
A Equivalence between Adversarial Robustness Models

We show that the perturbation set and perturbation function models are equivalent.
Theorem A.1 (Equivalence between G and U). Let X be an arbitrary domain. There exists a
perturbation set U : X ! 2X if and only if there exists a set of perturbation functions G such that
G(x) = {g(x) : g 2 G} = U(x) for all x 2 X .

Proof. We first show that every set of perturbation functions G induces a perturbation set U . Let
G be an arbitrary set of perturbation functions g : X ! X . Then, for each x 2 X , define
U(x) := {g(x) : g 2 G}, which completes the proof of this direction.

Now we will show the converse - every perturbation set U induces a point-wise equivalent set G
of perturbation functions. Let U be an arbitrary perturbation set mapping points in X to subsets
in X . Assume that U(x) is not empty for all x 2 X . Let z̃x denote an arbitrary perturbation from
U(x). For every x 2 X , and every z 2 U(x), define the perturbation function g

x
z (t) = z {t =

x}+ z̃t {t 6= x} for t 2 X . Observe that gxz (x) = z 2 U(x) and g
x
z (x

0) = z̃x0 2 U(x0). Finally, let
G =

S
x2X

S
z2U(x){g

x
z }. To verify that G = U , consider an arbitrary point x0

2 X . Then,
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[
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=
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A

= U(x0) [ z̃x0

= U(x0).

as needed.

B Proofs for Section 3

B.1 Proper ⇢-Probabilistically Robust PAC Learning for finite G

We show that if G is finite then VC classes are ⇢-probabilistically robustly learnable.
Theorem B.1 (Proper ⇢-Probabilistically Robust PAC Learner). For every hypothesis class H,
threshold ⇢ 2 [0, 1), perturbation set G, and perturbation measure µ such that |G|  K, there exists
a proper learning rule A : (X ⇥ Y)n ! H such that for every distribution D over X ⇥ Y , with
probability at least 1� � over S ⇠ D

n, algorithm A achieves

R
⇢
G,µ(A(S);D)  inf

h2H

R
⇢
G,µ(h;D) + ✏

with

n(✏, �, ⇢;H,G, µ) = O

✓
VC(H) ln(K) + ln( 1� )

✏2

◆

samples.

Proof. Fix ⇢ 2 (0, 1). Our main strategy will be to upper bound the VC dimension of the ⇢-
probabilistically robust loss class by some function of the VC dimension of H. Then, finite VC
dimension of H implies finite VC dimension of the loss class, which ultimately implies uniform
convergence over the ⇢-probabilistically robust loss. Finally, uniform convergence of `⇢

G,µ(h, (x, y))
implies that ERM is sufficient for ⇢-probabilistically robust PAC learning. To that end, let

L
H,⇢
G,µ = {(x, y) 7! { g⇠µ (h(g(x)) 6= y) > ⇢} : h 2 H}
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be the ⇢-probabilistically robust loss class of H. Let S = {(x1, y1), ...., (xn, yn)} 2 (X ⇥ Y)n be
an arbitrary labeled sample of size n. Inflate S to SG by adding for each labelled example (x, y) 2 S

all possible perturbed examples (g(x), y) for g 2 G. That is, SG =
S

(x,y)2S{(g(x), y) : g 2 G}.

Note that |SG |  nK. Let LH,⇢
G,µ (S) denote the set of all possible behaviors of functions in L

H,⇢
G,µ on S.

Likewise, let H(SG) denote the set of all possible behaviors of functions in H on the inflated set SG .
Note that each behavior in L

H,⇢
G,µ (S) maps to at least 1 behavior in H. Therefore |LH,⇢

G,µ (S)|  |H(SG)|.
By Sauer-Shelah’s lemma, |H(SG)|  (nK)VC(H). Solving for n such that (nK)VC(H)

< 2n gives
that n = O(VC(H) ln(K)), ultimately implying that VC(LH,⇢

G,µ )  O(VC(H) ln(K)) (see Lemma
1.1 in Attias et al. [2021]).

Since for VC classes, the VC dimension of LH,⇢
G,µ is bounded, by Vapnik’s “General Learning", we

have that for VC classes the loss function `
⇢
G,µ(h, (x, y)) enjoys the uniform convergence property.

Namely, let D be a distribution over X ⇥ Y . For a sample of size n � O(
VC(H) ln(K)+ln( 1

� )
✏2 ), we

have that with probability at least 1� � over S ⇠ D
n, for all h 2 H

| D

h
`
⇢
G,µ(h, (x, y))

i
� ˆ

S

h
`
⇢
G,µ(h, (x, y))

i
|  ✏.

Standard arguments yield that the proper learning rule A(S) = argminh2H
ˆ
S

h
`
⇢
G,µ(h, (x, y))

i
is

a ⇢-probabilistically robust PAC learner with sample complexity O(
VC(H) ln(K)+ln( 1

� )
✏2 ).

B.2 Proof of Lemma 3.2

Proof. Fix ⇢ 2 [0, 1) and let m 2 . Pick m center points c1, ..., cm in X such that for all i, j 2 [m],
G(ci) \ G(cj) = ;. For each center ci, consider 2m�1 + 1 disjoint subsets of its perturbation set
G(ci) which do not contain ci. Label 2m�1 of these subsets with a unique bitstring b 2 {0, 1}m

fixing bi = 1. Let Bb
i denote the subset labeled by bitstring b and let Bi denote the single remaining

subset that was not labeled. Furthermore, for each i 2 [m] and b 2 {{0, 1}m|bi = 1}, pick Bi and
B
b
i ’s such that µci(Bi) = ⇢ and 0 < µci(B

b
i ) 

1�⇢
2m . If bi = 0, let Bb

i = ;. If ⇢ = 0, let Bi = ; for
all i 2 [m]. Finally, define B =

Sm
i=1

S
b2{0,1}m B

b
i [ Bi as the union of all the subsets. Crucially,

observe that for all i 2 [m], µci

�
Bi [

�S
b B

b
i

��


1+⇢
2 < 1.

For bitstring b 2 {0, 1}m, define the hypothesis hb as

hb(z) =

⇢
�1 if z 2

Sm
i=1 B

b
i [ Bi

1 otherwise

and consider the hypothesis class H = {hb|b 2 {0, 1}m} which consists of all 2m hypothesis, one
for each bitstring. We first show that H has VC dimension at most 1. Consider two points x1, x2 2 X .
We will show case by case that every possible pair of points cannot be shattered by H. First, consider
the case where, wlog, x1 /2 B. Then, 8h 2 H, h(x1) = 1, and thus shattering is not possible. Now,
consider the case where both x1 2 B and x2 2 B. If either x1 or x2 is in

Sm
i=1 Bi, then every

hypothesis h 2 H will label it as �1, and thus these two points cannot be shattered. If x1 2 B
b
i and

x2 2 B
b
j for i 6= j, then hb(x1) = hb(x2) = �1, but 8h 2 H such that h 6= hb, h(x1) = h(x2) = 1.

If x1 2 B
b1
i and x2 2 B

b2
j for b1 6= b2, then there exists no hypothesis in H that can label (x1, x2) as

(�1,�1). Thus, overall, no two points x1, x2 2 X can be shattered by H.

Now we are ready to show that the VC dimension of the loss class is at least m. Specifically,
given the sample of labelled points S = {(c1, 1), ..., (cm, 1)}, we will show that the loss behavior
corresponding to hypothesis hb on the sample S is exactly b. Since H contains all the hypothesis
corresponding to every single bitstring b 2 {0, 1}m, the loss class of H will shatter S. In order to
prove that the loss behavior of hb on the sample S is exactly b, it suffices to show that the probabilistic
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loss of hb on example (ci, 1) is bi, where bi denotes the ith bit of b. By definition,

`
⇢
G,µ(hb, (ci, 1)) = { g⇠µ (hb(g(ci)) 6= 1) > ⇢}

= { z⇠µci
(hb(z) = 0) > ⇢}

= { z⇠µci

�
z 2 B

b
i [ Bi

�
> ⇢}

= {µci(B
b
i [ Bi) > ⇢}

= bi.

Thus, the loss behavior of hb on S is b, and the total number of distinct loss behaviors over each
hypothesis in H on S is 2m, implying that the VC dimension of the loss class is at least m. This
completes the construction and proof of the claim.

B.3 Proof of Lemma 3.3

Proof. (of Lemma 3.3) This proof closely follows Lemma 3 from Montasser et al. [2019]. In fact,
the only difference is in the construction of the hypothesis class, which we will describe below.

Fix ⇢ 2 [0, 1). Let m 2 . Construct a hypothesis class H0 as in Lemma 3.2 on 3m centers
c1, ..., c3m based on ⇢. By the construction in Lemma 3.2, we know that LH,⇢

G,µ shatters the sample
C = {(c1, 1), ..., (c3m, 1)}. Instead of keeping all of H0, we will only keep a subset H of H0,
namely those classifiers that are probabilistically robustly correct on subsets of size 2m of C. More
specifically, recall from the construction in Lemma 3.2, that each hypothesis hb 2 H0 is parameterized
by a bitstring b 2 {0, 1}3m where if bi = 1, then hb is not robust to example (ci, 1). Therefore,
H = {hb 2 H0 :

P3m
i=1 bi = m}. Now, let A : (X ⇥ Y)⇤ ! H be an arbitrary proper learning

rule. Consider a set of distributions D1, ...,DL where L =
�3m
2m

�
. Each distribution Di is uniform

over exactly 2m centers in C. Critically, note that by our construction of H, every distribution Di is
probabilistically robustly realizable by a hypothesis in H. That is, for all Di, there exists a hypothesis
h
⇤
2 H such that R⇢

G,µ(h
⇤;Di) = 0. Observe that this satisfies the first condition in Lemma 3.3. For

the second condition, at a high-level, the idea is to use the probabilistic method to show that there
exists a distribution Di where ES⇠D

m
i

h
R

⇢
G,µ(A(S);D)

i
�

1
4 and then use a variant of Markov’s

inequality to show that with probability at least 1/7 over S ⇠ D
m, R⇢

G,µ(A(S);D) > 1/8.

Let S 2 C
m be an arbitrary set of m points. Let C be a uniform distribution over C. Let P be a

uniform distribution over D1, ...,DT . Let ES denote the event that S ⇢ supp(Di) for Di ⇠ P . Given
the event ES , we will lower bound the expected probabilistic robust loss of the hypothesis the proper
learning rule A outputs,

Di⇠P

h
R

⇢
G,µ(A(S);Di)|ES

i
= Di⇠P

⇥
(x,y)⇠Di

[ { g⇠µ (A(S)(g(x)) 6= y) > ⇢}] |ES

⇤
.

Conditioning on the event that (x, y) /2 S, denoted, E(x,y)/2S ,

(x,y)⇠Di
[ { g⇠µ (A(S)(g(x)) 6= y) > ⇢}] � (x,y)⇠Di

⇥
E(x,y)/2S

⇤

⇥ (x,y)⇠Di

⇥
{ g⇠µ (A(S)(g(x)) 6= y) > ⇢}|E(x,y)/2S

⇤

Since Di is supported over 2m points and |S| = m, (x,y)⇠Di

⇥
E(x,y)/2S

⇤
�

1
2 since in the worst-

case S ⇢ supp(Di). Thus, we obtain the lower bound,

Di⇠P

h
R

⇢
G,µ(A(S);Di)|ES

i
�

1

2
Di⇠P

⇥
(x,y)⇠Di

⇥
{ g⇠µ (A(S)(g(x)) 6= y) > ⇢}|E(x,y)/2S

⇤
|ES

⇤
.

Unravelling the expectation over the draw from Di given the event ES , we have,
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(x,y)⇠Di

⇥
{ g⇠µ (A(S)(g(x)) 6= y) > ⇢}|E(x,y)/2S

⇤
�

1

m

X

(x,y)2supp(Di)\S

{ g⇠µ (A(S)(g(x)) 6= y) > ⇢}

Observing that Di⇠P [ {(x, y) 2 supp(Di)}|ES ] �
1
2 yields,

Di⇠P

⇥
(x,y)⇠Di

⇥
{ g⇠µ (A(S)(g(x)) 6= y) > ⇢}|E(x,y)/2S

⇤
|ES

⇤
�

1

2m

X

(x,y)/2S

{ g⇠µ (A(S)(g(x)) 6= y) > ⇢}.

Since A(S) 2 H, by construction of H, there are at least m points in C where A is not probabilisti-
cally robustly correct. Therefore,

1

2m

X

(x,y)/2S

{ g⇠µ (A(S)(g(x)) 6= y) > ⇢} �
1

2
,

from which we have that, Di⇠P

h
R

⇢
G,µ(A(S);Di)|ES

i
�

1
4 . By the law of total expectation, we

have that

Di⇠P

h
S⇠D

m
i

h
R

⇢
G,µ(A(S);Di)

ii
= S⇠C

h
Di⇠P|ES

h
R

⇢
G,µ(A(S);Di)

ii

= S⇠C

h
Di⇠P

h
R

⇢
G,µ(A(S);Di)|ES

ii

� 1/4

Since the expectation over D1, ...,DT is at least 1/4, there must exist a distribution Di where

S⇠D
m
i

h
R

⇢
G,µ(A(S);Di)

i
� 1/4. Using a variant of Markov’s inequality, gives

S⇠D
m
i

h
R

⇢
G,µ(A(S);Di) > 1/8

i
� 1/7

which completes the proof.

B.4 Proof of Theorem 3.1

Proof. (of Theorem 3.1) Fix ⇢ 2 [0, 1). Let (Cm)m2 be an infinite sequence of disjoint sets such
that each set Cm contains 3m distinct center points from X , where for any ci, cj 2

S
1

m=1 Cm such
that ci 6= cj , we have G(ci) \ G(cj) = ;. For every m 2 , construct Hm on Cm as in Lemma 3.2.
In addition, a key part of this proof is to ensure that the hypothesis in Hm are non-robust to points
in Cm0 for all m0

6= m. To do so, we will need to adjust each hypothesis hb 2 Hm carefully. By
definition, for every m 2 , Hm consists of 23m hypothesis of the form

hb(z) =

⇢
�1 if z 2

S3m
i=1 B

b
i [ Bi

1 otherwise

for each bitstring b 2 {0, 1}3m. Note that the same set
S3m

i=1 Bi is shared across every hypothesis
hb 2 Hm. For each m 2 , let Bm =

S3m
i=1 Bi be exactly the union of these 3m sets. Next, from the

construction in Lemma 3.2, for every center ci 2 Cm, µci

�
Bi [

�S
b B

b
i

��


1+⇢
2 < 1. Thus, there

exists a set B̃i ⇢ G(ci) such that µci(B̃i) > 0 and B̃i \
�
Bi [

�S
b B

b
i

��
= ;. Consider one such

subset B̃i from each of the 3m centers in Cm and let B̃m =
S3m

i=1 B̃i. Finally, make the following
adjustment to each hb 2 Hm,

hb(z) =

⇢
�1 if z 2

S3m
i=1 B

b
i [ Bi or z 2 B

m0

[ B̃
m0

for m0
6= m

1 otherwise
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One can verify that every hypothesis in Hm has a non-robust region (i.e. Bm0

[ B̃
m0

for m0
6= m)

with mass strictly bigger than ⇢ in every center in Cm0 for every m
0
6= m. Thus, the hypotheses in

Hm are non-robust to points in Cm0 for all m0
6= m. Finally, as we did in Lemma 3.3, for each m, we

only keep the subset of hypothesis H0

m = {hb 2 Hm :
P3m

i=1 bi = m}. Note that for each m 2 ,
the hypothesis class H0

m behaves exactly like the hypothesis class from Lemma 3.3 on Cm.

Let H :=
S

1

m=1 H
0

m and G(Cm) :=
S3m

i=1 G(ci). Since we have modified the hypothesis class, we
need to reprove that its VC dimension is still at most 1. Consider two points x1, x2 2 X . If either x1

or x2 is not in
S

1

m=1 G(Cm) and not in
S

1

m=1 B
m
[ B̃

m, then all hypothesis predict x1 or x2 as 1.
If both x1 and x2 are in B

m
[ B̃

m for some m 2 , then:

• if either x1 or x2 are in B
m, every hypothesis in H labels either x1 or x2 as �1.

• if both x1 and x2 are in B̃
m, we can only get the labeling (1, 1) from hypotheses in Hm and

the labeling (�1,�1) from the hypotheses in Hm0 for m0
6= m.

In the case both x1 and x2 are in G(Cm) \ (Bm
[ B̃

m), then, they cannot be shattered by Lemma 3.2.
In the case x1 2 B

m
[ B̃

m and x2 2 G(Cm) \ (Bm
[ B̃

m):

• if x1 is in B
m, every hypothesis in H labels x1 as �1.

• if x1 is in B̃
m then, we can never get the labeling (�1,�1).

If x1 2 B
i
[ B̃

i and x2 2 B
j
[ B̃

j for i 6= j, then:

• if either x1 or x2 are in B
i or Bj respectively, every hypothesis in H labels either x1 or x2

as �1.

• if both x1 and x2 are in B̃
i and B̃

j respectively, we can never get the labeling (1, 1).

In the case x1 2 B
i
[ B̃

i and x2 2 G(Cj) \ (Bj
[ B̃

j) for j 6= i, then we cannot obtain the labeling
(1,�1). If x1 2 G(Ci) \ (Bi

[ B̃
i) and x2 2 G(Cj) \ (Bj

[ B̃
j) for i 6= j, then we cannot obtain

the labeling (�1,�1). Since we shown that for all possible x1 and x2, H cannot shatter them,
VC(H)  1.

We now use the same reasoning in Montasser et al. [2019], to show that no proper learning rule works.
By Lemma 3.3, for any proper learning rule A : (X ⇥Y)⇤ ! H and for any m 2 , we can construct
a distribution D over Cm (which has 3m points from X ) where there exists a hypothesis h⇤

2 H
0

m that
achieves R⇢

G,µ(h
⇤;D) = 0, but with probability at least 1/7 over S ⇠ D

m, R⇢
G,µ(A(S);D) > 1/8.

Note that it suffices to only consider hypothesis in H
0

m because, by construction, all hypothesis in
H

0

m0 for m0
6= m are not probabilistically robust on Cm, and thus always achieve loss 1 on all points

in Cm. Thus, rule A will do worse if it picks hypotheses from these classes. This shows that the
sample complexity of properly probabilistically robustly PAC learning H is arbitrarily large, allowing
us to conclude that H is not properly learnable.

C Proofs for Section 4

C.1 Proof of Theorem 4.2

Proof. (of Theorem 4.2) Let VC(H) = d and S = {(x1, y1), ..., (xm, ym)} an i.i.d. sample of
size m from D. Consider the learning algorithm A(S) = argminh2H

ˆ
S [`G,µ(h, (x, y))]. Note

that A is a proper learning algorithm. Let ĥ = A(S) denote hypothesis output by A and h
⇤ =

infh2H D [`G,µ(h, (x, y))].

We now show that if the sample size m = O

⇣
dL2 ln(L

✏ )+ln( 1
� )

✏2

⌘
, then ĥ achieves the stated general-

ization bound with probability 1 � �. By Lemma 4.1, if m = O

⇣
dL2 ln(L

✏ )+ln( 1
� )

✏2

⌘
, we have that
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with probability 1� �, for all h 2 H simultaneously,
��� D [`G,µ(h, (x, y))]� ˆ

S [`G,µ(h, (x, y))]
��� 

✏

2
.

This means that both D

h
`G,µ(ĥ, (x, y))

i
� ˆ

S

h
`G,µ(ĥ, (x, y))

i


✏
2 and ˆ

S [`G,µ(h⇤
, (x, y))]�

D [`G,µ(h⇤
, (x, y))] 

✏
2 . By definition of ĥ, note that ˆ

S

h
`G,µ(ĥ, (x, y))

i


ˆ
S [`G,µ(h⇤

, (x, y))]. Putting these observations together, we have that

D

h
`G,µ(ĥ, (x, y))

i
� ( D [`G,µ(h

⇤
, (x, y))] +

✏

2
)  D

h
`G,µ(ĥ, (x, y))

i
� ˆ

S [`G,µ(h
⇤
, (x, y))]

 D

h
`G,µ(ĥ, (x, y))

i
� ˆ

S

h
`G,µ(ĥ, (x, y))

i


✏

2
,

from which we can deduce that

D

h
`G,µ(ĥ, (x, y))

i
� inf

h2H
D [`G,µ(h, (x, y))]  ✏.

Thus, A achieves the stated generalization bound with sample complexity m = O

⇣
dL2 ln(L

✏ )+ln( 1
� )

✏2

⌘
,

completing the proof.

C.2 Proof of Theorem 4.3

For the proof in this section, it will be useful to define the (G, µ)-smoothed hypothesis class H:

F
H

G,µ := { g⇠µ [h(g(x))] : h 2 H}.

Proof. (of Theorem 4.3) Let X = and H = {sign(sin(!x)) : ! 2 }. Without loss of generality,
assume sign(sin(0)) = 1. For every x 2 X and c 2 [�1, 1], define gc(x) = cx. Then, let
G = {gc : c 2 [�1, 1]} and µ be uniform over G. First, VC(H) = 1 as desired. Next, to show
learnability, it suffices to show that the loss

`G,µ(h, (x, y)) = `(y g⇠µ [h(g(x))]).
enjoys the uniform convergence property despite VC(H) = 1. By Theorem 2.1 and similar
to the proof of Lemma 4.1, it suffices upperbound the Rademacher complexity of the loss class
L
H

G,µ = {(x, y) 7! `G,µ(h, (x, y)) : h 2 H}. Since for every fixed y, `G,µ(h, (x, y)) is L-Lipschitz
with respect to the real-valued function g⇠µ [h(g(x))], by Ledoux-Talagrand’s contraction principle
R̂m(LH

G,µ)  L·R̂m(FH

G,µ) where FH

G,µ is the (G, µ)-smoothed hypothesis classed defined previously.
Thus, it suffices to upper-bound R̂m(FH

G,µ) by a sublinear function of m to show that `G,µ(h, (x, y))
enjoys the uniform convergence property. But for every h! 2 H,

g⇠µ [h!(g(x))] = c⇠Unif(�1,1) [sign(sin(!(cx))] =
1

2

Z 1

�1
sign(sin(c(!x)))dc.

Since sin(ax) is an odd function, sign(sin(ax)) is also odd, from which it follows that for all h! 2 H:

g⇠µ [h!(g(x))] =

⇢
0 if x 6= 0 and ! 6= 0
1 otherwise

.

Therefore, FH

G,µ = {f1, f2} where f1(x) = 1 for all x 2 and f2(x) = 1 if x = 0 and f2(x) = 0 if
x 6= 0. Since FH

G,µ is finite, by Massart’s Lemma [Mohri et al., 2018], R̂m(FH

G,µ) is upper-bounded by
a sublinear function of m such that `G,µ(h, (x, y)) enjoys the uniform convergence property with sam-
ple complexity O(

L2+ln( 1
� )

✏2 ). Therefore, (H,G, µ) is PAC learnable with respect to `G,µ(h, (x, y))

by the learning rule A(S) = argminh2H
ˆ
S [`G,µ(h, (x, y))] with sample complexity that scales

according to O(
L2+ln( 1

� )
✏2 ).
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Figure 1: Comparison of probabilistic robust ramp loss to probabilistic robust losses of hypothesis h
on example (x, y). The probabilistic robust losses at ⇢ and ⇢

⇤ sandwich the probabilistic robust ramp
loss at ⇢, ⇢⇤.

D Proofs for Section 5

D.1 Proof of Theorem 5.2

Proof. (of Theorem 5.2) Fix 0  ⇢
⇤
< ⇢ < 1 and let H be a hypothesis class with VC(H) = d. Let

(G, µ) be an arbitrary perturbation set and measure, D be an arbitrary distribution over X ⇥ Y , and
S = {(x1, y1), ..., (xm, ym)} an i.i.d. sample of size m. Let A(S) = PRERM(S; (G, µ), ⇢⇤).

By Lemma 5.1, it suffices to show that there exists a loss function `(h, (x, y)) such that
`
⇢
G,µ(h, (x, y))  `(h, (x, y))  `

⇢⇤

G,µ(h, (x, y))) and `(h, (x, y)) enjoys the uniform convergence

property with sample complexity n = O

✓
d

(⇢�⇢⇤)2
ln( 1

(⇢�⇢⇤)✏ )+ln( 1
� )

✏2

◆
. Consider the probabilistically

robust ramp loss:

`
⇢,⇢⇤

G,µ (h, (x, y)) = min(1,max(0, g⇠µ [h(g(x)) 6= y]� ⇢
⇤

⇢� ⇢⇤
)).

Figure 1 visually showcases how the probabilistic robust losses at ⇢ and ⇢
⇤ sandwich the probabilistic

ramp loss at ⇢, ⇢⇤.

Its not too hard to see that `
⇢
G,µ(h, (x, y))  `

⇢,⇢⇤

G,µ (h, (x, y))  `
⇢⇤

G,µ(h, (x, y))). Further-
more, since `

⇢,⇢⇤

G,µ (h, (x, y)) is O( 1
⇢�⇢⇤ )-Lipschitz in y g⇠µ [h(g(x)) 6= y], by Lemma 4.1, we

have that `
⇢,⇢⇤

G,µ (h, (x, y)) enjoys the uniform convergence property with sample complexity

O

✓
d

(⇢�⇢⇤)2
ln( 1

(⇢�⇢⇤)✏ )+ln( 1
� )

✏2

◆
. This completes the proof, as the conditions for Lemma 5.1 have

been met, and therefore the learning rule A(S) = PRERM(S;G, ⇢⇤) enjoys the stated generalization
guarantee with the specified sample complexity.

D.2 Proof of Theorem 5.3

Proof. (of Theorem 5.3) Fix 0 < ⇢ and let H be a hypothesis class with VC(H) = d. Let G be an
arbitrary perturbation set, D be an arbitrary distribution over X⇥Y , and S = {(x1, y1), ..., (xm, ym)}
an i.i.d. sample of size m. Let A(S) = RERM(S;G).

Fix a measure µ over G. By Lemma 5.1, it suffices to show that there exists a loss function
`(h, (x, y)) such that `⇢

G,µ(h, (x, y))  `(h, (x, y))  `G(h, (x, y))) and `(h, (x, y)) enjoys the
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uniform convergence property with sample complexity n = O

✓
d
⇢2

ln( 1
⇢✏ )+ln( 1

� )

✏2

◆
. Recall the

probabilistically robust ramp loss:

`
⇢,⇢⇤

G,µ (h, (x, y)) = min(1,max(0, g⇠µ [h(g(x)) 6= y]� ⇢
⇤

⇢� ⇢⇤
)).

Letting ⇢
⇤ = 0, its not too hard to see that `⇢

G,µ(h, (x, y))  `
⇢,0
G,µ(h, (x, y))  `G(h, (x, y))).

Furthermore, since `
⇢,0
G,µ(h, (x, y)) is O( 1⇢ )-Lipschitz in y g⇠µ [h(g(x)) 6= y], by Lemma 4.1,

we have that `⇢,0
G,µ(h, (x, y)) enjoys the uniform convergence property with sample complexity

O

✓
d
⇢2

ln( 1
⇢✏ )+ln( 1

� )

✏2

◆
. This completes the proof, as the conditions for Lemma 5.1 have been met, and

therefore the learning rule A(S) enjoys the stated generalization guarantee with the specified sample
complexity.

D.3 Proof of Theorem 5.4

Proof. (of Theorem 5.4) Assume that there exists a subset G0
⇢ G, that is r-Nice with respect

to H. By Lemma 5.1, it is sufficient to find a perturbation set G̃ such that (1) `G0(h, (x, y)) 

`
G̃
(h, (x, y))  `G(h, (x, y)) and (2) `

G̃
(h, (x, y)) enjoys the uniform convergence property

with sample complexity O

⇣
VC(H) log(Nr(G

0

2r,d)) ln(
1
✏ ) +ln( 1

� )
✏2

⌘
. Let G̃ ⇢ G be the minimal r-

cover of G
0

2r with cardinality Nr(G0

2r, d). By Lemma 1.1 of Attias et al. [2021], the loss class
L
G̃

H
has VC dimension at most O(VC(H) log(|G̃|)) = O(VC(H) log(Nr(G0

2r))), implying that
`
G̃
(h, (x, y)) enjoys the uniform convergence property with the previously stated sample complex-

ity O

⇣
VC(H) log(Nr(G

0

2r,d)) ln(
1
✏ ) +ln( 1

� )
✏2

⌘
. Now, it remains to show that for our choice of G̃, we

have `G0(h, (x, y))  `
G̃
(h, (x, y))  `G(h, (x, y)). Since, G̃ ⇢ G ,the upperbound is trivial.

Thus, we only focus on proving the lowerbound, `G0(h, (x, y))  `
G̃
(h, (x, y)) for all h 2 H and

(x, y) 2 X ⇥ Y . Fix h 2 H and (x, y) 2 X ⇥ Y . If `G0(h, (x, y)) = 1, then there exists a g 2 G
0

such that h(g(x)) 6= y. Let g denote one such perturbation function. By the r-Niceness property of
G
0 with respect to H, there must exist Br(g⇤) centered at some g

⇤
2 G such that g 2 Br(g⇤) and

h(g(x)) = h(g0(x)) for all g0 2 Br(g⇤). This implies that h(g0(x)) 6= y for all g0 2 Br(g⇤). Further-
more, since B2r(g) is the union of all balls of radius r that contain g, we have that Br(g⇤) ⇢ B2r(g).
From here, its not too hard to see that Br(g⇤) ⇢ G

0

2r by definition. Finally, since G̃ is an r-cover of
G
0

2r, it must contain at least one function from Br(g⇤). This completes the proof as we have shown
that there exists a perturbation function ĝ 2 G̃ such that h(ĝ(x)) 6= y.

D.4 `p balls are r-Nice perturbation sets for linear classifiers

In this section, we give a concrete example of a hypothesis class H and metric space of perturbation
functions (G, d) for which there exists an r-nice perturbation subset G0

⇢ G. Let X = q and fix
r 2 �0. For the hypothesis class, consider the set of homogeneous halfspaces, H = {hw|w 2

q
},

where hw(x) = w
T
x. Let Ĝ = {g� : � 2

q
, ||�||p  3r} where g�(x) = x + � for all x 2 X

and consider any perturbation set G such that G � Ĝ. That is, Ĝ(x) = {g(x) : g 2 Ĝ} induces
a `p ball of radius 3r around x. We will accordingly consider the distance metric d(g�1 , g�2) =

supx2X
||g�1(x) � g�2(x)||p. Restricted to the set Ĝ, this distance metric reduces to d(g�1 , g�2) =

||�1��2||p = `p(�1, �2) for g�1 , g�2 2 Ĝ. Finally, consider G0 = {g⌧ : ⌧ 2
q
, ||⌧ ||p  r} ⇢ Ĝ ⇢ G

which induces an `p ball of radius r around x.

We will now show that G0 is r-nice perturbation set with respect to H. Let x 2 X , hw 2 H, and
g⌧ 2 G

0. Let c = h(g⌧ (x)) 2 {±1}. Consider the function g⌧+ crw
||w||p

. By definition, we have that

g⌧ 2 Br(g⌧+ crw
||w||p

) ⇢ Ĝ ⇢ G. To see this, observe that ||⌧ + crw
||w||p

||p  2r by the triangle inequality.
Finally, it remains to show that for every g

0
2 Br(g⌧+ crw

||w||p
) = {g⌧+ crw

||w||p
+| 2

d
, ||||p  r},

hw(g0(x)) = hw(g⌧ (x)) = c. Let c = +1 and consider the function g
0

⌧+ rw
||w||p

+ 2 Br(g⌧+ rw
||w||p

).
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Note that wT (x+⌧+ rw
||w||p

+) = w
T (x+⌧)+r||w||p+w

T
. By Cauchy-Schwartz, we can lower

bound w
T
 � �||w||p||||p � �r||w||p. Therefore, we have that wT (x+ ⌧ + rw

||w||p
+) � w

T (x+

⌧) > 0, where the last inequality comes from the fact that +1 = c = hw(g⌧ ) = sign(wT (x + ⌧)).
Therefore, h(g0⌧+ rw

||w||p
+(x)) = sign(wT (x + ⌧ + rw

||w||p
+ )) = sign(wT (x + ⌧)) = h(g⌧ (x))

as desired. A similar proof holds when c = �1. Therefore, we have shown that G0 is a r-nice
perturbation set with respect to H.

We now can use Theorem 5.4 to provide sample complexity guarantees on Tolerantly Robust PAC
Learning with G

0 and G. The main quantity of interest is log(Nr(G0

2r, d)). However, note that
G
0

2r = Ĝ. Therefore, we just need to compute log(Nr(Ĝ, d)) = log(Nr({g� : � 2
q
, ||�||p 

3r}, d)). However, this is equal to log(Nr({� 2
q : ||�||p  3r}, `p)) using the `p distance metric

since g� maps one-to-one to �. Using standard arguments, log(Nr({� 2
q : ||�||p  3r}, `p)) =

log(N 1
3
({� 2

q : ||�||p  1}, `p)) = O(q) (Bartlett [2013]). Thus, overall, H is tolerantly PAC
learnable with respect to (G,G0) with sample complexity close to what one would require in the
standard PAC setting.
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