
A Appendix458

A.1 Supplemental Results459

Fig. 6 illustrates model predictions across every Number Game concept in [33].

0 10 20 30 40 50 60 70 80 90 100
0.0

0.5

1.0 an even number and bet...
divisible by 8
between 8 and 22
divisible by 4
even and less than 30

training examples: 16

0 10 20 30 40 50 60 70 80 90 100
0.0

0.5

1.0

pr
ob

. t
es

t i
s

in
 c

on
ce

pt

a power of 2 (it is no...
an even power of 2
an integer power of 2 ...
a precorrect power of 2
a power of 2.

training examples: 16, 8, 2, 64

0 10 20 30 40 50 60 70 80 90 100
0.0

0.5

1.0 either 16, 23, 19, or 20
a multiple / factor of...
either 16, 23, 19, or 20
between 20 and 25, or ...
between 16 and 23.

training examples: 16, 23, 19, 20

0 10 20 30 40 50 60 70 80 90 100
0.0

0.5

1.0 even and 60
between 40 and 80
divisible by both 2 and 4
between 50 and 70
divisible by 3 or 5.

training examples: 60

0 10 20 30 40 50 60 70 80 90 100
0.0

0.5

1.0 evenly divisible by 10...
greater than 0, less t...
divided by 10 or 20
a multiple of 10 and i...
divisible by 60, 80, 1...

training examples: 60, 80, 10, 30

0 10 20 30 40 50 60 70 80 90 100
0.0

0.5

1.0 50 60
50 60
60, or 52, or 57, or 55.
between 40 and 78
10 more than 50, 60, 5...

training examples: 60, 52, 57, 55

0 10 20 30 40 50 60 70 80 90 100
0.0

0.5

1.0 above 80
either 98, 81, 86, or 93
between 80 and 100 **
either 98, 81, 86, or 93
greater than equal to ...

training examples: 98, 81, 86, 93

0 10 20 30 40 50 60 70 80 90 100
test number

0.0

0.5

1.0 a square (1, 4, 9...)
perfect square (has an...
a perfect square (see ...
a square number (integer)
a square (nonnegative...

training examples: 25, 4, 36, 81

model
human

Figure 6: Model predictions across every Number Game concept in [33]

460

13

Recall that we deduplicated the proposals instead of performing actual importance sampling. Fig. 7461

contrasts model fit for importance sampling and deduplication. We originally did deduplication462

simply because importance sampling is not possible with GPT-4, and GPT-4 proved necessary for463

the logical concepts. On number concepts we used code-davinci-002, from which we can construct464

an importance sampler because it exposes the log probability of its samples. On number concepts465

deduplication provides a fit that is on-par (actually slightly better) compared to importance sampling466

(Fig. 7).

0.0 0.5 1.0
model prediction

0.0

0.5

1.0

hu
m

an
 r

at
in

g R²=0.95

deduplication

0.0 0.5 1.0
model prediction

0.0

0.5

1.0

hu
m

an
 r

at
in

g R²=0.90

importance sampling

Figure 7: Monte Carlo inference using deduplication instead of importance sampling does not harm
model fit to human data. The above figures show Number Game models using a learned prior and
100 samples, and show predictions only on holdout data.

467

A.2 Human Study468

16 participants were recruited primarily through a Slack message sent to a channel populated by469

members of our academic department. Participants had an average age 28.1 (stddev 13.6, all over470

18), and were 7 male/5 female/1 nonbinary/3 declined to answer. Participants were randomly split471

between the concepts of most common color / least common color. Each participant went through 15472

trials, and took an average of 294s to complete those 15 trials. In exchange for participating in the473

study, participants received $10 in Amazon gift cards. Fig. 8 illustrates the web interface shown to474

our human participants, including the cover story.475

A.3 Modeling476

A.3.1 Temperature and Platt Transform477

Adding a temperature parameter T to a model corresponds to computing the posterior via478

pTemp(Xtest ∈ C ∣X1∶K) ≈ ∑
C∈{C(1),...,C(S)}

w(C)1 [Xtest ∈ C] , where

w(C) =
(w̃(C))

1/T

∑C′ (w̃
(C′))

1/T and w̃(C) = p(C)p(X1∶K ∣C)1 [C ∈ {C(1), . . . ,C(S)}]

(10)
Adjusting the predictions of a model using a Platt transform corresponds to introducing parameters a479

and b which transform the predictions according to480

pPlatt(Xtest ∈ C ∣X1∶K) = Logistic(b + a × Logistic−1 (p(Xtest ∈ C ∣X1∶K))) (11)
For the number game, every model has its outputs transformed by a learned Platt transform. This481

is because we are modeling human ratings instead of human responses. We expect that the ratings482

correspond to some monotonic transformation of the human’s subjective probability estimates, and so483

this transformation gives some extra flexibility by inferring the correspondence between probabilities484

and ratings. Logical concept models do not use Platt transforms.485

14

Figure 8: Cover story and web interface for our version of the logical concept learning study, which
is based on [45]

A.3.2 Parameter fitting486

Training consists of fitting the parameters T , θ (for the prior), ϵ (for the likelihood), α and β (for the487

logical concepts likelihood), and Platt transform parameters a, b (for the Number Game). In practice,488

this amounts to around 400 parameters, almost all of which come from θ.489

We fit these parameters using Adam with a learning rate of 0.001. We perform 1000 epochs of490

training for the Number Game, and 100 epochs for logical concepts. There is a tenfold difference in491

the number of concepts, so this way they take about the same number of gradient steps.492

For the number game we do 10-fold cross validation to calculate holdout predictions. For logical493

concepts we use the train-test split introduced in [45], which involves running different groups of494

human subjects on each concept twice, with different random examples. One sequence of random495

examples is arbitrarily designated as training data, and the other as holdout data.496

All model were trained on a laptop using no GPUs. Training takes between a few minutes and an497

hour, depending on the domain and the model.498

Some of the parameters that we fit, namely ϵ, α, β, cannot be negative. To enforce this we actually499

optimize the inverse logistic of those parameters.500

15

A.3.3 MCMC over Logical Expressions501

Fleet was used1 to perform MCMC over logical expressions with the domain-specific primitives in502

this file, which include:503

true, false ∶ boolean
blue, yellow, green ∶ object→ boolean

rectangle, circle, triangle ∶ object→ boolean
small, medium, large ∶ object→ boolean
and, or, ⇐⇒ , Ô⇒ ∶ boolean × boolean→ boolean

∀, ∃ ∶ (shape→ boolean) × 2object
→ boolean

filter ∶ (object→ boolean) × 2object
→ 2object

∈ ∶ object × 2object
→ boolean

ι ∶ 2object
→ object ∪ {�} , unique set element

empty ∶ 2object
→ boolean

same_shape, same_color, same_size ∶ object × object→ boolean
size<, size≤, size>, size≥, ∶ object × object→ boolean

The model first constructed a large hypothesis space by performing MCMC for 1 minute per batch,504

and per learning curve. In one minute, Fleet makes approximately 106 MH proposals. There are a505

little more than 200 learning curves, and 25 batches per curve, for a total of about 5 billion MCMC506

proposals. In the main text, we abbreviate this analysis by referring to 109 proposals.507

The top 10 samples per batch and per learning curve were retained. These top 10 samples samples508

were then deduplicated to yield 45 thousand hypotheses. Parameter fitting and posterior estimation509

was performed solely over those 45 thousand hypotheses.510

Quantitatively, these are vastly more proposals than the models introduced in this paper. Quantitatively,511

these proposals are also derived in a very different way: the hypothesis space for the BPL learner is512

actually informed by data on other learning curves, and also on the same learning curve, but in the513

future batches.514

It is in this sense that the BPL model is a computational-level theory, and not a process model,515

because human subjects could not be proposing hypotheses using data that is going to be seen in the516

future, or on other learning curves. However, the above strategy for proposing hypotheses is a very517

reasonable heuristic for constructing the support of the space of plausible logical hypotheses that a518

human learner might ever think of.519

A.4 Prompting520

A.4.1 Proposing hypotheses521

For the number game we use the following prompt for code-davinci-002 to generate candidate522

concepts in natural language, given examples X1∶K . The example number concepts given in the523

prompt come from the cover score given to human participants [33]:524

Python 3525

Here are a few example number concepts:526

-- The number is even527

-- The number is between 30 and 45528

-- The number is a power of 3529

-- The number is less than 10530

#531

Here are some random examples of numbers belonging to a different ⤦532

Ç number concept:533

X1∶K534

1Running the model was graciously performed by the authors of [45], who provided us with the raw data.

16

https://github.com/piantado/Fleet
https://github.com/piantado/Fleet/blob/281057ca80f14276f21c77ee32174298cc3902e5/Models/FirstOrderLogic/Main.cpp

The above are examples of the following number concept:535

-- The number is536

where X1∶K is formatted by listing the numbers with a comma and a space between them.537

For the number game we used the following prompt to generate candidate concepts in python (code538

baseline):539

Python 3540

Here are a few example number concepts:541

-- The number is even542

-- The number is between 30 and 45543

-- The number is a power of 3544

-- The number is less than 10545

#546

Here are some random examples of numbers belonging to a different ⤦547

Ç number concept:548

X1∶K549

Write a python function that returns true if ‘num ‘ belongs to ⤦550

Ç this number concept.551

def check_if_in_concept(num):552

return553

For logical concepts we used the following few-shot prompt for GPT-4 to generate candidate concepts:554

Here three simple concepts , which specify when an object is ⤦555

Ç ’positive ’ relative to an example collection of other ⤦556

Ç objects. Before giving the rule for each concept , we give ⤦557

Ç examples of collections of objects , and which objects in the ⤦558

Ç collection are ’positive ’.559

560

Concept #1:561

An Example of Concept #1:562

POSITIVES: (big yellow rectangle)563

NEGATIVES: (big green circle), (medium yellow rectangle)564

Another Example of Concept #1:565

POSITIVES: (medium yellow rectangle)566

NEGATIVES: (big red circle), (small green circle)567

Rule for Concept #1: Something is positive if it is the biggest ⤦568

Ç yellow object in the example.569

570

571

Concept #2:572

An Example of Concept #2:573

POSITIVES: (small yellow circle), (medium yellow rectangle)574

NEGATIVES: (big green circle), (big blue rectangle)575

Another Example of Concept #2:576

POSITIVES: (big blue circle), (medium blue rectangle)577

NEGATIVES: (small green circle), (medium yellow rectangle),578

Rule for Concept #2: Something is positive if there is another ⤦579

Ç object with the same color in the example.580

581

Concept #3:582

An Example of Concept #3:583

POSITIVES: (small yellow circle), (medium yellow rectangle)584

NEGATIVES: (big green circle), (big blue rectangle)585

Another Example of Concept #3:586

POSITIVES: (small blue circle), (small blue triangle), ⤦587

Ç (medium blue rectangle)588

NEGATIVES: (medium green triangle), (big yellow rectangle)589

Another Example of Concept #3:590

POSITIVES: (big red rectangle), (medium red rectangle), ⤦591

Ç (big red triangle)592

NEGATIVES: (medium green triangle), (big yellow rectangle)593

Rule for Concept #3: Something is positive if it is the same color ⤦594

Ç as the smallest triangle in the example.595

17

596

Now here are some examples of another concept called Concept #4, ⤦597

Ç but this time we don ’t know the rule. Infer ten different ⤦598

Ç possible rules , and make those ten rules as simple and ⤦599

Ç general as you can. Your simple general rules might talk ⤦600

Ç about shapes , colors , and sizes , and might make comparisons ⤦601

Ç between these features within a single example , but it ⤦602

Ç doesn ’t have to. Remember that a rule should say when ⤦603

Ç something is positive , and should mention the other objects ⤦604

Ç in the example , and should be consisting with what you see ⤦605

Ç below.606

607

Concept #4:608

X1∶K609

Rule for Concept #4: Something is positive if...610

611

Now make a numbered list of 10 possible rules for Concept #4. Start ⤦612

Ç by writing "1. Something is positive if". End each line with ⤦613

Ç a period.614

Each sample from the above prompt generates 10 possible concepts formatted as a numbered list. We615

draw 10 times at temperature=1 to construct 100 hypotheses. To obtain fewer than 100 hypotheses we616

take hypotheses from each sampled list in round-robin fashion. We found that asking it to generate617

a list of hypotheses generated greater diversity without sacrificing quality, compared to repeatedly618

sampling a single hypothesis.619

The above prompt provides in-context examples of first-order rules. We also tried using a different620

prompt for propositional concepts that illustrated the examples as a truth table, and gave in-context621

example rules that were propositional:622

Here are some example concepts defined by a logical rule:623

624

Rule: a triangle.625

Rule: a green rectangle.626

Rule: big or a rectangle (unless that rectangle is blue).627

Rule: not both big and green.628

Rule: either big or green , but not both.629

Rule: either a rectangle or not yellow.630

Rule: a circle.631

632

633

Now please produce a logical rule for a new concept. Your rule ⤦634

Ç should be consistent with the following examples. It must be ⤦635

Ç true of all the positive examples , and not true of all the ⤦636

Ç negative examples. The examples are organized into a table ⤦637

Ç with one column for each feature (size , color , shape):638

639

X1∶K640

641

Please produce a simple rule that is consistent with the above ⤦642

Ç table. Make your rule as SHORT , SIMPLE , and GENERAL as ⤦643

Ç possible. Do NOT make it more complicated than it has to be, ⤦644

Ç or refer to features that you absolutely do not have to refer ⤦645

Ç to. Begin by writing "Rule: " and then the rule , followed by ⤦646

Ç a period.647

Using the first order prompt for every concept gives a R2 = .80 fit to the human responses. Using both648

prompts gives the R2 = .81 result in the main paper: the propositional prompt for the propositional649

problems, and the first order prompt for the higher order problems. We strongly suspect that a single650

prompt that just showed both propositional and higher-order in-context examples would work equally651

well, given that a single first-order prompt works about as well also, but we did not try that because652

of the high cost of using GPT-4.653

18

On the first batch, the learner has not observed any examples. Therefore the above prompts do not654

apply, and we use a different prompt to construct an initial hypothesis space:655

Here are some example concepts defined by a logical rule:656

657

Rule: color is purple.658

Rule: shape is not a hexagon.659

Rule: color is purple and size is small.660

Rule: size is tiny or shape is square.661

Rule: size is not enormous.662

Rule: color is red.663

664

Please propose a some new concepts , defined by a logical rule. ⤦665

Ç These new concepts can only refer to the following features:666

- shape: triangle , rectangle , circle667

- color: green , blue , yellow668

- size: small , medium , large669

670

Please make your rules short and simple , and please write your ⤦671

Ç response on a single line that begins with the text "Rule: ". ⤦672

Ç Provide 100 possible rules.673

We generate from the above prompt at temperature=0, and split on line breaks to obtain candidate674

rules.675

A.4.2 Translating from natural language to Python676

We translate Number Game concepts from English to Python via the following prompt for code-677

davinci-002, and generate at temperature=0 until linebreak:678

Write a python function to check if a number is C.679

def check_number(num):680

return681

We translate the logic cool concepts from English to Python using a series of in-context examples,682

again generating with temperature=0 until the text #DONE is produced.2683

def check_object(this_object , other_objects):684

"""685

this_object: a tuple of (shape , color , size)686

other_objects: a list of tuples of (shape , color , size)687

688

returns: True if ‘this_object ‘ is positive according to the ⤦689

Ç following rule:690

Something is positive if it is not a small object , and not ⤦691

Ç a green object.692

"""693

shape: a string , either "circle", "rectangle", or "triangle"694

color: a string , either "yellow", "green", or "blue"695

size: an int , either 1 (small), 2 (medium), or 3 (large)696

this_shape , this_color , this_size = this_object697

698

‘this_object ‘ is not a part of ‘other_objects ‘699

to get all of the examples , you can use ⤦700

Ç ‘all_example_objects ‘, defined as ‘other_objects + ⤦701

Ç [this_object]‘702

be careful as to whether you should be using ⤦703

Ç ‘all_example_objects ‘ or ‘other_objects ‘ in your code704

all_example_objects = other_objects + [this_object]705

706

Something is positive if it is not a small object , and not a ⤦707

Ç green object.708

2This prompt is pretty long, and probably could be much shorter. Preliminary experiments suggested that a
few in-context examples were very helpful, and so to increase the odds of the model working without much time
spent prompt-engineering, we provided a large number of in-context examples.

19

#START709

return (not this_size == 1) and (not this_color == "green")710

#DONE711

712

def check_object(this_object , other_objects):713

"""714

this_object: a tuple of (shape , color , size)715

other_objects: a list of tuples of (shape , color , size)716

717

returns: True if ‘this_object ‘ is positive according to the ⤦718

Ç following rule:719

Something is positive if it is bigger than every other object720

"""721

shape: a string , either "circle", "rectangle", or "triangle"722

color: a string , either "yellow", "green", or "blue"723

size: an int , either 1 (small), 2 (medium), or 3 (large)724

this_shape , this_color , this_size = this_object725

726

‘this_object ‘ is not a part of ‘other_objects ‘727

to get all of the examples , you can use ⤦728

Ç ‘all_example_objects ‘, defined as ‘other_objects + ⤦729

Ç [this_object]‘730

be careful as to whether you should be using ⤦731

Ç ‘all_example_objects ‘ or ‘other_objects ‘ in your code732

all_example_objects = other_objects + [this_object]733

734

Something is positive if it is bigger than every other object735

#START736

return all(this_size > other_object [2] for other_object in ⤦737

Ç other_objects)738

#DONE739

740

def check_object(this_object , other_objects):741

"""742

this_object: a tuple of (shape , color , size)743

other_objects: a list of tuples of (shape , color , size)744

745

returns: True if ‘this_object ‘ is positive according to the ⤦746

Ç following rule:747

Something is positive if it is one of the largest748

"""749

shape: a string , either "circle", "rectangle", or "triangle"750

color: a string , either "yellow", "green", or "blue"751

size: an int , either 1 (small), 2 (medium), or 3 (large)752

this_shape , this_color , this_size = this_object753

754

‘this_object ‘ is not a part of ‘other_objects ‘755

to get all of the examples , you can use ⤦756

Ç ‘all_example_objects ‘, defined as ‘other_objects + ⤦757

Ç [this_object]‘758

be careful as to whether you should be using ⤦759

Ç ‘all_example_objects ‘ or ‘other_objects ‘ in your code760

all_example_objects = other_objects + [this_object]761

762

Something is positive if it is one of the largest763

#START764

return all(this_size >= other_object [2] for all_example_object ⤦765

Ç in all_example_objects)766

#DONE767

768

769

def check_object(this_object , other_objects):770

"""771

this_object: a tuple of (shape , color , size)772

other_objects: a list of tuples of (shape , color , size)773

20

774

returns: True if ‘this_object ‘ is positive according to the ⤦775

Ç following rule:776

Something is positive if it is smaller than every yellow ⤦777

Ç object778

"""779

shape: a string , either "circle", "rectangle", or "triangle"780

color: a string , either "yellow", "green", or "blue"781

size: an int , either 1 (small), 2 (medium), or 3 (large)782

this_shape , this_color , this_size = this_object783

784

‘this_object ‘ is not a part of ‘other_objects ‘785

to get all of the examples , you can use ⤦786

Ç ‘all_example_objects ‘, defined as ‘other_objects + ⤦787

Ç [this_object]‘788

be careful as to whether you should be using ⤦789

Ç ‘all_example_objects ‘ or ‘other_objects ‘ in your code790

all_example_objects = other_objects + [this_object]791

792

Something is positive if it is smaller than every yellow object793

#START794

return all(this_size < other_object [2] for other_object in ⤦795

Ç other_objects if other_object [1] == "yellow")796

#DONE797

798

def check_object(this_object , other_objects):799

"""800

this_object: a tuple of (shape , color , size)801

other_objects: a list of tuples of (shape , color , size)802

803

returns: True if ‘this_object ‘ is positive according to the ⤦804

Ç following rule:805

Something is positive if there is another object with the ⤦806

Ç same color807

"""808

shape: a string , either "circle", "rectangle", or "triangle"809

color: a string , either "yellow", "green", or "blue"810

size: an int , either 1 (small), 2 (medium), or 3 (large)811

this_shape , this_color , this_size = this_object812

813

‘this_object ‘ is not a part of ‘other_objects ‘814

to get all of the examples , you can use ⤦815

Ç ‘all_example_objects ‘, defined as ‘other_objects + ⤦816

Ç [this_object]‘817

be careful as to whether you should be using ⤦818

Ç ‘all_example_objects ‘ or ‘other_objects ‘ in your code819

all_example_objects = other_objects + [this_object]820

821

Something is positive if there is another object with the ⤦822

Ç same color823

#START824

return any(this_color == other_object [1] for other_object in ⤦825

Ç other_objects)826

#DONE827

828

def check_object(this_object , other_objects):829

"""830

this_object: a tuple of (shape , color , size)831

other_objects: a list of tuples of (shape , color , size)832

833

returns: True if ‘this_object ‘ is positive according to the ⤦834

Ç following rule:835

Something is positive if it has a unique combination of ⤦836

Ç color and shape837

"""838

21

shape: a string , either "circle", "rectangle", or "triangle"839

color: a string , either "yellow", "green", or "blue"840

size: an int , either 1 (small), 2 (medium), or 3 (large)841

this_shape , this_color , this_size = this_object842

843

‘this_object ‘ is not a part of ‘other_objects ‘844

to get all of the examples , you can use ⤦845

Ç ‘all_example_objects ‘, defined as ‘other_objects + ⤦846

Ç [this_object]‘847

be careful as to whether you should be using ⤦848

Ç ‘all_example_objects ‘ or ‘other_objects ‘ in your code849

all_example_objects = other_objects + [this_object]850

851

Something is positive if it has a unique combination of color ⤦852

Ç and shape853

#START854

return all(this_shape != other_object [0] or this_color != ⤦855

Ç other_object [1] for other_object in other_objects)856

#DONE857

858

def check_object(this_object , other_objects):859

"""860

this_object: a tuple of (shape , color , size)861

other_objects: a list of tuples of (shape , color , size)862

863

returns: True if ‘this_object ‘ is positive according to the ⤦864

Ç following rule:865

Something is positive if it has the same color as the ⤦866

Ç majority of objects867

"""868

shape: a string , either "circle", "rectangle", or "triangle"869

color: a string , either "yellow", "green", or "blue"870

size: an int , either 1 (small), 2 (medium), or 3 (large)871

this_shape , this_color , this_size = this_object872

873

‘this_object ‘ is not a part of ‘other_objects ‘874

to get all of the examples , you can use ⤦875

Ç ‘all_example_objects ‘, defined as ‘other_objects + ⤦876

Ç [this_object]‘877

be careful as to whether you should be using ⤦878

Ç ‘all_example_objects ‘ or ‘other_objects ‘ in your code879

all_example_objects = other_objects + [this_object]880

881

Something is positive if it has the same color as the ⤦882

Ç majority of objects883

#START884

majority_color = max ([" yellow", "green", "blue"], key=lambda ⤦885

Ç color: sum(1 for obj in all_example_objects if obj[1] == ⤦886

Ç color))887

return this_color == majority_color888

#DONE889

890

def check_object(this_object , other_objects):891

"""892

this_object: a tuple of (shape , color , size)893

other_objects: a list of tuples of (shape , color , size)894

895

returns: True if ‘this_object ‘ is positive according to the ⤦896

Ç following rule:897

Something is positive if there are at least two other ⤦898

Ç objects with the same shape899

"""900

shape: a string , either "circle", "rectangle", or "triangle"901

color: a string , either "yellow", "green", or "blue"902

size: an int , either 1 (small), 2 (medium), or 3 (large)903

22

this_shape , this_color , this_size = this_object904

905

‘this_object ‘ is not a part of ‘other_objects ‘906

to get all of the examples , you can use ⤦907

Ç ‘all_example_objects ‘, defined as ‘other_objects + ⤦908

Ç [this_object]‘909

be careful as to whether you should be using ⤦910

Ç ‘all_example_objects ‘ or ‘other_objects ‘ in your code911

all_example_objects = other_objects + [this_object]912

913

Something is positive if there are at least two other objects ⤦914

Ç with the same shape915

#START916

return sum(1 for other_object in other_objects if ⤦917

Ç other_object [0] == this_shape) >= 2918

#DONE919

920

def check_object(this_object , other_objects):921

"""922

this_object: a tuple of (shape , color , size)923

other_objects: a list of tuples of (shape , color , size)924

925

returns: True if ‘this_object ‘ is positive according to the ⤦926

Ç following rule:927

C928

"""929

shape: a string , either "circle", "rectangle", or "triangle"930

color: a string , either "yellow", "green", or "blue"931

size: an int , either 1 (small), 2 (medium), or 3 (large)932

this_shape , this_color , this_size = this_object933

934

‘this_object ‘ is not a part of ‘other_objects ‘935

to get all of the examples , you can use ⤦936

Ç ‘all_example_objects ‘, defined as ‘other_objects + ⤦937

Ç [this_object]‘938

be careful as to whether you should be using ⤦939

Ç ‘all_example_objects ‘ or ‘other_objects ‘ in your code940

all_example_objects = other_objects + [this_object]941

942

C943

#START944

A.5 GPT-4 Baselines945

Our GPT-4 baseline for each domain presented the examples X1∶K in string form and then asked946

GPT-4 to respond Yes/No as to whether a test example Xtest belonged to the same concept. GPT-4947

was then queried at temperature=1 to collect 10 samples. Samples not beginning with ‘y’/‘n’ were948

discarded, and the ratio of remaining samples that began with ‘y’ was computed (case insensitive).949

We show below example prompts for the number and logic domains.950

Here are a few example number concepts:951

-- The number is even952

-- The number is between 30 and 45953

-- The number is a power of 3954

-- The number is less than 10955

956

Here are some random examples of numbers belonging to a possibly ⤦957

Ç different number concept:958

98, 81, 86, 93959

960

Question: Does the number 42 belong to the same concept as the ⤦961

Ç above numbers?962

Answer (one word , yes/no):963

23

Logical concept example prompt:964

Here are some example concepts defined by a logical rule:965

966

Rule for Concept #1: Something is positive if it is the biggest ⤦967

Ç yellow object in the example968

Rule for Concept #2: Something is positive if there is another ⤦969

Ç object with the same color in the example970

Rule for Concept #3: Something is positive if it is the same color ⤦971

Ç as the smallest triangle in the example972

973

Now please look at the following examples for a new logical rule.974

975

An Example of Concept #4:976

POSITIVES: none977

NEGATIVES: (large yellow circle), (small green circle), ⤦978

Ç (medium green circle), (small yellow triangle)979

Another Example of Concept #4:980

POSITIVES: (small green circle), (large green circle)981

NEGATIVES: (large yellow circle), (medium blue circle)982

Another Example of Concept #4:983

POSITIVES: (small green rectangle)984

NEGATIVES: (medium yellow circle), (medium blue rectangle), ⤦985

Ç (large green circle), (medium green circle)986

Another Example of Concept #4:987

POSITIVES: (medium green rectangle)988

NEGATIVES: (medium yellow circle), (small yellow ⤦989

Ç rectangle), (medium yellow rectangle), (medium blue ⤦990

Ç rectangle)991

Another Example of Concept #4:992

POSITIVES: (small green rectangle)993

NEGATIVES: (large yellow rectangle), (small yellow ⤦994

Ç triangle), (medium green circle), (small blue rectangle)995

Another Example of Concept #4:996

POSITIVES: (medium green triangle)997

NEGATIVES: (medium blue triangle), (medium blue rectangle), ⤦998

Ç (large blue triangle), (small yellow triangle)999

Another Example of Concept #4:1000

POSITIVES: none1001

NEGATIVES: (small yellow circle), (large blue circle)1002

Another Example of Concept #4:1003

POSITIVES: none1004

NEGATIVES: (large green circle), (small blue rectangle), ⤦1005

Ç (small green triangle), (medium blue rectangle)1006

Another Example of Concept #4:1007

POSITIVES: (small green rectangle)1008

NEGATIVES: (small yellow circle), (large blue rectangle)1009

1010

Now we get a new collection of examples for Concept #4:1011

(medium blue triangle) (large yellow triangle) (small blue ⤦1012

Ç rectangle) (large blue circle) (small yellow circle)1013

Question: Based on the above example , is a (small yellow circle) in ⤦1014

Ç the concept?1015

Answer (one word , just write yes/no):1016

A.6 Latent Language Baseline1017

For fair comparison, we designed our latent language baseline to be as similar to our system as1018

possible. It performs maximum likelihood estimation of a single concept, rather than estimate a1019

full posterior, but uses the exact same prompts and likelihood functions as our model. The most1020

important difference from the original latent language paper [22] is that instead of training our1021

own neural models for language interpretation and language generation, we use pretrained models1022

(Codex/code-davinci-002 and GPT-4).1023

24

A.7 Ablation of the proposal distribution1024

We ablate the proposal distribution by proposing hypotheses unconditioned on X1∶K . We accomplish1025

this by drawing concepts from the following alternative prompt, which is designed to resemble the1026

prompt used by the full model except that it does not include X1∶K :1027

Python 31028

Here are a few example number concepts:1029

-- The number is even1030

-- The number is between 30 and 451031

-- The number is a power of 31032

-- The number is less than 101033

-- The number is1034

A.8 Pretrained prior1035

Our pretrained prior comes from the opensource model CodeGen [34], which was trained on source1036

code. We chose this model because we suspected that pretraining on source code would give better1037

density estimation for text describing precise rules. We formatted the rules as a natural language1038

comment and prefixed it with a small amount of domain-specific text in order to prime the model to1039

put probability mass on rules that correctly talk about numbers or shapes.1040

For the number game, we would query CodeGen for the probability of p(C) via1041

Here is an example number concept:1042

The number is C1043

For the number game’s code baseline, we would query CodeGen for the probability of p(C) via1044

Python 31045

Let ’s think of a number concept.1046

Write a python function that returns true if ‘num ‘ belongs to ⤦1047

Ç this number concept.1048

def check_if_in_concept(num):1049

return C1050

For logical concepts we would query CodeGen for the probability of p(C) via1051

Here are some simple example shape concepts:1052

1. neither a triangle nor a green rectangle1053

2. not blue and large.1054

3. if it is large , then it must be yellow.1055

4. small and blue1056

5. either big or green.1057

6. C1058

Because the proposal distribution would generate rules beginning with the prefix “Something is1059

positive if...” we would remove that text before computing p(C) as above.1060

25

