of LPIPS and CLIPIQA,
which gauge the perceptual quality and realism of the recovered image, ResShift also demonstrates
evident superiority over existing methods. Furthermore, in terms of MUSIQ, our approach achieves
comparable performance with recent SotA methods. In summary, the proposed ResShift exhibits
remarkable capabilities in generating more realistic results while preserving fidelity. This is of
paramount importance for the task of SR.

4.4 Evaluation on Real-World Data

Table 4 lists the comparative evaluation using CLIPIQA [67] and MUSIQ [66] of various methods on
two real-world datasets. Note that CLIPIQA, benefiting from the powerful representative capability
inherited from CLIP, performs stably and robustly in assessing the perceptional quality of natural
images. The results in Table 4 show that the proposed ResShift evidently surpasses existing methods in
CLIPIQA, meaning that the restored outputs of ResShift better align with human visual and perceptive
systems. In the case of MUSIQ evaluation, ResShift achieves the competitive performance when
compared to current SotA methods, namely BSRGAN [18], SwinIR [20], and RealESRGAN [19].
Collectively, our method shows promising capability in addressing the real-world SR problem.

We display four real-world examples in Fig. 6. More examples can be found in the supplementary
material. We consider diverse scenarios, including comic, text, face, and natural images to ensure a
comprehensive evaluation. A noticeable observation is that ResShift produces more naturalistic image
structures, as evidenced by the patterns on the beam in the third example and the eyes of a person
in the fourth example. We note that the recovered results of LDM are excessively smooth when
compressing the inference steps to match with the proposed ResShift, specifically utilizing 15 steps,
largely deviating from the training procedure’s 1,000 steps. Even though other GAN-based methods
may also succeed in hallucinating plausible structures to some extent, they are often accompanied by
obvious artifacts.

5 Conclusion

In this work, we have introduced an efficient diffusion model named ResShift for SR. Unlike existing
diffusion-based SR methods that require a large number of iterations to achieve satisfactory results,
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Figure 6: Qualitative comparisons on four real-world examples. Please zoom in for a better view.

our proposed method constructs a diffusion model with only 15 sampling steps, thereby significantly
improving inference efficiency. The core idea is to corrupt the HR image toward the LR image
instead of the Gaussian white noise, which can effectively cut off the length of the diffusion model.
Extensive experiments on both synthetic and real-world datasets have demonstrated the superiority
of our proposed method. We believe that our work will pave the way for the development of more
efficient and effective diffusion models to address the SR problem.
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