A Equivalence between Adversarial Robustness Models

We show that the perturbation set and perturbation function models are equivalent.
Theorem A. 1 (Equivalence between \mathcal{G} and \mathcal{U}). Let \mathcal{X} be an arbitrary domain. There exists a perturbation set $\mathcal{U}: \mathcal{X} \rightarrow 2^{\mathcal{X}}$ if and only if there exists a set of perturbation functions \mathcal{G} such that $\mathcal{G}(x)=\{g(x): g \in \mathcal{G}\}=\mathcal{U}(x)$ for all $x \in \mathcal{X}$.

Proof. We first show that every set of perturbation functions \mathcal{G} induces a perturbation set \mathcal{U}. Let \mathcal{G} be an arbitrary set of perturbation functions $g: \mathcal{X} \rightarrow \mathcal{X}$. Then, for each $x \in \mathcal{X}$, define $\mathcal{U}(x):=\{g(x): g \in \mathcal{G}\}$, which completes the proof of this direction.
Now we will show the converse - every perturbation set \mathcal{U} induces a point-wise equivalent set \mathcal{G} of perturbation functions. Let \mathcal{U} be an arbitrary perturbation set mapping points in \mathcal{X} to subsets in \mathcal{X}. Assume that $\mathcal{U}(x)$ is not empty for all $x \in \mathcal{X}$. Let \tilde{z}_{x} denote an arbitrary perturbation from $\mathcal{U}(x)$. For every $x \in \mathcal{X}$, and every $z \in \mathcal{U}(x)$, define the perturbation function $g_{z}^{x}(t)=z \mathbb{1}\{t=$ $x\}+\tilde{z}_{t} \mathbb{1}\{t \neq x\}$ for $t \in \mathcal{X}$. Observe that $g_{z}^{x}(x)=z \in \mathcal{U}(x)$ and $g_{z}^{x}\left(x^{\prime}\right)=\tilde{z}_{x^{\prime}} \in \mathcal{U}\left(x^{\prime}\right)$. Finally, let $\mathcal{G}=\bigcup_{x \in \mathcal{X}} \bigcup_{z \in \mathcal{U}(x)}\left\{g_{z}^{x}\right\}$. To verify that $\mathcal{G}=\mathcal{U}$, consider an arbitrary point $x^{\prime} \in \mathcal{X}$. Then,

$$
\begin{aligned}
\mathcal{G}\left(x^{\prime}\right) & =\bigcup_{x \in \mathcal{X}} \bigcup_{z \in \mathcal{U}(x)}\left\{g_{z}^{x}\left(x^{\prime}\right)\right\} \\
& =\left(\bigcup_{z \in \mathcal{U}\left(x^{\prime}\right)}\left\{g_{z}^{x^{\prime}}\left(x^{\prime}\right)\right\}\right) \cup\left(\bigcup_{x \in \mathcal{X} \backslash x^{\prime}} \bigcup_{z \in \mathcal{U}(x)}\left\{g_{z}^{x}\left(x^{\prime}\right)\right\}\right) \\
& =\left(\bigcup_{z \in \mathcal{U}\left(x^{\prime}\right)}\{z\}\right) \cup\left(\bigcup_{x \in \mathcal{X} \backslash x^{\prime}} \bigcup_{z \in \mathcal{U}(x)}\left\{\tilde{z}_{x^{\prime}}\right\}\right) \\
& =\mathcal{U}\left(x^{\prime}\right) \cup \tilde{z}_{x^{\prime}} \\
& =\mathcal{U}\left(x^{\prime}\right) .
\end{aligned}
$$

as needed.

B Proofs for Section 3

B. 1 Proper ρ-Probabilistically Robust PAC Learning for finite \mathcal{G}

We show that if \mathcal{G} is finite then VC classes are ρ-probabilistically robustly learnable.
Theorem B. 1 (Proper ρ-Probabilistically Robust PAC Learner). For every hypothesis class \mathcal{H}, threshold $\rho \in[0,1)$, perturbation set \mathcal{G}, and perturbation measure μ such that $|\mathcal{G}| \leq K$, there exists a proper learning rule $\mathcal{A}:(\mathcal{X} \times \mathcal{Y})^{n} \rightarrow \mathcal{H}$ such that for every distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$, with probability at least $1-\delta$ over $S \sim \mathcal{D}^{n}$, algorithm \mathcal{A} achieves

$$
R_{\mathcal{G}, \mu}^{\rho}(\mathcal{A}(S) ; \mathcal{D}) \leq \inf _{h \in \mathcal{H}} R_{\mathcal{G}, \mu}^{\rho}(h ; \mathcal{D})+\epsilon
$$

with

$$
n(\epsilon, \delta, \rho ; \mathcal{H}, \mathcal{G}, \mu)=O\left(\frac{\mathrm{VC}(\mathcal{H}) \ln (K)+\ln \left(\frac{1}{\delta}\right)}{\epsilon^{2}}\right)
$$

samples.
Proof. Fix $\rho \in(0,1)$. Our main strategy will be to upper bound the VC dimension of the ρ probabilistically robust loss class by some function of the VC dimension of \mathcal{H}. Then, finite VC dimension of \mathcal{H} implies finite VC dimension of the loss class, which ultimately implies uniform convergence over the ρ-probabilistically robust loss. Finally, uniform convergence of $\ell_{\mathcal{G}, \mu}^{\rho}(h,(x, y))$ implies that ERM is sufficient for ρ-probabilistically robust PAC learning. To that end, let

$$
\mathcal{L}_{\mathcal{G}, \mu}^{\mathcal{H}, \rho}=\left\{(x, y) \mapsto \mathbb{1}\left\{\mathbb{P}_{g \sim \mu}(h(g(x)) \neq y)>\rho\right\}: h \in \mathcal{H}\right\}
$$

be the ρ-probabilistically robust loss class of \mathcal{H}. Let $S=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\} \in(\mathcal{X} \times \mathcal{Y})^{n}$ be an arbitrary labeled sample of size n. Inflate S to $S_{\mathcal{G}}$ by adding for each labelled example $(x, y) \in S$ all possible perturbed examples $(g(x), y)$ for $g \in \mathcal{G}$. That is, $S_{\mathcal{G}}=\bigcup_{(x, y) \in S}\{(g(x), y): g \in \mathcal{G}\}$. Note that $\left|S_{\mathcal{G}}\right| \leq n K$. Let $\mathcal{L}_{\mathcal{G}, \mu}^{\mathcal{H}, \rho}(S)$ denote the set of all possible behaviors of functions in $\mathcal{L}_{\mathcal{G}, \mu}^{\mathcal{H}, \rho}$ on S. Likewise, let $\mathcal{H}\left(S_{\mathcal{G}}\right)$ denote the set of all possible behaviors of functions in \mathcal{H} on the inflated set $S_{\mathcal{G}}$. Note that each behavior in $\mathcal{L}_{\mathcal{G}, \mu}^{\mathcal{H}, \rho}(S)$ maps to at least 1 behavior in \mathcal{H}. Therefore $\left|\mathcal{L}_{\mathcal{G}, \mu}^{\mathcal{H}, \rho}(S)\right| \leq\left|\mathcal{H}\left(S_{\mathcal{G}}\right)\right|$. By Sauer-Shelah's lemma, $\left|\mathcal{H}\left(S_{\mathcal{G}}\right)\right| \leq(n K)^{\mathrm{VC}(\mathcal{H})}$. Solving for n such that $(n K)^{\mathrm{VC}(\mathcal{H})}<2^{n}$ gives that $n=O\left(\mathrm{VC}(\mathcal{H}) \ln (K)\right.$, ultimately implying that $\operatorname{VC}\left(\mathcal{L}_{\mathcal{G}, \mu}^{\mathcal{H}, \rho}\right) \leq O(\mathrm{VC}(\mathcal{H}) \ln (K))$ (see Lemma 1.1 in Attias et al. (2021]).

Since for VC classes, the VC dimension of $\mathcal{L}_{\mathcal{G}, \mu}^{\mathcal{H}, \rho}$ is bounded, by Vapnik's "General Learning", we have that for VC classes the loss function $\ell_{\mathcal{G}, \mu}^{\rho}(h,(x, y))$ enjoys the uniform convergence property. Namely, let \mathcal{D} be a distribution over $\mathcal{X} \times \mathcal{Y}$. For a sample of size $n \geq O\left(\frac{\operatorname{vC}(\mathcal{H}) \ln (K)+\ln \left(\frac{1}{\delta}\right)}{\epsilon^{2}}\right)$, we have that with probability at least $1-\delta$ over $S \sim \mathcal{D}^{n}$, for all $h \in \mathcal{H}$

$$
\left|\mathbb{E}_{\mathcal{D}}\left[\ell_{\mathcal{G}, \mu}^{\rho}(h,(x, y))\right]-\hat{\mathbb{E}}_{\mathcal{S}}\left[\ell_{\mathcal{G}, \mu}^{\rho}(h,(x, y))\right]\right| \leq \epsilon
$$

Standard arguments yield that the proper learning rule $\mathcal{A}(S)=\arg \min _{h \in \mathcal{H}} \hat{\mathbb{E}}_{S}\left[\ell_{\mathcal{G}, \mu}^{\rho}(h,(x, y))\right]$ is a ρ-probabilistically robust PAC learner with sample complexity $O\left(\frac{\mathrm{VC}(\mathcal{H}) \ln (K)+\ln \left(\frac{1}{\delta}\right)}{\epsilon^{2}}\right)$.

B. 2 Proof of Lemma 3.2

Proof. Fix $\rho \in[0,1)$ and let $m \in \mathbb{N}$. Pick m center points c_{1}, \ldots, c_{m} in \mathcal{X} such that for all $i, j \in[m]$, $\mathcal{G}\left(c_{i}\right) \cap \mathcal{G}\left(c_{j}\right)=\emptyset$. For each center c_{i}, consider $2^{m-1}+1$ disjoint subsets of its perturbation set $\mathcal{G}\left(c_{i}\right)$ which do not contain c_{i}. Label 2^{m-1} of these subsets with a unique bitstring $b \in\{0,1\}^{m}$ fixing $b_{i}=1$. Let \mathcal{B}_{i}^{b} denote the subset labeled by bitstring b and let \mathcal{B}_{i} denote the single remaining subset that was not labeled. Furthermore, for each $i \in[m]$ and $b \in\left\{\{0,1\}^{m} \mid b_{i}=1\right\}$, pick \mathcal{B}_{i} and \mathcal{B}_{i}^{b} 's such that $\mu_{c_{i}}\left(\mathcal{B}_{i}\right)=\rho$ and $0<\mu_{c_{i}}\left(\mathcal{B}_{i}^{b}\right) \leq \frac{1-\rho}{2^{m}}$. If $b_{i}=0$, let $\mathcal{B}_{i}^{b}=\emptyset$. If $\rho=0$, let $\mathcal{B}_{i}=\emptyset$ for all $i \in[m]$. Finally, define $\mathcal{B}=\bigcup_{i=1}^{m} \bigcup_{b \in\{0,1\}^{m}} \mathcal{B}_{i}^{b} \cup \mathcal{B}_{i}$ as the union of all the subsets. Crucially, observe that for all $i \in[m], \mu_{c_{i}}\left(\mathcal{B}_{i} \cup\left(\bigcup_{b} \mathcal{B}_{i}^{b}\right)\right) \leq \frac{1+\rho}{2}<1$.
For bitstring $b \in\{0,1\}^{m}$, define the hypothesis h_{b} as

$$
h_{b}(z)= \begin{cases}-1 & \text { if } z \in \bigcup_{i=1}^{m} \mathcal{B}_{i}^{b} \cup \mathcal{B}_{i} \\ 1 & \text { otherwise }\end{cases}
$$

and consider the hypothesis class $\mathcal{H}=\left\{h_{b} \mid b \in\{0,1\}^{m}\right\}$ which consists of all 2^{m} hypothesis, one for each bitstring. We first show that \mathcal{H} has VC dimension at most 1 . Consider two points $x_{1}, x_{2} \in \mathcal{X}$. We will show case by case that every possible pair of points cannot be shattered by \mathcal{H}. First, consider the case where, wlog, $x_{1} \notin \mathcal{B}$. Then, $\forall h \in \mathcal{H}, h\left(x_{1}\right)=1$, and thus shattering is not possible. Now, consider the case where both $x_{1} \in \mathcal{B}$ and $x_{2} \in \mathcal{B}$. If either x_{1} or x_{2} is in $\bigcup_{i=1}^{m} \mathcal{B}_{i}$, then every hypothesis $h \in \mathcal{H}$ will label it as -1 , and thus these two points cannot be shattered. If $x_{1} \in \mathcal{B}_{i}^{b}$ and $x_{2} \in \mathcal{B}_{j}^{b}$ for $i \neq j$, then $h_{b}\left(x_{1}\right)=h_{b}\left(x_{2}\right)=-1$, but $\forall h \in \mathcal{H}$ such that $h \neq h_{b}, h\left(x_{1}\right)=h\left(x_{2}\right)=1$. If $x_{1} \in \mathcal{B}_{i}^{b_{1}}$ and $x_{2} \in \mathcal{B}_{j}^{b_{2}}$ for $b_{1} \neq b_{2}$, then there exists no hypothesis in \mathcal{H} that can label $\left(x_{1}, x_{2}\right)$ as $(-1,-1)$. Thus, overall, no two points $x_{1}, x_{2} \in \mathcal{X}$ can be shattered by \mathcal{H}.
Now we are ready to show that the VC dimension of the loss class is at least m. Specifically, given the sample of labelled points $S=\left\{\left(c_{1}, 1\right), \ldots,\left(c_{m}, 1\right)\right\}$, we will show that the loss behavior corresponding to hypothesis h_{b} on the sample S is exactly b. Since \mathcal{H} contains all the hypothesis corresponding to every single bitstring $b \in\{0,1\}^{m}$, the loss class of \mathcal{H} will shatter S. In order to prove that the loss behavior of h_{b} on the sample S is exactly b, it suffices to show that the probabilistic
loss of h_{b} on example $\left(c_{i}, 1\right)$ is b_{i}, where b_{i} denotes the i th bit of b. By definition,

$$
\begin{aligned}
\ell_{\mathcal{G}, \mu}^{\rho}\left(h_{b},\left(c_{i}, 1\right)\right) & =\mathbb{1}\left\{\mathbb{P}_{g \sim \mu}\left(h_{b}\left(g\left(c_{i}\right)\right) \neq 1\right)>\rho\right\} \\
& =\mathbb{1}\left\{\mathbb{P}_{z \sim \mu_{c_{i}}}\left(h_{b}(z)=0\right)>\rho\right\} \\
& =\mathbb{1}\left\{\mathbb{P}_{z \sim \mu_{c_{i}}}\left(z \in \mathcal{B}_{i}^{b} \cup \mathcal{B}_{i}\right)>\rho\right\} \\
& =\mathbb{1}\left\{\mu_{c_{i}}\left(\mathcal{B}_{i}^{b} \cup \mathcal{B}_{i}\right)>\rho\right\} \\
& =b_{i} .
\end{aligned}
$$

Thus, the loss behavior of h_{b} on S is b, and the total number of distinct loss behaviors over each hypothesis in \mathcal{H} on S is 2^{m}, implying that the VC dimension of the loss class is at least m. This completes the construction and proof of the claim.

B. 3 Proof of Lemma 3.3

Proof. (of Lemma 3.3] This proof closely follows Lemma 3 from Montasser et al. [2019]. In fact, the only difference is in the construction of the hypothesis class, which we will describe below.
Fix $\rho \in[0,1)$. Let $m \in \mathbb{N}$. Construct a hypothesis class \mathcal{H}_{0} as in Lemma 3.2 on $3 m$ centers $c_{1}, \ldots, c_{3 m}$ based on ρ. By the construction in Lemma 3.2. we know that $\mathcal{L}_{\mathcal{G}, \mu}^{\mathcal{H}, \rho}$ shatters the sample $C=\left\{\left(c_{1}, 1\right), \ldots,\left(c_{3 m}, 1\right)\right\}$. Instead of keeping all of \mathcal{H}_{0}, we will only keep a subset \mathcal{H} of \mathcal{H}_{0}, namely those classifiers that are probabilistically robustly correct on subsets of size $2 m$ of C. More specifically, recall from the construction in Lemma 3.2 that each hypothesis $h_{b} \in \mathcal{H}_{0}$ is parameterized by a bitstring $b \in\{0,1\}^{3 m}$ where if $b_{i}=1$, then h_{b} is not robust to example $\left(c_{i}, 1\right)$. Therefore, $\mathcal{H}=\left\{h_{b} \in \mathcal{H}_{0}: \sum_{i=1}^{3 m} b_{i}=m\right\}$. Now, let $\mathcal{A}:(\mathcal{X} \times \mathcal{Y})^{*} \rightarrow \mathcal{H}$ be an arbitrary proper learning rule. Consider a set of distributions $\mathcal{D}_{1}, \ldots, \mathcal{D}_{L}$ where $L=\binom{3 m}{2 m}$. Each distribution \mathcal{D}_{i} is uniform over exactly $2 m$ centers in C. Critically, note that by our construction of \mathcal{H}, every distribution \mathcal{D}_{i} is probabilistically robustly realizable by a hypothesis in \mathcal{H}. That is, for all \mathcal{D}_{i}, there exists a hypothesis $h^{*} \in \mathcal{H}$ such that $R_{\mathcal{G}, \mu}^{\rho}\left(h^{*} ; \mathcal{D}_{i}\right)=0$. Observe that this satisfies the first condition in Lemma 3.3. For the second condition, at a high-level, the idea is to use the probabilistic method to show that there exists a distribution \mathcal{D}_{i} where $\mathbb{E}_{S \sim \mathcal{D}_{i}^{m}}\left[R_{\mathcal{G}, \mu}^{\rho}(\mathcal{A}(S) ; \mathcal{D})\right] \geq \frac{1}{4}$ and then use a variant of Markov's inequality to show that with probability at least $1 / 7$ over $S \sim \mathcal{D}^{m}, R_{\mathcal{G}, \mu}^{\rho}(\mathcal{A}(S) ; \mathcal{D})>1 / 8$.
Let $S \in C^{m}$ be an arbitrary set of m points. Let \mathcal{C} be a uniform distribution over C. Let \mathcal{P} be a uniform distribution over $\mathcal{D}_{1}, \ldots, \mathcal{D}_{T}$. Let E_{S} denote the event that $S \subset \operatorname{supp}\left(\mathcal{D}_{i}\right)$ for $\mathcal{D}_{i} \sim \mathcal{P}$. Given the event E_{S}, we will lower bound the expected probabilistic robust loss of the hypothesis the proper learning rule \mathcal{A} outputs,

$$
\mathbb{E}_{\mathcal{D}_{i} \sim \mathcal{P}}\left[R_{\mathcal{G}, \mu}^{\rho}\left(\mathcal{A}(S) ; \mathcal{D}_{i}\right) \mid E_{S}\right]=\mathbb{E}_{\mathcal{D}_{i} \sim \mathcal{P}}\left[\mathbb{E}_{(x, y) \sim \mathcal{D}_{i}}\left[\mathbb{1}\left\{\mathbb{P}_{g \sim \mu}(\mathcal{A}(S)(g(x)) \neq y)>\rho\right\}\right] \mid E_{S}\right]
$$

Conditioning on the event that $(x, y) \notin S$, denoted, $E_{(x, y) \notin S}$,

$$
\begin{aligned}
\mathbb{E}_{(x, y) \sim \mathcal{D}_{i}}\left[\mathbb{1}\left\{\mathbb{P}_{g \sim \mu}(\mathcal{A}(S)(g(x)) \neq y)>\rho\right\}\right] & \geq \mathbb{P}_{(x, y) \sim \mathcal{D}_{i}}\left[E_{(x, y) \notin S}\right] \\
& \times \mathbb{E}_{(x, y) \sim \mathcal{D}_{i}}\left[\mathbb{1}\left\{\mathbb{P}_{g \sim \mu}(\mathcal{A}(S)(g(x)) \neq y)>\rho\right\} \mid E_{(x, y) \notin S}\right]
\end{aligned}
$$

Since \mathcal{D}_{i} is supported over $2 m$ points and $|S|=m, \mathbb{P}_{(x, y) \sim \mathcal{D}_{i}}\left[E_{(x, y) \notin S}\right] \geq \frac{1}{2}$ since in the worstcase $S \subset \operatorname{supp}\left(\mathcal{D}_{i}\right)$. Thus, we obtain the lower bound,
$\mathbb{E}_{\mathcal{D}_{i} \sim \mathcal{P}}\left[R_{\mathcal{G}, \mu}^{\rho}\left(\mathcal{A}(S) ; \mathcal{D}_{i}\right) \mid E_{S}\right] \geq \frac{1}{2} \mathbb{E}_{\mathcal{D}_{i} \sim \mathcal{P}}\left[\mathbb{E}_{(x, y) \sim \mathcal{D}_{i}}\left[\mathbb{1}\left\{\mathbb{P}_{g \sim \mu}(\mathcal{A}(S)(g(x)) \neq y)>\rho\right\} \mid E_{(x, y) \notin S}\right] \mid E_{S}\right]$.
Unravelling the expectation over the draw from \mathcal{D}_{i} given the event E_{S}, we have,

$$
\mathbb{E}_{(x, y) \sim \mathcal{D}_{i}}\left[\mathbb{1}\left\{\mathbb{P}_{g \sim \mu}(\mathcal{A}(S)(g(x)) \neq y)>\rho\right\} \mid E_{(x, y) \notin S}\right] \geq \frac{1}{m} \sum_{(x, y) \in \operatorname{supp}\left(\mathcal{D}_{i}\right) \backslash S} \mathbb{1}\left\{\mathbb{P}_{g \sim \mu}(\mathcal{A}(S)(g(x)) \neq y)>\rho\right\}
$$

Observing that $\mathbb{E}_{\mathcal{D}_{i} \sim \mathcal{P}}\left[\mathbb{1}\left\{(x, y) \in \operatorname{supp}\left(\mathcal{D}_{i}\right)\right\} \mid E_{S}\right] \geq \frac{1}{2}$ yields,
$\mathbb{E}_{\mathcal{D}_{i} \sim \mathcal{P}}\left[\mathbb{E}_{(x, y) \sim \mathcal{D}_{i}}\left[\mathbb{1}\left\{\mathbb{P}_{g \sim \mu}(\mathcal{A}(S)(g(x)) \neq y)>\rho\right\} \mid E_{(x, y) \notin S}\right] \mid E_{S}\right] \geq \frac{1}{2 m} \sum_{(x, y) \notin S} \mathbb{1}\left\{\mathbb{P}_{g \sim \mu}(\mathcal{A}(S)(g(x)) \neq y)>\rho\right\}$.
Since $\mathcal{A}(S) \in \mathcal{H}$, by construction of \mathcal{H}, there are at least m points in C where \mathcal{A} is not probabilistically robustly correct. Therefore,

$$
\frac{1}{2 m} \sum_{(x, y) \notin S} \mathbb{1}\left\{\mathbb{P}_{g \sim \mu}(\mathcal{A}(S)(g(x)) \neq y)>\rho\right\} \geq \frac{1}{2}
$$

from which we have that, $\mathbb{E}_{\mathcal{D}_{i} \sim \mathcal{P}}\left[R_{\mathcal{G}, \mu}^{\rho}\left(\mathcal{A}(S) ; \mathcal{D}_{i}\right) \mid E_{S}\right] \geq \frac{1}{4}$. By the law of total expectation, we have that

$$
\begin{aligned}
\mathbb{E}_{\mathcal{D}_{i} \sim \mathcal{P}}\left[\mathbb{E}_{S \sim \mathcal{D}_{i}^{m}}\left[R_{\mathcal{G}, \mu}^{\rho}\left(\mathcal{A}(S) ; \mathcal{D}_{i}\right)\right]\right] & =\mathbb{E}_{S \sim \mathcal{C}}\left[\mathbb{E}_{\mathcal{D}_{i} \sim \mathcal{P} \mid E_{S}}\left[R_{\mathcal{G}, \mu}^{\rho}\left(\mathcal{A}(S) ; \mathcal{D}_{i}\right)\right]\right] \\
& =\mathbb{E}_{S \sim \mathcal{C}}\left[\mathbb{E}_{\mathcal{D}_{i} \sim \mathcal{P}}\left[R_{\mathcal{G}, \mu}^{\rho}\left(\mathcal{A}(S) ; \mathcal{D}_{i}\right) \mid E_{S}\right]\right] \\
& \geq 1 / 4
\end{aligned}
$$

Since the expectation over $\mathcal{D}_{1}, \ldots, \mathcal{D}_{T}$ is at least $1 / 4$, there must exist a distribution \mathcal{D}_{i} where $\mathbb{E}_{S \sim \mathcal{D}_{i}^{m}}\left[R_{\mathcal{G}, \mu}^{\rho}\left(\mathcal{A}(S) ; \mathcal{D}_{i}\right)\right] \geq 1 / 4$. Using a variant of Markov's inequality, gives

$$
\mathbb{P}_{S \sim \mathcal{D}_{i}^{m}}\left[R_{\mathcal{G}, \mu}^{\rho}\left(\mathcal{A}(S) ; \mathcal{D}_{i}\right)>1 / 8\right] \geq 1 / 7
$$

which completes the proof.

B. 4 Proof of Theorem 3.1

Proof. (of Theorem 3.1) Fix $\rho \in[0,1)$. Let $\left(C_{m}\right)_{m \in \mathbb{N}}$ be an infinite sequence of disjoint sets such that each set C_{m} contains $3 m$ distinct center points from \mathcal{X}, where for any $c_{i}, c_{j} \in \bigcup_{m=1}^{\infty} C_{m}$ such that $c_{i} \neq c_{j}$, we have $\mathcal{G}\left(c_{i}\right) \cap \mathcal{G}\left(c_{j}\right)=\emptyset$. For every $m \in \mathbb{N}$, construct \mathcal{H}_{m} on C_{m} as in Lemma 3.2 In addition, a key part of this proof is to ensure that the hypothesis in \mathcal{H}_{m} are non-robust to points in $C_{m^{\prime}}$ for all $m^{\prime} \neq m$. To do so, we will need to adjust each hypothesis $h_{b} \in \mathcal{H}_{m}$ carefully. By definition, for every $m \in \mathbb{N}, \mathcal{H}_{m}$ consists of $2^{3 m}$ hypothesis of the form

$$
h_{b}(z)= \begin{cases}-1 & \text { if } z \in \bigcup_{i=1}^{3 m} \mathcal{B}_{i}^{b} \cup \mathcal{B}_{i} \\ 1 & \text { otherwise }\end{cases}
$$

for each bitstring $b \in\{0,1\}^{3 m}$. Note that the same set $\bigcup_{i=1}^{3 m} \mathcal{B}_{i}$ is shared across every hypothesis $h_{b} \in \mathcal{H}_{m}$. For each $m \in \mathbb{N}$, let $\mathcal{B}^{m}=\bigcup_{i=1}^{3 m} \mathcal{B}_{i}$ be exactly the union of these $3 m$ sets. Next, from the construction in Lemma 3.2 for every center $c_{i} \in C_{m}, \mu_{c_{i}}\left(\mathcal{B}_{i} \cup\left(\bigcup_{b} \mathcal{B}_{i}^{b}\right)\right) \leq \frac{1+\rho}{2}<1$. Thus, there exists a set $\tilde{\mathcal{B}}_{i} \subset \mathcal{G}\left(c_{i}\right)$ such that $\mu_{c_{i}}\left(\tilde{\mathcal{B}}_{i}\right)>0$ and $\tilde{\mathcal{B}}_{i} \cap\left(\mathcal{B}_{i} \cup\left(\bigcup_{b} \mathcal{B}_{i}^{b}\right)\right)=\emptyset$. Consider one such subset $\tilde{\mathcal{B}}_{i}$ from each of the $3 m$ centers in C_{m} and let $\tilde{\mathcal{B}}^{m}=\bigcup_{i=1}^{3 m} \tilde{\mathcal{B}}_{i}$. Finally, make the following adjustment to each $h_{b} \in \mathcal{H}_{m}$,

$$
h_{b}(z)= \begin{cases}-1 & \text { if } z \in \bigcup_{i=1}^{3 m} \mathcal{B}_{i}^{b} \cup \mathcal{B}_{i} \text { or } z \in \mathcal{B}^{m^{\prime}} \cup \tilde{\mathcal{B}}^{m^{\prime}} \text { for } m^{\prime} \neq m \\ 1 & \text { otherwise }\end{cases}
$$

One can verify that every hypothesis in \mathcal{H}_{m} has a non-robust region (i.e. $\mathcal{B}^{m^{\prime}} \cup \tilde{\mathcal{B}}^{m^{\prime}}$ for $m^{\prime} \neq m$) with mass strictly bigger than ρ in every center in $C_{m^{\prime}}$ for every $m^{\prime} \neq m$. Thus, the hypotheses in \mathcal{H}_{m} are non-robust to points in $C_{m^{\prime}}$ for all $m^{\prime} \neq m$. Finally, as we did in Lemma 3.3, for each m, we only keep the subset of hypothesis $\mathcal{H}_{m}^{\prime}=\left\{h_{b} \in \mathcal{H}_{m}: \sum_{i=1}^{3 m} b_{i}=m\right\}$. Note that for each $m \in \mathbb{N}$, the hypothesis class \mathcal{H}_{m}^{\prime} behaves exactly like the hypothesis class from Lemma 3.3 on C_{m}.
Let $\mathcal{H}:=\bigcup_{m=1}^{\infty} \mathcal{H}_{m}^{\prime}$ and $\mathcal{G}\left(C_{m}\right):=\bigcup_{i=1}^{3 m} \mathcal{G}\left(c_{i}\right)$. Since we have modified the hypothesis class, we need to reprove that its VC dimension is still at most 1 . Consider two points $x_{1}, x_{2} \in \mathcal{X}$. If either x_{1} or x_{2} is not in $\bigcup_{m=1}^{\infty} \mathcal{G}\left(C_{m}\right)$ and not in $\bigcup_{m=1}^{\infty} \mathcal{B}^{m} \cup \tilde{\mathcal{B}}^{m}$, then all hypothesis predict x_{1} or x_{2} as 1 . If both x_{1} and x_{2} are in $\mathcal{B}^{m} \cup \tilde{\mathcal{B}}^{m}$ for some $m \in \mathbb{N}$, then:

- if either x_{1} or x_{2} are in \mathcal{B}^{m}, every hypothesis in \mathcal{H} labels either x_{1} or x_{2} as -1 .
- if both x_{1} and x_{2} are in $\tilde{\mathcal{B}}^{m}$, we can only get the labeling $(1,1)$ from hypotheses in \mathcal{H}_{m} and the labeling $(-1,-1)$ from the hypotheses in $\mathcal{H}_{m^{\prime}}$ for $m^{\prime} \neq m$.

In the case both x_{1} and x_{2} are in $\mathcal{G}\left(C_{m}\right) \backslash\left(\mathcal{B}^{m} \cup \tilde{\mathcal{B}}^{m}\right)$, then, they cannot be shattered by Lemma 3.2 In the case $x_{1} \in \mathcal{B}^{m} \cup \tilde{\mathcal{B}}^{m}$ and $x_{2} \in \mathcal{G}\left(C_{m}\right) \backslash\left(\mathcal{B}^{m} \cup \tilde{\mathcal{B}}^{m}\right)$:

- if x_{1} is in \mathcal{B}^{m}, every hypothesis in \mathcal{H} labels x_{1} as -1 .
- if x_{1} is in $\tilde{\mathcal{B}}^{m}$ then, we can never get the labeling $(-1,-1)$.

If $x_{1} \in \mathcal{B}^{i} \cup \tilde{\mathcal{B}}^{i}$ and $x_{2} \in \mathcal{B}^{j} \cup \tilde{\mathcal{B}}^{j}$ for $i \neq j$, then:

- if either x_{1} or x_{2} are in \mathcal{B}^{i} or \mathcal{B}^{j} respectively, every hypothesis in \mathcal{H} labels either x_{1} or x_{2} as -1 .
- if both x_{1} and x_{2} are in $\tilde{\mathcal{B}}^{i}$ and $\tilde{\mathcal{B}}^{j}$ respectively, we can never get the labeling $(1,1)$.

In the case $x_{1} \in \mathcal{B}^{i} \cup \tilde{\mathcal{B}}^{i}$ and $x_{2} \in \mathcal{G}\left(C_{j}\right) \backslash\left(\mathcal{B}^{j} \cup \tilde{\mathcal{B}}^{j}\right)$ for $j \neq i$, then we cannot obtain the labeling $(1,-1)$. If $x_{1} \in \mathcal{G}\left(C_{i}\right) \backslash\left(\mathcal{B}^{i} \cup \tilde{\mathcal{B}}^{i}\right)$ and $x_{2} \in \mathcal{G}\left(C_{j}\right) \backslash\left(\mathcal{B}^{j} \cup \tilde{\mathcal{B}}^{j}\right)$ for $i \neq j$, then we cannot obtain the labeling $(-1,-1)$. Since we shown that for all possible x_{1} and x_{2}, \mathcal{H} cannot shatter them, $\mathrm{VC}(\mathcal{H}) \leq 1$.
We now use the same reasoning in Montasser et al. [2019], to show that no proper learning rule works. By Lemma 3.3, for any proper learning rule $\mathcal{A}:(\mathcal{X} \times \mathcal{Y})^{*} \rightarrow \mathcal{H}$ and for any $m \in \mathbb{N}$, we can construct a distribution \mathcal{D} over C_{m} (which has $3 m$ points from \mathcal{X}) where there exists a hypothesis $h^{*} \in \mathcal{H}_{m}^{\prime}$ that achieves $R_{\mathcal{G}, \mu}^{\rho}\left(h^{*} ; \mathcal{D}\right)=0$, but with probability at least $1 / 7$ over $S \sim \mathcal{D}^{m}, R_{\mathcal{G}, \mu}^{\rho}(\mathcal{A}(S) ; \mathcal{D})>1 / 8$. Note that it suffices to only consider hypothesis in \mathcal{H}_{m}^{\prime} because, by construction, all hypothesis in $\mathcal{H}_{m^{\prime}}^{\prime}$ for $m^{\prime} \neq m$ are not probabilistically robust on C_{m}^{m}, and thus always achieve loss 1 on all points in C_{m}. Thus, rule \mathcal{A} will do worse if it picks hypotheses from these classes. This shows that the sample complexity of properly probabilistically robustly PAC learning \mathcal{H} is arbitrarily large, allowing us to conclude that \mathcal{H} is not properly learnable.

C Proofs for Section 4

C. 1 Proof of Theorem 4.2

Proof. (of Theorem 4.2 Let $\operatorname{VC}(\mathcal{H})=d$ and $S=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)\right\}$ an i.i.d. sample of size m from \mathcal{D}. Consider the learning algorithm $\mathcal{A}(S)=\arg \min _{h \in \mathcal{H}} \hat{\mathbb{E}}_{S}\left[\ell_{\mathcal{G}, \mu}(h,(x, y))\right]$. Note that \mathcal{A} is a proper learning algorithm. Let $\hat{h}=\mathcal{A}(S)$ denote hypothesis output by \mathcal{A} and $h^{*}=$ $\inf _{h \in \mathcal{H}} \mathbb{E}_{\mathcal{D}}\left[\ell_{\mathcal{G}, \mu}(h,(x, y))\right]$.
We now show that if the sample size $m=O\left(\frac{d L^{2} \ln \left(\frac{L}{\epsilon}\right)+\ln \left(\frac{1}{\delta}\right)}{\epsilon^{2}}\right)$, then \hat{h} achieves the stated generalization bound with probability $1-\delta$. By Lemma 4.1. if $m=O\left(\frac{d L^{2} \ln \left(\frac{L}{\epsilon}\right)+\ln \left(\frac{1}{\delta}\right)}{\epsilon^{2}}\right)$, we have that
with probability $1-\delta$, for all $h \in \mathcal{H}$ simultaneously,

$$
\left|\mathbb{E}_{\mathcal{D}}\left[\ell_{\mathcal{G}, \mu}(h,(x, y))\right]-\hat{\mathbb{E}}_{S}\left[\ell_{\mathcal{G}, \mu}(h,(x, y))\right]\right| \leq \frac{\epsilon}{2}
$$

This means that both $\mathbb{E}_{\mathcal{D}}\left[\ell_{\mathcal{G}, \mu}(\hat{h},(x, y))\right]-\hat{\mathbb{E}}_{S}\left[\ell_{\mathcal{G}, \mu}(\hat{h},(x, y))\right] \leq \frac{\epsilon}{2}$ and $\hat{\mathbb{E}}_{S}\left[\ell_{\mathcal{G}, \mu}\left(h^{*},(x, y)\right)\right]-$ $\mathbb{E}_{\mathcal{D}}\left[\ell_{\mathcal{G}, \mu}\left(h^{*},(x, y)\right)\right] \leq \frac{\epsilon}{2} . \quad$ By definition of \hat{h}, note that $\hat{\mathbb{E}}_{S}\left[\ell_{\mathcal{G}, \mu}(\hat{h},(x, y))\right] \leq$ $\hat{\mathbb{E}}_{S}\left[\ell_{\mathcal{G}, \mu}\left(h^{*},(x, y)\right)\right]$. Putting these observations together, we have that

$$
\begin{aligned}
\mathbb{E}_{\mathcal{D}}\left[\ell_{\mathcal{G}, \mu}(\hat{h},(x, y))\right]-\left(\mathbb{E}_{\mathcal{D}}\left[\ell_{\mathcal{G}, \mu}\left(h^{*},(x, y)\right)\right]+\frac{\epsilon}{2}\right) & \leq \mathbb{E}_{\mathcal{D}}\left[\ell_{\mathcal{G}, \mu}(\hat{h},(x, y))\right]-\hat{\mathbb{E}}_{S}\left[\ell_{\mathcal{G}, \mu}\left(h^{*},(x, y)\right)\right] \\
& \leq \mathbb{E}_{\mathcal{D}}\left[\ell_{\mathcal{G}, \mu}(\hat{h},(x, y))\right]-\hat{\mathbb{E}}_{S}\left[\ell_{\mathcal{G}, \mu}(\hat{h},(x, y))\right] \\
& \leq \frac{\epsilon}{2}
\end{aligned}
$$

from which we can deduce that

$$
\mathbb{E}_{\mathcal{D}}\left[\ell_{\mathcal{G}, \mu}(\hat{h},(x, y))\right]-\inf _{h \in \mathcal{H}} \mathbb{E}_{\mathcal{D}}\left[\ell_{\mathcal{G}, \mu}(h,(x, y))\right] \leq \epsilon
$$

Thus, \mathcal{A} achieves the stated generalization bound with sample complexity $m=O\left(\frac{d L^{2} \ln \left(\frac{L}{\epsilon}\right)+\ln \left(\frac{1}{\delta}\right)}{\epsilon^{2}}\right)$,
completing the proof. completing the proof.

C. 2 Proof of Theorem 4.3

For the proof in this section, it will be useful to define the (\mathcal{G}, μ)-smoothed hypothesis class \mathcal{H} :

$$
\mathcal{F}_{\mathcal{G}, \mu}^{\mathcal{H}}:=\left\{\mathbb{E}_{g \sim \mu}[h(g(x))]: h \in \mathcal{H}\right\} .
$$

Proof. (of Theorem 4.3 Let $\mathcal{X}=\mathbb{R}$ and $\mathcal{H}=\{\operatorname{sign}(\sin (\omega x)): \omega \in \mathbb{R}\}$. Without loss of generality, assume $\operatorname{sign}(\sin (0))=1$. For every $x \in \mathcal{X}$ and $c \in[-1,1]$, define $g_{c}(x)=c x$. Then, let $\mathcal{G}=\left\{g_{c}: c \in[-1,1]\right\}$ and μ be uniform over \mathcal{G}. First, $V C(\mathcal{H})=\infty$ as desired. Next, to show learnability, it suffices to show that the loss

$$
\ell_{\mathcal{G}, \mu}(h,(x, y))=\ell\left(y \mathbb{E}_{g \sim \mu}[h(g(x))]\right)
$$

enjoys the uniform convergence property despite $\operatorname{VC}(\mathcal{H})=\infty$. By Theorem 2.1 and similar to the proof of Lemma 4.1 it suffices upperbound the Rademacher complexity of the loss class $\mathcal{L}_{\mathcal{G}, \mu}^{\mathcal{H}}=\left\{(x, y) \mapsto \ell_{\mathcal{G}, \mu}(h,(x, y)): h \in \mathcal{H}\right\}$. Since for every fixed $y, \ell_{\mathcal{G}, \mu}(h,(x, y))$ is L-Lipschitz with respect to the real-valued function $\mathbb{E}_{g \sim \mu}[h(g(x))]$, by Ledoux-Talagrand's contraction principle $\hat{\mathfrak{R}}_{m}\left(\mathcal{L}_{\mathcal{G}, \mu}^{\mathcal{H}}\right) \leq L \cdot \hat{\mathfrak{R}}_{m}\left(\mathcal{F}_{\mathcal{G}, \mu}^{\mathcal{H}}\right)$ where $\mathcal{F}_{\mathcal{G}, \mu}^{\mathcal{H}}$ is the (\mathcal{G}, μ)-smoothed hypothesis classed defined previously. Thus, it suffices to upper-bound $\hat{\mathfrak{R}}_{m}\left(\mathcal{F}_{\mathcal{G}, \mu}^{\mathcal{H}}\right)$ by a sublinear function of m to show that $\ell_{\mathcal{G}, \mu}(h,(x, y))$ enjoys the uniform convergence property. But for every $h_{\omega} \in \mathcal{H}$,

$$
\mathbb{E}_{g \sim \mu}\left[h_{\omega}(g(x))\right]=\mathbb{E}_{c \sim \operatorname{Unif}(-1,1)}\left[\operatorname{sign}(\sin (\omega(c x))]=\frac{1}{2} \int_{-1}^{1} \operatorname{sign}(\sin (c(\omega x))) d c\right.
$$

Since $\sin (a x)$ is an odd function, $\operatorname{sign}(\sin (a x))$ is also odd, from which it follows that for all $h_{\omega} \in \mathcal{H}$:

$$
\mathbb{E}_{g \sim \mu}\left[h_{\omega}(g(x))\right]= \begin{cases}0 & \text { if } x \neq 0 \text { and } \omega \neq 0 \\ 1 & \text { otherwise }\end{cases}
$$

Therefore, $\mathcal{F}_{\mathcal{G}, \mu}^{\mathcal{H}}=\left\{f_{1}, f_{2}\right\}$ where $f_{1}(x)=1$ for all $x \in \mathbb{R}$ and $f_{2}(x)=1$ if $x=0$ and $f_{2}(x)=0$ if $x \neq 0$. Since $\mathcal{F}_{\mathcal{G}, \mu}^{\mathcal{H}}$ is finite, by Massart's Lemma Mohri et al. 2018], $\hat{\mathfrak{R}}_{m}\left(\mathcal{F}_{\mathcal{G}, \mu}^{\mathcal{H}}\right)$ is upper-bounded by a sublinear function of m such that $\ell_{\mathcal{G}, \mu}(h,(x, y))$ enjoys the uniform convergence property with sample complexity $O\left(\frac{L^{2}+\ln \left(\frac{1}{\delta}\right)}{\epsilon^{2}}\right)$. Therefore, $(\mathcal{H}, \mathcal{G}, \mu)$ is PAC learnable with respect to $\ell_{\mathcal{G}, \mu}(h,(x, y))$ by the learning rule $\mathcal{A}(S)=\arg \min _{h \in \mathcal{H}} \hat{\mathbb{E}}_{S}\left[\ell_{\mathcal{G}, \mu}(h,(x, y))\right]$ with sample complexity that scales according to $O\left(\frac{L^{2}+\ln \left(\frac{1}{\delta}\right)}{\epsilon^{2}}\right)$.

Figure 1: Comparison of probabilistic robust ramp loss to probabilistic robust losses of hypothesis h on example (x, y). The probabilistic robust losses at ρ and ρ^{*} sandwich the probabilistic robust ramp loss at ρ, ρ^{*}.

D Proofs for Section 5

D. 1 Proof of Theorem 5.2

Proof. (of Theorem 5.2) Fix $0 \leq \rho^{*}<\rho<1$ and let \mathcal{H} be a hypothesis class with $\mathrm{VC}(\mathcal{H})=d$. Let (\mathcal{G}, μ) be an arbitrary perturbation set and measure, \mathcal{D} be an arbitrary distribution over $\mathcal{X} \times \mathcal{Y}$, and $S=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)\right\}$ an i.i.d. sample of size m. Let $\mathcal{A}(S)=\operatorname{PRERM}\left(S ;(\mathcal{G}, \mu), \rho^{*}\right)$.
By Lemma 5.1, it suffices to show that there exists a loss function $\ell(h,(x, y))$ such that $\left.\ell_{\mathcal{G}, \mu}^{\rho}(h,(x, y)) \leq \ell(h,(x, y)) \leq \ell_{\mathcal{G}, \mu}^{\rho^{*}}(h,(x, y))\right)$ and $\ell(h,(x, y))$ enjoys the uniform convergence property with sample complexity $n=O\left(\frac{\frac{d}{\left(\rho-\rho^{*}\right)^{2}} \ln \left(\frac{1}{\left(\rho-\rho^{*}\right) \epsilon}\right)+\ln \left(\frac{1}{\delta}\right)}{\epsilon^{2}}\right)$. Consider the probabilistically robust ramp loss:

$$
\ell_{\mathcal{G}, \mu}^{\rho, \rho^{*}}(h,(x, y))=\min \left(1, \max \left(0, \frac{\mathbb{P}_{g \sim \mu}[h(g(x)) \neq y]-\rho^{*}}{\rho-\rho^{*}}\right)\right) .
$$

Figure 1 visually showcases how the probabilistic robust losses at ρ and ρ^{*} sandwich the probabilistic ramp loss at ρ, ρ^{*}.
Its not too hard to see that $\left.\ell_{\mathcal{G}, \mu}^{\rho}(h,(x, y)) \leq \ell_{\mathcal{G}, \mu}^{\rho, \rho^{*}}(h,(x, y)) \leq \ell_{\mathcal{G}, \mu}^{\rho^{*}}(h,(x, y))\right)$. Furthermore, since $\ell_{\mathcal{G}, \mu}^{\rho, \rho^{*}}(h,(x, y))$ is $O\left(\frac{1}{\rho-\rho^{*}}\right)$-Lipschitz in $y \mathbb{E}_{g \sim \mu}[h(g(x)) \neq y]$, by Lemma 4.1, we have that $\ell_{\mathcal{G}, \mu}^{\rho, \rho^{*}}(h,(x, y))$ enjoys the uniform convergence property with sample complexity $O\left(\frac{\frac{d}{\left(\rho-\rho^{*}\right)^{2}} \ln \left(\frac{1}{\left(\rho-\rho^{*}\right) \epsilon}\right)+\ln \left(\frac{1}{\delta}\right)}{\epsilon^{2}}\right)$. This completes the proof, as the conditions for Lemma 5.1 have been met, and therefore the learning rule $\mathcal{A}(S)=\operatorname{PRERM}\left(S ; \mathcal{G}, \rho^{*}\right)$ enjoys the stated generalization guarantee with the specified sample complexity.

D. 2 Proof of Theorem 5.3

Proof. (of Theorem5.3) Fix $0<\rho$ and let \mathcal{H} be a hypothesis class with $\operatorname{VC}(\mathcal{H})=d$. Let \mathcal{G} be an arbitrary perturbation set, \mathcal{D} be an arbitrary distribution over $\mathcal{X} \times \mathcal{Y}$, and $S=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)\right\}$ an i.i.d. sample of size m. Let $\mathcal{A}(S)=\operatorname{RERM}(S ; \mathcal{G})$.
Fix a measure μ over \mathcal{G}. By Lemma [5.1, it suffices to show that there exists a loss function $\ell(h,(x, y))$ such that $\left.\ell_{\mathcal{G}, \mu}^{\rho}(h,(x, y)) \leq \ell(h,(x, y)) \leq \ell_{\mathcal{G}}(h,(x, y))\right)$ and $\ell(h,(x, y))$ enjoys the
uniform convergence property with sample complexity $n=O\left(\frac{\frac{d}{\rho^{2}} \ln \left(\frac{1}{\rho \epsilon}\right)+\ln \left(\frac{1}{\delta}\right)}{\epsilon^{2}}\right)$. Recall the probabilistically robust ramp loss:

$$
\ell_{\mathcal{G}, \mu}^{\rho, \rho^{*}}(h,(x, y))=\min \left(1, \max \left(0, \frac{\mathbb{P}_{g \sim \mu}[h(g(x)) \neq y]-\rho^{*}}{\rho-\rho^{*}}\right)\right) .
$$

Letting $\rho^{*}=0$, its not too hard to see that $\left.\ell_{\mathcal{G}, \mu}^{\rho}(h,(x, y)) \leq \ell_{\mathcal{G}, \mu}^{\rho, 0}(h,(x, y)) \leq \ell_{\mathcal{G}}(h,(x, y))\right)$. Furthermore, since $\ell_{\mathcal{G}, \mu}^{\rho, 0}(h,(x, y))$ is $O\left(\frac{1}{\rho}\right)$-Lipschitz in $y \mathbb{E}_{g \sim \mu}[h(g(x)) \neq y]$, by Lemma 4.1. we have that $\ell_{\mathcal{G}, \mu}^{\rho, 0}(h,(x, y))$ enjoys the uniform convergence property with sample complexity $O\left(\frac{\frac{d}{\rho^{2}} \ln \left(\frac{1}{\rho \epsilon}\right)+\ln \left(\frac{1}{\delta}\right)}{\epsilon^{2}}\right)$. This completes the proof, as the conditions for Lemma 5.1 have been met, and therefore the learning rule $\mathcal{A}(S)$ enjoys the stated generalization guarantee with the specified sample complexity.

D. 3 Proof of Theorem 5.4

Proof. (of Theorem 5.4) Assume that there exists a subset $\mathcal{G}^{\prime} \subset \mathcal{G}$, that is r-Nice with respect to \mathcal{H}. By Lemma 5.1, it is sufficient to find a perturbation set $\tilde{\mathcal{G}}$ such that $(1) \ell_{\mathcal{G}^{\prime}}(h,(x, y)) \leq$ $\ell_{\tilde{\mathcal{G}}}(h,(x, y)) \leq \ell_{\mathcal{G}}(h,(x, y))$ and (2) $\ell_{\tilde{\mathcal{G}}}(h,(x, y))$ enjoys the uniform convergence property with sample complexity $O\left(\frac{\mathrm{VC}(\mathcal{H}) \log \left(\mathcal{N}_{r}\left(\mathcal{G}_{2 r}^{\prime}, d\right)\right) \ln \left(\frac{1}{\epsilon}\right)+\ln \left(\frac{1}{\delta}\right)}{\epsilon^{2}}\right)$. Let $\tilde{\mathcal{G}} \subset \mathcal{G}$ be the minimal r cover of $\mathcal{G}_{2 r}^{\prime}$ with cardinality $\mathcal{N}_{r}\left(\mathcal{G}_{2 r}^{\prime}, d\right)$. By Lemma 1.1 of Attias et al. [2021], the loss class $\mathcal{L}_{\mathcal{H}}^{\mathcal{G}}$ has VC dimension at most $O(\mathrm{VC}(\mathcal{H}) \log (|\tilde{\mathcal{G}}|))=O\left(\mathrm{VC}(\mathcal{H}) \log \left(\mathcal{N}_{r}\left(\mathcal{G}_{2 r}^{\prime}\right)\right)\right)$, implying that $\ell_{\tilde{\mathcal{G}}}(h,(x, y))$ enjoys the uniform convergence property with the previously stated sample complexity $O\left(\frac{\mathrm{VC}(\mathcal{H}) \log \left(\mathcal{N}_{r}\left(\mathcal{G}_{2 r}^{\prime}, d\right)\right) \ln \left(\frac{1}{\epsilon}\right)+\ln \left(\frac{1}{\delta}\right)}{\epsilon^{2}}\right)$. Now, it remains to show that for our choice of $\tilde{\mathcal{G}}$, we have $\ell_{\mathcal{G}^{\prime}}(h,(x, y)) \leq \ell_{\tilde{\mathcal{G}}}(h,(x, y)) \leq \ell_{\mathcal{G}}(h,(x, y))$. Since, $\tilde{\mathcal{G}} \subset \mathcal{G}$,the upperbound is trivial. Thus, we only focus on proving the lowerbound, $\ell_{\mathcal{G}^{\prime}}(h,(x, y)) \leq \ell_{\tilde{\mathcal{G}}}(h,(x, y))$ for all $h \in \mathcal{H}$ and $(x, y) \in \mathcal{X} \times \mathcal{Y}$. Fix $h \in \mathcal{H}$ and $(x, y) \in \mathcal{X} \times \mathcal{Y}$. If $\ell_{\mathcal{G}^{\prime}}(h,(x, y))=1$, then there exists a $g \in \mathcal{G}^{\prime}$ such that $h(g(x)) \neq y$. Let g denote one such perturbation function. By the r-Niceness property of \mathcal{G}^{\prime} with respect to \mathcal{H}, there must exist $B_{r}\left(g^{*}\right)$ centered at some $g^{*} \in \mathcal{G}$ such that $g \in B_{r}\left(g^{*}\right)$ and $h(g(x))=h\left(g^{\prime}(x)\right)$ for all $g^{\prime} \in B_{r}\left(g^{*}\right)$. This implies that $h\left(g^{\prime}(x)\right) \neq y$ for all $g^{\prime} \in B_{r}\left(g^{*}\right)$. Furthermore, since $B_{2 r}(g)$ is the union of all balls of radius r that contain g, we have that $B_{r}\left(g^{*}\right) \subset B_{2 r}(g)$. From here, its not too hard to see that $B_{r}\left(g^{*}\right) \subset \mathcal{G}_{2 r}^{\prime}$ by definition. Finally, since $\tilde{\mathcal{G}}$ is an r-cover of $\mathcal{G}_{2 r}^{\prime}$, it must contain at least one function from $B_{r}\left(g^{*}\right)$. This completes the proof as we have shown that there exists a perturbation function $\hat{g} \in \tilde{\mathcal{G}}$ such that $h(\hat{g}(x)) \neq y$.

D. $4 \ell_{p}$ balls are r-Nice perturbation sets for linear classifiers

In this section, we give a concrete example of a hypothesis class \mathcal{H} and metric space of perturbation functions (\mathcal{G}, d) for which there exists an r-nice perturbation subset $\mathcal{G}^{\prime} \subset \mathcal{G}$. Let $\mathcal{X}=\mathbb{R}^{q}$ and fix $r \in \mathbb{R}_{\geq 0}$. For the hypothesis class, consider the set of homogeneous halfspaces, $\mathcal{H}=\left\{h_{w} \mid w \in \mathbb{R}^{q}\right\}$, where $h_{w}(x)=w^{T} x$. Let $\hat{\mathcal{G}}=\left\{g_{\delta}: \delta \in \mathbb{R}^{q},\|\delta\|_{p} \leq 3 r\right\}$ where $g_{\delta}(x)=x+\delta$ for all $x \in \mathcal{X}$ and consider any perturbation set \mathcal{G} such that $\mathcal{G} \supset \hat{\mathcal{G}}$. That is, $\hat{\mathcal{G}}(x)=\{g(x): g \in \hat{\mathcal{G}}\}$ induces a ℓ_{p} ball of radius $3 r$ around x. We will accordingly consider the distance metric $d\left(g_{\delta_{1}}, g_{\delta_{2}}\right)=$ $\sup _{x \in \mathcal{X}}\left\|g_{\delta_{1}}(x)-g_{\delta_{2}}(x)\right\|_{p}$. Restricted to the set $\hat{\mathcal{G}}$, this distance metric reduces to $d\left(g_{\delta_{1}}, g_{\delta_{2}}\right)=$ $\left\|\delta_{1}-\delta_{2}\right\|_{p}=\ell_{p}\left(\delta_{1}, \delta_{2}\right)$ for $g_{\delta_{1}}, g_{\delta_{2}} \in \hat{\mathcal{G}}$. Finally, consider $\mathcal{G}^{\prime}=\left\{g_{\tau}: \tau \in \mathbb{R}^{q},\|\tau\|_{p} \leq r\right\} \subset \hat{\mathcal{G}} \subset \mathcal{G}$ which induces an ℓ_{p} ball of radius r around x.
We will now show that \mathcal{G}^{\prime} is r-nice perturbation set with respect to \mathcal{H}. Let $x \in \mathcal{X}, h_{w} \in \mathcal{H}$, and $g_{\tau} \in \mathcal{G}^{\prime}$. Let $c=h\left(g_{\tau}(x)\right) \in\{ \pm 1\}$. Consider the function $g_{\tau+\frac{c r w}{\|w\|_{p}}}$. By definition, we have that $g_{\tau} \in B_{r}\left(g_{\tau+\frac{c r w}{\|w\|_{p}}}\right) \subset \hat{\mathcal{G}} \subset \mathcal{G}$. To see this, observe that $\left\|\tau+\frac{c r w}{\|w\|_{p}}\right\|_{p} \leq 2 r$ by the triangle inequality. Finally, it remains to show that for every $g^{\prime} \in B_{r}\left(g_{\tau+\frac{c r w}{\|w\|_{p}}}\right)=\left\{\left.g_{\tau+\frac{c r w}{\|w\|_{p}}+\kappa} \right\rvert\, \kappa \in \mathbb{R}^{d},\|\kappa\|_{p} \leq r\right\}$,

Note that $w^{T}\left(x+\tau+\frac{r w}{\|w\|_{p}}+\kappa\right)=w^{T}(x+\tau)+r\|w\|_{p}+w^{T} \kappa$. By Cauchy-Schwartz, we can lower bound $w^{T} \kappa \geq-\|w\|_{p}\|\kappa\|_{p} \geq-r\|w\|_{p}$. Therefore, we have that $w^{T}\left(x+\tau+\frac{r w}{\|w\|_{p}}+\kappa\right) \geq w^{T}(x+$ $\tau)>0$, where the last inequality comes from the fact that $+1=c=h_{w}\left(g_{\tau}\right)=\operatorname{sign}\left(w^{T}(x+\tau)\right)$. Therefore, $h\left(g_{\tau+\frac{r w}{\|w\|_{p}}+\kappa}^{\prime}(x)\right)=\operatorname{sign}\left(w^{T}\left(x+\tau+\frac{r w}{\|w\|_{p}}+\kappa\right)\right)=\operatorname{sign}\left(w^{T}(x+\tau)\right)=h\left(g_{\tau}(x)\right)$ as desired. A similar proof holds when $c=-1$. Therefore, we have shown that \mathcal{G}^{\prime} is a r-nice perturbation set with respect to \mathcal{H}.
We now can use Theorem 5.4 to provide sample complexity guarantees on Tolerantly Robust PAC Learning with \mathcal{G}^{\prime} and \mathcal{G}. The main quantity of interest is $\log \left(\mathcal{N}_{r}\left(\mathcal{G}_{2 r}^{\prime}, d\right)\right)$. However, note that $\mathcal{G}_{2 r}^{\prime}=\hat{\mathcal{G}}$. Therefore, we just need to compute $\log \left(\mathcal{N}_{r}(\hat{\mathcal{G}}, d)\right)=\log \left(\mathcal{N}_{r}\left(\left\{g_{\delta}: \delta \in \mathbb{R}^{q},\|\delta\|_{p} \leq\right.\right.\right.$ $3 r\}, d))$. However, this is equal to $\log \left(\mathcal{N}_{r}\left(\left\{\delta \in \mathbb{R}^{q}:\|\delta\|_{p} \leq 3 r\right\}, \ell_{p}\right)\right)$ using the ℓ_{p} distance metric since g_{δ} maps one-to-one to δ. Using standard arguments, $\log \left(\mathcal{N}_{r}\left(\left\{\delta \in \mathbb{R}^{q}:\|\delta\|_{p} \leq 3 r\right\}, \ell_{p}\right)\right)=$ $\log \left(\mathcal{N}_{\frac{1}{3}}\left(\left\{\delta \in \mathbb{R}^{q}:\|\delta\|_{p} \leq 1\right\}, \ell_{p}\right)\right)=O(q)$ (Bartlett [2013]). Thus, overall, \mathcal{H} is tolerantly PAC learnable with respect to $\left(\mathcal{G}, \mathcal{G}^{\prime}\right)$ with sample complexity close to what one would require in the standard PAC setting.

