
A Main Proof and Lemmas

In this section, we proceed to provide a proof of Theorem 1 of the main paper, together with some
useful lemmas instrumental for proving it. Again, we define the set containing the solutions to
the expected and sampled Max-Ent problems with S := {η̄, η̂}, the related set for the multipliers
ΩS := {λ̄, λ̂}, which is a restriction of Ω = {λ ∈ RM : A(λ) < +∞}, and a quantity that will be
central now on h(x1, · · · , xN ) := maxη∈S |Eηπ [log η]− 1

N

∑N
i log η(xi)|.

Contribution Highlights The whole structure of the proof is built upon several intermediate results,
of which some use standard techniques, and others are novel to this work. Here we report some
comments to better clarify our contributions:

• Lemma 3 bounds the generalization-error with h(·), and it is based on the straighforward
combination of Lemma 4 and Lemma 5.

• Lemma 4 introduces a slight modification to Wang et al. [2013] that is the use of the maxΩS
over a finite set rather than supΩ over the entire set of distributions. This will allow us
to combine the result with the one of Lemma 5 and to deal with a simpler term, namely
h(x1, · · · , xN ) defined over the max instead of the sup.

• Lemma 5 is a novel contribution, which was needed to obtain a practical form for the
generalization error, compared to the intermediate result of Wang et al. [2013]. In this
lemma as well maxΩS is employed, rather than supΩ.

• Lemma 6 uses standard techniques as can be found in van der Vaart and Wellner [1996],
Dudley [1999], Koltchinskii and Panchenko [2002], but the analysis is again restricted to
maxΩS thanks to the previous results.

• Lemma 7, Lemma 8 are novel results. They are needed to derive a practical generalization-
error bound. Lemma 7 upper-bounds ||λ̄||1 with ||λ̂||1 by requiring additional constraints
about the expressiveness of the feature functions. Lemma 8 uses this result to substitute
maxλ∈ΩS ||λ||1 with ||λ̂||1.

As previously said, one of the main positives of this derivation is the ability to operate over maxη∈S
rather than supλ∈Ω. We will highlight the passages where this quantity is introduced with a (⋆), and
provide further comments.

Initial step

First of all, we proceed in bounding the generalization error by bounding two sub-terms building it,
that the following Lemma 3 will consist of a combination of two following lemmas, Lemma 4 and
Lemma 5.
Lemma 3. The generalization error between the true distribution and the Max-Ent solution of the
sampled problem ηπ, η̂ (expressed as KL-divergence between the two distributions), given N i.i.d.
samples, can be bounded with the following quantity:

KL(ηπ||η̂) ≤ −H(ηπ) + L̃(η̂) + 5max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)|

Proof. As said, the result directly follows by considering that for the problem under consideration
KL(ηπ||η̂) = KL(η̄||η̂) +KL(ηπ||η̄), since the two solutions correspond to the exact and sampled
estimation problems. To bound the term on the right it is sufficient to bound the two terms on the left.
We know that according to Lemma 4,

KL(η̄||η̂) ≤ 2max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)|

And according to Lemma 5

KL(ηπ||η̄) ≤ −H(ηπ) + L̃(η̂) + 3max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)|
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And the result directly follows.

Lemma 4. For the solutions of the exact and sampled Max-Ent problems, η̄ and η̂ respectively, it
holds that

KL(η̄||η̂) ≤ 2max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)|

Proof.

KL(η̄||η̂) = KL(ηπ||η̂)−KL(ηπ||η̄)
= (Eηπ [log η̄]− Eη̃[log η̄]) + (Eη̃[log η̂]− Eηπ [log η̂]) + (Eη̃[log η̄]− Eη̃[log η̂])

≤ 2 max
η∈S={η̄,η̂}

|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)|+
1

N

N∑
j=0

log
η̄(xj)

η̂(xj)
(⋆)

≤ 2max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)|

where the term 1
N

∑N
j=0 log

η̄(xj)
η̂(xj)

is negative and then is removed from the bounding scheme.

(⋆) Here, Wang et al. [2013] bounded conservatively the first two terms (Eηπ [log η̄]− Eη̃[log η̄]) +
(Eη̃[log η̂] − Eηπ [log η̂]) with the supλ∈Ω, yet we notice that the only two quantities of interest
between which we are asked to maximize over are in the maxη∈S={η̄,η̂}.

Lemma 5. For the solutions of the Max-Ent problem in expectation η̄ it is possible to bound the
KL-divergence with respect to the true distribution ηπ with the following quantity

KL(ηπ||η̄) ≤ −H(ηπ) + L̃(η̂) + 3max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)|

Proof.

|Lηπ (η̄)− L̃(η̂)| = |Eηπ [log η̄]− 1

N

N∑
j=0

log η̂(xj)|

≤ |Eηπ [log η̄]− Eηπ [log η̂]|+ |Eηπ [log η̂]− 1

N

N∑
j=0

log η̂(xj)|

≤ |KL(ηπ||η̄)−KL(ηπ||η̂)|+max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)| (⋆)

≤ 2max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)|+max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)|

≤ 3max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)|

(⋆) Again, due to the conservative bound in Lemma 4, Wang et al. [2013] maintained the same
quantity in this bound for later simplifications. We apply a tighter bound of maxη∈S |Eηπ [log η]−
1
N

∑N
j=0 log η(xj)| to |Eηπ [log η̂]− 1

N

∑N
j=0 log η̂(xj)|.
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It follows that it is possible to write
|Lηπ (η̄)− L̃(η̂)| = |KL(ηπ||η̄) +H(ηπ)− L̃(η̂)|

|KL(ηπ||η̄)− (−H(ηπ) + L̃(η̂))| ≤ 3max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)|

||KL(ηπ||η̄)| − |(−H(ηπ) + L̃(η̂))|| ≤ 3max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)|

which proves the result.

Intermediate Step

As suggested by the previous considerations, everything boils down to being able to bound the
term h(x1, · · · , xN ) := maxη∈S |Eηπ [log η] − 1

N

∑N
j=0 log η(xj)|. To do this, we used standard

techniques to derive the following intermediate step, where we can bound the quantity of interest
which depends on the supremum between distributions maxη∈S | · | with a quantity depending on the
supremum between their respective parameters λ ∈ ΩS , namely supλ∈ΩS

||λ||1.
Lemma 6. The supremum difference between the expected log-likelihood and the sampled one,
taken over the expected and sampled solutions in S = {λ̄, λ̂}, is defined as h(x1, · · · , xN ) :=

maxη∈S |Eηπ [log η]− 1
N

∑N
j=0 log η(xj)| and it can be bounded by

max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)| ≤ 2 sup
λ∈ΩS

||λ||1RN (Φ) + 2 sup
λ∈ΩS

||λ||1F
√

log 1/δ

2N

with F = supf∈F ||f ||∞.

Proof. We define

h(x1, . . . , xN ) = max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)|

= sup
λ∈ΩS ,f∈F

|Eηπ ⟨λ, f(x)⟩ − 1

N

N∑
j=0

⟨λ, f(x)⟩|

Then by exploiting the definition of the function, we study the differences induced by changing one
sample from xk to x′

k

|h(x1, . . . , xM )− h(x1, . . . , x
′
k, . . . , xM )| =

= | sup
λ∈ΩS ,f∈F

|Eηπ ⟨λ, f(x)⟩ − 1

N

N∑
j=0

⟨λ, f(x)⟩|

− sup
λ∈ΩS ,f∈F

|Eηπ ⟨λ, f(x)⟩ − 1

N

N∑
j ̸=k

⟨λ, f(x)⟩+ ⟨λ, f(x′
k)⟩||

≤ sup
λ∈ΩS ,f∈F

1

N
|⟨λ, f(xk)− f(x′

k)⟩|

≤ 2

N
sup

λ∈ΩS ,f∈F
||λ||1||f ||∞ =

C

N
(C = 2 sup

λ∈ΩS ,f∈F
||λ||1||f ||∞)

Now, by Mc Diarmid’s inequality, by studying the function concerning its sampled expectation
EX̃h(·) over the samples set X̃ = {x1, . . . , xN}:

P (h(x1, . . . , xN )− EX̃h(x1, . . . , x
′
k, . . . , xN ) ≥ ϵ) ≤ exp(

−2Nϵ2

C2
)

P
(
h(x1, . . . , xN )− EX̃h(x1, . . . , x

′
k, . . . , xN ) ≥ C

√
log 1/δ

2N

)
≤ δ
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It then follows that

max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)| ≤ EX̃ sup
λ∈ΩS ,f∈F

|Eηπ ⟨λ, f(x)⟩ − 1

N

N∑
j=0

⟨λ, f(x)⟩|+ C

√
log 1/δ

2N

We now use symmetrization techniques by considering the Rademacher sequence {ωj} and by using
the standard result that given a class of measurable functions G if

Z(X̃ ) = sup
g∈G
|Eg(x)− 1

N

N∑
j=0

g(xj)| and R(X̃ , ω) = sup
g∈G
| 1
N

N∑
j=0

ωjg(xj)|

Then:

EX̃Z(X̃ ) ≤ 2EX̃ ,ωR(X̃ )

From this, it follows that the whole expression reduces to

max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)| ≤ 2EX̃ ,ω sup
λ∈ΩS ,f∈F

| 1
N

N∑
j=0

ωj⟨λ, f(xj)⟩|+ C

√
log 1/δ

2N

We extract the supremum over λ ∈ ΩS to obtain the (absolute) Rademacher averages of the functions
in F

Eω sup
λ∈ΩS ,f∈F

| 1
N

N∑
j=0

ωj⟨λ, f(xj)⟩| ≤ sup
λ∈ΩS

||λ||1Eω sup
f∈F
| 1
N

N∑
j=0

ωjf(xj)|

≤ sup
λ∈ΩS

||λ||1RN (Φ)

It follows that the final formulation for the term we are studying is the following

max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)| ≤ 2 sup
λ∈ΩS

||λ||1RN (Φ) + C

√
log 1/δ

2N

C = 2 sup
λ∈ΩS ,f∈F

||λ||1||f ||∞

Final Step

The bound offered by Lemma 6 would be unpractical since it relates a quantity central to our analysis
to something which is not known in advance. Due to this, we make a further effort with the following
Lemma, by substituting the term supλ∈ΩS

||λ||1 with ||λ̂||1. To do this, an additional assumption
over the feature functions will be needed though. First of all, we bound the two terms in ΩS with
Lemma 7. The solutions of the expected and sampled Max-Ent problem are related to the bound:

||λ̄||1 ≤ ||λ̂||1 +

√√√√ 6M

σmin( ˆCov(F))
max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)|

Proof. We take into account the following relationships which are valid for the solutions of the
MaxEnt problem under structural constraints, i.e. Eη̄[f ] = Eηπ [f ] and Eη̂[f ] = Eη̃[f ]

H(η) = log
∑
y

exp(⟨λ, f(y)⟩)− ⟨λ,Eη[f ]⟩

= A(λ)− ⟨λ,Eη[f ]⟩ = A(λ)− ⟨λ,∇A(λ)⟩
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From which it follows that it is possible to recover the Bregman divergence under the log-partition
function DA(λ1, λ2)

H(η̄)−H(η̂) = A(λ̄)−A(λ̂)− ⟨λ̄,∇A(λ̄)⟩+ ⟨λ̂,∇A(η̂)⟩
= A(λ̄)−A(λ̂)− ⟨λ̄,∇A(λ̄)⟩+ ⟨λ̂,∇A(λ̂)⟩+ ⟨λ̄,∇A(λ̂)⟩ − ⟨λ̄,∇A(η̂)⟩
= A(λ̄)−A(λ̂)− ⟨λ̄− λ̂,∇A(λ̂)⟩+ ⟨λ̂,∇A(λ̂)−∇A(λ̄)⟩
= DA(λ̄, λ̂) + ⟨λ̄,∇A(λ̂)−∇A(λ̄)⟩

Now using the Taylor expansion of the divergence and the fact that∇2A(λ̂) = ˆCov(F)

H(η̄)−H(η̂) + ⟨λ̄,∇A(λ̄)−∇A(λ̂)⟩ = DA(λ̄, λ̂)

≥ 1

2
(λ̄− λ̂)⊺∇2A(λ̂)(λ̄− λ̂) =

1

2
||λ̄− λ̂||2∇2A(λ̂)

≥ σmin(∇2A(λ̂))||λ̄− λ̂||22

≥ σmin(∇2A(λ̂))

M
||λ̄− λ̂||21

≥ σmin( ˆCov(F))
M

||λ̄− λ̂||21

where M corresponds to the number of the features. Finally, by exploiting the zero duality gap and
the results of Lemma 10

||λ̄− λ̂||21 ≤
M

σmin(Covλ̂(f))
(H(η̄)−H(η̂) + ⟨λ̄,∇A(λ̄)−∇A(λ̂)⟩)

=
M

σmin( ˆCov(F))
(L0(λ̄)− L̃(λ̂) + ⟨λ̄,∇A(λ̄)−∇A(λ̂)⟩)

≤ M

σmin( ˆCov(F))
(|L0(λ̄)− L̃(λ̂)|+ |⟨λ̄,∇A(λ̄)−∇A(λ̂)⟩|)

≤ 2M

σmin( ˆCov(F))
|L0(λ̄)− L̃(λ̂)|

≤ 6M

σmin( ˆCov(F))
max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)|

It is then possible to write

||λ̄− λ̂||1 ≤

√√√√ 6M

σmin( ˆCov(F))
max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)|

|||λ̄||1 − ||λ̂||1| ≤ ||λ̄− λ̂||1 ≤

√√√√ 6M

σmin( ˆCov(F))
max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)|

which concludes the proof.

Now, it is possible to combine all the previous results in
Lemma 8. Assume that the minimum singular value of the sampled covariance matrix is strictly
positive, that is σmin( ˆCov(F)) > 0, then the supremum term of Lemma 6 can be bounded with

max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)| ≾ 2||λ̂||1RN (Φ) + 2||λ̂||1F
√

log 1/δ

2N
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Proof. Taking all together the terms obtained so far from Lemmas [6, 7], setting C =
2 supλ∈{λ̄,λ̂},f∈F ||λ||1||f ||∞ we have

max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)| ≤ 2 sup
λ∈{λ̄,λ̂}

||λ||1RN (Φ) + C

√
log 1/δ

2N

sup
λ∈{λ̄,λ̂}

||λ||1 ≤ ||λ̂||1 +

√√√√ 6M

σmin( ˆCov(F))
max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)|

It follows the quadratic form in x =
√

maxη∈S |Eηπ [log η]− 1
N

∑N
j=0 log η(xj)|

x2 − bx− c ≤ 0

b = 2

√
6M

σmin( ˆCov(F))

[
RN (Φ) + F

√
log 1/δ

2N

]
≥ 0

c = 2||λ̂||1

[
RN (Φ) + F

√
log 1/δ

2N

]
≥ 0

The discriminant is well defined ∆ = b2 + 4c ≥ 0 and the solution is given by

max
η∈S
|Eηπ [log η]− 1

N

N∑
j=0

log η(xj)| ≤
(b+√b2 + 4c

2

)2
≤ b2

2
+ c+ b

√
b2 + 4c

≾ 2||λ̂||1RN (Φ) + 2||λ̂||1F
√

log 1/δ

2N
The final step was done because all additional terms out of c itself are of higher order.

B Further instrumental Lemmas

In this section, we present some additional standard lemmas which summarize some important
properties of the Max-Ent solutions and distributions in the exponential family that was used in the
employed section.
Lemma 9. For any distribution η in the exponential family, it holds that for the log-likelihood with
respect to a distribution ηπ it holds that

Lηπ (λ) = A(λ)− ⟨λ,Eηπ [f ]⟩

Proof.
Lηπ (λ) = −Eηπ [log η] = −Eηπ [⟨λ, f⟩ − log Φλ] = −⟨λ,Eηπ [f ]⟩+A(λ)

Lemma 10. For any distribution η in the exponential family, it holds that

|Lηπ (λ)− L̃(λ)| = |⟨λ,Eηπ [f ]− Ẽ[f ]⟩|
where Lηπ (λ) is the negative log-likelihood of η with respect to ηπ .

Proof.

|Lηπ (λ)− L̃(λ)| = | − ⟨λ,Eηπ [f ]⟩+A(λ) + ⟨λ,Eη̃[f ]⟩ −A(λ)|
= |⟨λ,−Eηπ [f ] + Eη̃[f ]⟩|
= |⟨λ,Eηπ [f ]− Eη̃[f ]⟩|
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We will now derive some properties between the sampled log-likelihood and the log-likelihood with
respect to the true distribution ηπ , called L0 for simplicity

Lemma 11. For the solutions of the exact and sampled Max-Ent problems, η̄ and η̂ respectively, it
holds that

|L0(λ̄)− L̃(λ̂)| ≤ |⟨λ̂,Eηπ [f ]− Eη̃[f ]⟩|
≤ |⟨λ̂,∇A(λ̄)−∇A(λ̂)⟩|

|L0(λ̄)− L̃(η̂)| ≥ |⟨λ̄,Eηπ [f ]− Eη̃[f ]⟩|
≥ |⟨λ̄,∇A(λ̄)−∇A(λ̂)⟩|

Proof. The proof follows directly from the fact that λ̄ is optimal with respect to η̂ in the exact problem
L0(λ̄) ≤ L0(λ̂) and viceversa L̃(λ̄) ≥ L̃(η̂).

C Monotonicity Lemma

In this section, we provide the proof of Lemma 2.

Proof. Taking into account two features with increased factorization F ⊂ F ′ we consider the
particular set of factorized features ᾱ, {ᾱk}, since the rest of the features are the same. It follows that

|µ̂ᾱ| =
∑
k

|µ̂ᾱk
|

|µ̂ᾱ|
|Sᾱ|

=
∑
k

|µ̂ᾱk
|

|Sᾱ|
(∀ᾱk : |Sᾱk

| < |Sᾱ|)

|µ̂ᾱ|
|Sᾱ|

≤
∑
k

|µ̂ᾱk
|

|Sᾱk
|

Now, due to the relationship of Lemma 12 we know that λ̂α = f( |µ̂ᾱ|
|Sᾱ| ) with f(·) being an unknown

but subadditive for positive values of λ. Moreover, the functions are the same for all the terms, so that

|µ̂ᾱ|
|Sᾱ|

≤
∑
k

|µ̂ᾱk
|

|Sᾱk
|

f(
|µ̂ᾱ|
|Sᾱ|

) ≤ f(
∑
k

|µ̂ᾱk
|

|Sᾱk
|
) ≤

∑
k

f(
|µ̂ᾱk
|

|Sᾱk
|
)

|λᾱ| ≤
∑
k

|λᾱk
|

Since the rest of the terms are the same, this concludes the proof.

Lemma 12. There exists a monotonic and anti-symmetric function f(·) such that it is possible to
univocally define λ̂α = f(µ̂α, |Sα|, Gmax)

Proof. We start by considering the Lagrangian formulation of the Max-Ent problem,

L(η, λ) = H(η) +
∑
α∈IF

λα(Eη[fα]− µ̂α) + µ(E[η]− 1) (17)
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By taking the gradient of the Lagrangian with respect to the distribution it follows that each x-term
of the support gives

(∇ηL)(x) = −1− log η(x) + λαfα + µ

From which it follows that with λ0 = µ− 1 the equation for the α-constraint is

ηα(x) = eλ0eλαfα(x)

We now compute insert this value inside the constraint equation under the feature class fα = g1s∈Sα∫
R

∫
X
gη(x)α = µ̂α

|Sα|
∫ Gmax

Gmin

geλ0eλαrdg = µ̂α

which leads to the implicit formulation for λα by solving the integral by setting G = Gmax

eλ0
2λα cosh(Gλα)− 2 sinh(Gλα))

λ2
α

=
µ̂α

|Sα|

Now, it can be proven by considering the normalization constraint that eλ0 = 1/Z(λ) with Z(λ) a
constant depending on λα, in particular:

Z(λ) =

∫
X
e
∑

α λαfαdx

=
∑
α

|Sα|
∫
R
eλαfαdr

=
∑
α

|Sα|
sinhλαG

λα

= |Sα|
sinhλαG

λα
+ C

The whole equation then becomes

2λα cosh(Gλα)− 2 sinh(Gλα))

λ2
α

= µ̂α(
sinhλαG

λα
+ C)

This equation provides an implicit definition for λα and it can be shown to be convex for positive
values of λ. The function for lambda is the inverse of this whole term, which is then concave and has
a zero in the origin, thus it is sub-additive.

D Further Discussion about the Environment Setup

The GridWorld instance was selected to be able to satisfy the Experiment Objectives. More specifi-
cally, for the following reasons:

• be able to test the representation learning capacity of the algorithm in a setting with an
apparent factorization of the state space

• because of the possibility of explicitly comparing the outputs with the true distribution.

As previously said, the simulations were run on a rectangular GridWorld, with a height of 4 and
length of 8, with traps on the whole second line and goals all over the top. A visualization of the
Gridworld can be seen in Fig.5.

E Reproducibility

The code was run over a 4 core Intel(R) Core(TM) i5-4570 CPU @ 3.20GHz. The package use to
perform Maximum Entropy density estimation can be found at Max-Ent. The repository can be found
at the link Code.
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Figure 5: GridWorld template
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