A Organization of the Appendices

In the Appendix, we give proofs of all results from the main text. In Appendix B, we study properties of square-root-Lipschitz functions and introduce some technical tools that we use throughout the appendix. In Appendix C, we prove our main uniform convergence guarantee (Theorem 1 and the more general version Theorem 6). In Appendix D, we obtain bounds on the minimal norm required to interpolate in the settings studied in section 5. In Appendix E, we provide details on the counterexample to Gaussian universality described in section 7 .

B Preliminaries

B. 1 Properties of Square-root Lipschitz Loss

In this section, we prove that square-root Lipschitzness can be equivalently characterized by a relationship between a function and its Moreau envelope, which can be used to establish uniform convergence results based on the recent work of Zhou et al. 2022. We formally define Lipschitz functions and Moreau envelope below.
Definition 1. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is M-Lipschitz if for all x, y in \mathbb{R},

$$
\begin{equation*}
|f(x)-f(y)| \leq M|x-y| \tag{33}
\end{equation*}
$$

Definition 2. The Moreau envelope of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ associated with smoothing parameter $\lambda \in \mathbb{R}_{+}$is defined as

$$
\begin{equation*}
f_{\lambda}(x):=\inf _{y \in \mathbb{R}} f(y)+\lambda(y-x)^{2} \tag{34}
\end{equation*}
$$

Though we define Lipschitz functions and Moreau envelope for univariate functions from \mathbb{R} to \mathbb{R} above, we can easily extend definitions 1 and 2 to loss functions $f: \mathbb{R} \times \mathcal{Y} \rightarrow \mathbb{R}$ or $f: \mathbb{R} \times \mathcal{Y} \times \Theta \rightarrow \mathbb{R}$. We say a function $f: \mathbb{R} \times \mathcal{Y} \rightarrow \mathbb{R}$ is M-Lipschitz if for any $y \in \mathcal{Y}$ and $\hat{y}_{1}, \hat{y}_{2} \in \mathbb{R}$, we have

$$
\left|f\left(\hat{y}_{1}, y\right)-f\left(\hat{y}_{2}, y\right)\right| \leq M\left|\hat{y}_{1}-\hat{y}_{2}\right| .
$$

Similarly, we say a function $f: \mathbb{R} \times \mathcal{Y} \times \Theta \rightarrow \mathbb{R}$ is M-Lipschitz if for any $y \in \mathcal{Y}, \theta \in \Theta$ and $\hat{y}_{1}, \hat{y}_{2} \in \mathbb{R}$, we have

$$
\left|f\left(\hat{y}_{1}, y, \theta\right)-f\left(\hat{y}_{2}, y, \theta\right)\right| \leq M\left|\hat{y}_{1}-\hat{y}_{2}\right| .
$$

We can also define the Moreau envelope of a function $f: \mathbb{R} \times \mathcal{Y} \rightarrow \mathbb{R}$ by

$$
f_{\lambda}(\hat{y}, y):=\inf _{u \in \mathbb{R}} f(u, y)+\lambda(u-\hat{y})^{2}
$$

and the Moreau envelope of a function $f: \mathbb{R} \times \mathcal{Y} \times \Theta \rightarrow \mathbb{R}$ is defined as

$$
f_{\lambda}(\hat{y}, y, \theta):=\inf _{u \in \mathbb{R}} f(u, y, \theta)+\lambda(u-\hat{y})^{2}
$$

The proof of all results in this section can be straightforwardly extended to these settings. For simplicity, we ignore the additional arguments in \mathcal{Y} and Θ in this section.
The Moreau envelope is usually viewed as a smooth approximation to the original function f; its minimizer is known as the proximal operator. It plays an important role in convex analysis (see e.g. Boyd et al. 2004; Bauschke, Combettes, et al. 2011; Rockafellar 1970), but is also useful and well-defined when f is nonconvex. The canonical example of a \sqrt{H}-square-root-Lipschitz function is $f(x)=H x^{2}$, for which we can easily check

$$
f_{\lambda}(x)=\frac{\lambda}{\lambda+H} f(x)
$$

In proposition 1 below, we show that the condition $f_{\lambda} \geq \frac{\lambda}{\lambda+H} f$ is exactly equivalent to \sqrt{H}-square-root-Lipschitzness.
Proposition 1. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is non-negative and \sqrt{H}-square-root-Lipschitz if and only if for any $x \in \mathbb{R}$ and $\lambda \geq 0$, it holds that

$$
\begin{equation*}
f_{\lambda}(x) \geq \frac{\lambda}{\lambda+H} f(x) \tag{35}
\end{equation*}
$$

$$
\left|f^{\prime}(x)\right| \leq \sqrt{2 H f(x)} .
$$

532 Therefore, \sqrt{f} is $\sqrt{H / 2}$-Lipschitz.

[^0]and the Auxiliary Optimization (AO) problem
\[

$$
\begin{equation*}
\phi(G, H):=\min _{\left(w, w^{\prime}\right) \in S_{W}} \max _{\left(u, u^{\prime}\right) \in S_{U}}\|w\|_{2}\langle G, u\rangle+\|u\|_{2}\langle H, w\rangle+\psi\left(\left(w, w^{\prime}\right),\left(u, u^{\prime}\right)\right) \tag{40}
\end{equation*}
$$

\]

Proof. Since f is H-smooth and non-negative, by Taylor's theorem, for any $x, y \in \mathbb{R}$, we have

$$
\begin{aligned}
0 & \leq f(y) \\
& =f(x)+f^{\prime}(x)(y-x)+\frac{f^{\prime \prime}(a)}{2}(y-x)^{2} \\
& \leq f(x)+f^{\prime}(x)(y-x)+\frac{H}{2}(y-x)^{2}
\end{aligned}
$$

where $a \in[\min (x, y), \max (x, y)]$. Setting $y=x-\frac{f^{\prime}(x)}{H}$ yields the desired bound. To show that \sqrt{f} is Lipschitz, we observe that for any $x \in \mathbb{R}$

$$
\left|\frac{d}{d x} \sqrt{f(x)}\right|=\left|\frac{f^{\prime}(x)}{2 \sqrt{f(x)}}\right| \leq \sqrt{H / 2}
$$

and so we apply Taylor's theorem again to show that

$$
|\sqrt{f(x)}-\sqrt{f(y)}| \leq \sqrt{H / 2}|x-y|
$$

which is the desired definition.

B. 2 Properties of Gaussian Distribution

We will make use of the following results without proof.

Gaussian Minimax Theorem. Our proof of Theorem 1 and 6 will closely follow prior works that apply Gaussian Minimax Theorem (GMT) to uniform convergence (Koehler et al. 2021; Zhou et al. 2021; Zhou et al. 2022; Wang et al. 2021; Donhauser et al. 2022). The following result is Theorem 3 of Thrampoulidis et al. 2015 (see also Theorem 1 in the same reference). As explained there, it is a consequence of the main result of Gordon (1985), known as Gordon's Theorem.
Theorem 7 (Thrampoulidis et al. 2015; Gordon 1985). Let $Z: n \times d$ be a matrix with i.i.d. $\mathcal{N}(0,1)$ entries and suppose $G \sim \mathcal{N}\left(0, I_{n}\right)$ and $H \sim \mathcal{N}\left(0, I_{d}\right)$ are independent of Z and each other. Let S_{w}, S_{u} be compact sets and $\psi: S_{w} \times S_{u} \rightarrow \mathbb{R}$ be an arbitrary continuous function. Define the Primary Optimization (PO) problem

$$
\begin{equation*}
\Phi(Z):=\min _{w \in S_{w}} \max _{u \in S_{u}}\langle u, Z w\rangle+\psi(w, u) \tag{37}
\end{equation*}
$$

and the Auxiliary Optimization (AO) problem

$$
\begin{equation*}
\phi(G, H):=\min _{w \in S_{w}} \max _{u \in S_{u}}\|w\|_{2}\langle G, u\rangle+\|u\|_{2}\langle H, w\rangle+\psi(w, u) . \tag{38}
\end{equation*}
$$

Under these assumptions, $\operatorname{Pr}(\Phi(Z)<c) \leq 2 \operatorname{Pr}(\phi(G, H) \leq c)$ for any $c \in \mathbb{R}$.
Furthermore, if we suppose that S_{w}, S_{u} are convex sets and $\psi(w, u)$ is convex in w and concave in u, then $\operatorname{Pr}(\Phi(Z)>c) \leq 2 \operatorname{Pr}(\phi(G, H) \geq c)$.

GMT is an extremely useful tool because it allows us to convert a problem involving a random matrix into a problem involving only two random vectors. In our analysis, we will make use of a slightly more general version of Theorem 7, introduced by Koehler et al. (2021), to include additional variables which only affect the deterministic term in the minmax problem.
Theorem 8 (Variant of GMT). Let $Z: n \times d$ be a matrix with i.i.d. $\mathcal{N}(0,1)$ entries and suppose $G \sim \mathcal{N}\left(0, I_{n}\right)$ and $H \sim \mathcal{N}\left(0, I_{d}\right)$ are independent of Z and each other. Let S_{W}, S_{U} be compact sets in $\mathbb{R}^{d} \times \mathbb{R}^{d^{\prime}}$ and $\mathbb{R}^{n} \times \mathbb{R}^{n^{\prime}}$ respectively, and let $\psi: S_{W} \times S_{U} \rightarrow \mathbb{R}$ be an arbitrary continuous function. Define the Primary Optimization (PO) problem

$$
\begin{equation*}
\Phi(Z):=\min _{\left(w, w^{\prime}\right) \in S_{W}} \max _{\left(u, u^{\prime}\right) \in S_{U}}\langle u, Z w\rangle+\psi\left(\left(w, w^{\prime}\right),\left(u, u^{\prime}\right)\right) \tag{39}
\end{equation*}
$$

Under these assumptions, $\operatorname{Pr}(\Phi(Z)<c) \leq 2 \operatorname{Pr}(\phi(G, H) \leq c)$ for any $c \in \mathbb{R}$.

Theorem 8 requires S_{W} and S_{U} to be compact. However, we can usually get around the compactness requirement by a truncation argument.
Lemma 1 (Zhou et al. 2022, Lemma 6). Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be an arbitrary function and $\mathcal{S}_{r}^{d}=\{x \in$ $\left.\mathbb{R}^{d}:\|x\|_{2} \leq r\right\}$, then for any set \mathcal{K}, it holds that

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \sup _{w \in \mathcal{K} \cap \mathcal{S}_{r}^{d}} f(w)=\sup _{w \in \mathcal{K}} f(w) . \tag{41}
\end{equation*}
$$

If f is a random function, then for any $t \in \mathbb{R}$

$$
\begin{equation*}
\operatorname{Pr}\left(\sup _{w \in \mathcal{K}} f(w)>t\right)=\lim _{r \rightarrow \infty} \operatorname{Pr}\left(\sup _{w \in \mathcal{K} \cap \mathcal{S}_{r}^{d}} f(w)>t\right) . \tag{42}
\end{equation*}
$$

Lemma 2 (Zhou et al. 2022, Lemma 7). Let \mathcal{K} be a compact set and f,g be continuous real-valued functions on \mathbb{R}^{d}. Then it holds that

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \sup _{w \in \mathcal{K}} \inf _{0 \leq \lambda \leq r} \lambda f(w)+g(w)=\sup _{w \in \mathcal{K}: f(w) \geq 0} g(w) . \tag{43}
\end{equation*}
$$

If f and g are random functions, then for any $t \in \mathbb{R}$

$$
\begin{equation*}
\operatorname{Pr}\left(\sup _{w \in \mathcal{K}: f(w) \geq 0} g(w) \geq t\right)=\lim _{r \rightarrow \infty} \operatorname{Pr}\left(\sup _{w \in \mathcal{K}} \inf _{0 \leq \lambda \leq r} \lambda f(w)+g(w) \geq t\right) . \tag{44}
\end{equation*}
$$

Concentration inequalities. Let $\sigma_{\min }(A)$ denote the minimum singular value of an arbitrary matrix A, and $\sigma_{\max }$ the maximum singular value. We use $\|A\|_{o p}=\sigma_{\max }(A)$ to denote the operator norm of matrix A. The following concentration results for Gaussian vector and matrix are standard.
Lemma 3 (Special case of Theorem 3.1.1 of Vershynin 2018). Suppose that $Z \sim \mathcal{N}\left(0, I_{n}\right)$. Then

$$
\begin{equation*}
\operatorname{Pr}\left(\left|\|Z\|_{2}-\sqrt{n}\right| \geq t\right) \leq 4 e^{-t^{2} / 4} \tag{45}
\end{equation*}
$$

Lemma 4 (Koehler et al. 2021, Lemma 10). For any covariance matrix Σ and $H \sim \mathcal{N}\left(0, I_{d}\right)$, with probability at least $1-\delta$, it holds that

$$
\begin{equation*}
1-\frac{\left\|\Sigma^{1 / 2} H\right\|_{2}^{2}}{\operatorname{Tr}(\Sigma)} \lesssim \frac{\log (4 / \delta)}{\sqrt{R(\Sigma)}} \tag{46}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\Sigma H\|_{2}^{2} \lesssim \log (4 / \delta) \operatorname{Tr}\left(\Sigma^{2}\right) . \tag{47}
\end{equation*}
$$

Therefore, provided that $R(\Sigma) \gtrsim \log (4 / \delta)^{2}$, it holds that

$$
\begin{equation*}
\left(\frac{\|\Sigma H\|_{2}}{\left\|\Sigma^{1 / 2} H\right\|_{2}}\right)^{2} \lesssim \log (4 / \delta) \frac{\operatorname{Tr}\left(\Sigma^{2}\right)}{\operatorname{Tr}(\Sigma)} \tag{48}
\end{equation*}
$$

Theorem 9 (Vershynin 2010, Corollary 5.35). Let $n, N \in \mathbb{N}$. Let $A \in \mathbb{R}^{N \times n}$ be a random matrix with entries i.i.d. $\mathcal{N}(0,1)$. Then for any $t>0$, it holds with probability at least $1-2 \exp \left(-t^{2} / 2\right)$ that

$$
\begin{equation*}
\sqrt{N}-\sqrt{n}-t \leq \sigma_{\min }(A) \leq \sigma_{\max }(A) \leq \sqrt{N}+\sqrt{n}+t \tag{49}
\end{equation*}
$$

Conditional Distribution of Gaussian. To handle arbitrary multi-index conditional distributions of y given by assumption (B), we will apply a conditioning argument. After conditioning on $W^{T} x$ and ξ, the response y is no longer random. Importantly, the conditional distribution of x remains Gaussian (though with a different mean and covariance) and so we can still apply GMT. In the lemma below, $Z \in \mathbb{R}^{n \times d}$ is a random matrix with i.i.d. $\mathcal{N}(0,1)$ entries and $X=Z \Sigma^{1 / 2}$.
Lemma 5 (Zhou et al. 2022, Lemma 4). Fix any integer $k<d$ and any k vectors $w_{1}^{*}, \ldots, w_{k}^{*}$ in \mathbb{R}^{d} such that $\Sigma^{1 / 2} w_{1}^{*}, \ldots, \Sigma^{1 / 2} w_{k}^{*}$ are orthonormal. Denoting

$$
\begin{equation*}
P=I_{d}-\sum_{i=1}^{k}\left(\Sigma^{1 / 2} w_{i}^{*}\right)\left(\Sigma^{1 / 2} w_{i}^{*}\right)^{T} \tag{50}
\end{equation*}
$$

the distribution of X conditional on $X w_{1}^{*}=\eta_{1}, \ldots, X w_{k}^{*}=\eta_{k}$ is the same as that of

$$
\begin{equation*}
\sum_{i=1}^{k} \eta_{i}\left(\Sigma w_{i}^{*}\right)^{T}+Z P \Sigma^{1 / 2} \tag{51}
\end{equation*}
$$

B. 3 Vapnik-Chervonenkis (VC) theory

By the conditioning step mentioned above, we will separate x into a low-dimensional component $W^{T} x$ and the independent component $Q^{T} x$. Concentration results for the low-dimensional component can be easily established using VC theory. As mentioned in Zhou et al. 2022, low-dimensional concentration can be established using alternative results (e.g., Vapnik 1982; Panchenko 2002; Panchenko 2003; Mendelson 2017).

Recall the following definition of VC-dimension from Shalev-Shwartz and Ben-David (2014).
Definition 4. Let \mathcal{H} be a class of functions from \mathcal{X} to $\{0,1\}$ and let $C=\left\{c_{1}, \ldots, c_{m}\right\} \subset \mathcal{X}$. The restriction of \mathcal{H} to C is

$$
\mathcal{H}_{C}=\left\{\left(h\left(c_{1}\right), \ldots, h\left(c_{m}\right)\right): h \in \mathcal{H}\right\} .
$$

A hypothesis class \mathcal{H} shatters a finite set $C \subset \mathcal{X}$ if $\left|\mathcal{H}_{C}\right|=2^{|C|}$. The VC-dimension of \mathcal{H} is the maximal size of a set that can be shattered by \mathcal{H}. If \mathcal{H} can shatter sets of arbitrary large size, we say \mathcal{H} has infinite VC-dimension.

Also, we have the following well-known result for the class of nonhomogenous halfspaces in \mathbb{R}^{d} (Theorem 9.3 of Shalev-Shwartz and Ben-David (2014)), and the result on VC-dimension of the union of two hypothesis classes (Lemma 3.2.3 of Blumer et al. (1989)):
Theorem 10. The class $\left\{x \mapsto \operatorname{sign}(\langle w, x\rangle+b): w \in \mathbb{R}^{d}, b \in \mathbb{R}\right\}$ has VC-dimension $d+1$.
Theorem 11. Let \mathcal{H} a hypothesis classes of finite VC-dimension $d \geq 1$. Let $\mathcal{H}_{2}:=\left\{\max \left(h_{1}, h_{2}\right)\right.$: $\left.h_{1}, h_{2} \in \mathcal{H}\right\}$ and $\mathcal{H}_{3}:=\left\{\min \left(h_{1}, h_{2}\right): h_{1}, h_{2} \in \mathcal{H}\right\}$. Then, both the VC-dimension of \mathcal{H}_{2} and the $V C$-dimension of \mathcal{H}_{3} are $O(d)$.

By combining Theorem 10 and 11, we can easily verify the VC assumption in Corollary 1 for the phase retrieval loss $f(\hat{y}, y)=(|\hat{y}|-y)^{2}$. Similar results can be proven for ReLU regression. To verify the VC assumption for single-index neural nets in Corollary 2, we can use the following result (equation 2 of Bartlett et al. (2019)):
Theorem 12. The VC-dimension of a neural network with piecewise linear activation function, W parameters, and L layers has VC-dimension $O(W L \log W)$.

We can easily establish low-dimensional concentration due to the following result:
Theorem 13 (Vapnik 1982, Special case of Assertion 4 in Chapter 7.8; see also Theorem 7.6). Suppose that the loss function $l: \mathcal{Z} \times \Theta \rightarrow \mathbb{R}_{\geq 0}$ satisfies
(i) for every $\theta \in \Theta$, the function $l(\cdot, \theta)$ is measurable with respect to the first argument
(ii) the class of functions $\{z \mapsto \mathbb{1}\{l(z, \theta)>t\}:(\theta, t) \in \Theta \times \mathbb{R}\}$ has VC-dimension at most h and the distribution \mathcal{D} over \mathcal{Z} satisfies for every $\theta \in \Theta$

$$
\begin{equation*}
\frac{\mathbb{E}_{z \sim \mathcal{D}}\left[l(z, \theta)^{4}\right]^{1 / 4}}{\mathbb{E}_{z \sim \mathcal{D}}[l(z, \theta)]} \leq \tau \tag{52}
\end{equation*}
$$

then for any $n>h$, with probability at least $1-\delta$ over the choice of $\left(z_{1}, \ldots, z_{n}\right) \sim \mathcal{D}^{n}$, it holds uniformly over all $\theta \in \Theta$ that

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} l\left(z_{i}, \theta\right) \geq\left(1-8 \tau \sqrt{\frac{h(\log (2 n / h)+1)+\log (12 / \delta)}{n}}\right) \mathbb{E}_{z \sim \mathcal{D}}[l(z, \theta)] \tag{53}
\end{equation*}
$$

C Proof of Theorem 6

It is clear that Theorem 1 is a special case of Theorem 6 . Therefore, we will prove the more general result here.

Notation. Following the tradition in statistics, we denote $X=\left(x_{1}, \ldots, x_{n}\right)^{T} \in \mathbb{R}^{n \times d}$ as the design matrix. In the proof section, we slightly abuse the notation of η_{i} to mean $X w_{i}^{*}$ and ξ to mean the n-dimensional random vector whose i-th component satisfies $y_{i}=g\left(\eta_{1, i}, \ldots, \eta_{k, i}, \xi_{i}\right)$. We will write $X=Z \Sigma^{1 / 2}$ where Z is a random matrix with i.i.d. standard normal entries if $\mu=0$.

Throughout this section, we can first assume $\mu=0$ in Assumption (A) without loss of generality because if we define $\tilde{f}: \mathbb{R} \times \mathcal{Y} \times \Theta \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\tilde{f}(\hat{y}, y, \theta):=f(\hat{y}+\langle w(\theta), \mu\rangle, y, \theta) \tag{54}
\end{equation*}
$$

then by definition, it holds that

$$
f(\langle w(\theta), x\rangle, y, \theta)=\tilde{f}(\langle w(\theta), x-\mu\rangle, y, \theta)
$$

and so we can apply the theory on \tilde{f} first and then translate to the problem on f. Similarly, we can also assume $\Sigma^{1 / 2} w_{1}^{*}, \ldots, \Sigma^{1 / 2} w_{k}^{*}$ are orthonormal without loss of generality. This is because we can denote $W \in \mathbb{R}^{d \times k}$ by $W=\left[w_{1}^{*}, \ldots, w_{k}^{*}\right]$ and let $\tilde{W}=W\left(W^{T} \Sigma W\right)^{-1 / 2}$. By definition, it holds that $\tilde{W}^{T} \Sigma \tilde{W}=I$ and so the columns of $\tilde{W}=\left[\tilde{w}_{1}^{*}, \ldots, \tilde{w}_{k}^{*}\right]$ satisfy $\Sigma^{1 / 2} \tilde{w}_{1}^{*}, \ldots, \Sigma^{1 / 2} \tilde{w}_{k}^{*}$ are orthonormal. If we define $\tilde{g}: \mathbb{R}^{k+1} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\tilde{g}\left(\eta_{1}, \ldots, \eta_{k}, \xi\right)=g\left(\left[\eta_{1}, \ldots, \eta_{k}\right]\left(W^{T} \Sigma W\right)^{1 / 2}+\mu^{T} W, \xi\right) \tag{55}
\end{equation*}
$$

then $y=\tilde{g}\left(x^{T} \tilde{W}, \xi\right)$ and so we can apply the theory on \tilde{g}.
We will write the generalization problem as a Primary Optimization problem in Theorem 8. For generality, we will let F be any deterministic function and then choose it in the end.
Lemma 6. Fix an arbitrary set $\Theta \subseteq \mathbb{R}^{p}$ and let $F: \Theta \rightarrow \mathbb{R}$ be any deterministic and continuous function. Consider dataset (X, Y) drawn i.i.d. from the data distribution \mathcal{D} according to (A) and (B) with $\mu=0$ and orthonormal $\Sigma^{1 / 2} w_{1}^{*}, \ldots, \Sigma^{1 / 2} w_{k}^{*}$. Then conditioned on $X w_{1}^{*}=\eta_{1}, \ldots, X w_{k}^{*}=\eta_{k}$ and ξ, if we define

$$
\begin{equation*}
\Phi:=\sup _{\substack{(w, u, \theta) \in \mathbb{R}^{d} \times \mathbb{R}^{n} \times \Theta \\ w=P \Sigma^{1 / 2} w(\theta)}} \inf _{\lambda \in \mathbb{R}^{n}}\langle\lambda, Z w\rangle+\psi\left(u, \theta, \lambda \mid \eta_{1}, \ldots, \eta_{k}, \xi\right) \tag{56}
\end{equation*}
$$

where P is defined in (50) and ψ is a deterministic and continuous function given by

$$
\begin{align*}
\psi\left(u, \theta, \lambda \mid \eta_{1}, \ldots, \eta_{k}, \xi\right)=F & (\theta)-\frac{1}{n} \sum_{i=1}^{n} f\left(u_{i}, g\left(\eta_{1, i}, \ldots, \eta_{k, i}, \xi_{i}\right), \theta\right) \\
& +\left\langle\lambda,\left(\sum_{i=1}^{k} \eta_{i}\left(\Sigma w_{i}^{*}\right)^{T}\right) w(\theta)-u\right\rangle \tag{57}
\end{align*}
$$

then it holds that for any $t \in \mathbb{R}$, we have

$$
\begin{equation*}
\operatorname{Pr}\left(\sup _{\theta \in \Theta} F(\theta)-\hat{L}(\theta)>t \mid \eta_{1}, \ldots, \eta_{k}, \xi\right)=\operatorname{Pr}(\Phi>t) \tag{58}
\end{equation*}
$$

Proof. By introducing a variable $u=X w(\theta)$, we have

$$
\begin{aligned}
\sup _{\theta \in \Theta} F(\theta)-\hat{L}(\theta) & =\sup _{\theta \in \Theta} F(\theta)-\frac{1}{n} \sum_{i=1}^{n} f\left(\left\langle w(\theta), x_{i}\right\rangle, y_{i}, \theta\right) \\
& =\sup _{\theta \in \Theta, u \in \mathbb{R}^{n}} \inf _{\lambda \in \mathbb{R}^{n}}\langle\lambda, X w(\theta)-u\rangle+F(\theta)-\frac{1}{n} \sum_{i=1}^{n} f\left(u_{i}, y_{i}, \theta\right) .
\end{aligned}
$$

648 Conditioned on $X w_{1}^{*}=\eta_{1}, \ldots, X w_{k}^{*}=\eta_{k}$ and ξ, the above is only random in X by our multi-index

$$
\begin{aligned}
& \sup _{\theta \in \Theta, u \in \mathbb{R}^{n}} \inf _{\lambda \in \mathbb{R}^{n}}\left\langle\lambda,\left(\sum_{i=1}^{k} \eta_{i}\left(\Sigma w_{i}^{*}\right)^{T}+Z P \Sigma^{1 / 2}\right) w(\theta)-u\right\rangle+F(\theta)-\frac{1}{n} \sum_{i=1}^{n} f\left(u_{i}, y_{i}, \theta\right) \\
= & \sup _{\theta \in \Theta, u \in \mathbb{R}^{n}} \inf _{\lambda \in \mathbb{R}^{n}}\left\langle\lambda,\left(Z P \Sigma^{1 / 2}\right) w(\theta)\right\rangle+\psi\left(u, \theta, \lambda \mid \eta_{1}, \ldots, \eta_{k}, \xi\right) \\
= & \sup _{\substack{(w, u, \theta) \in \mathbb{R}^{d} \times \mathbb{R}^{n} \times \Theta \\
w=P \Sigma^{1 / 2} w(\theta)}} \inf _{\lambda \in \mathbb{R}^{n}}\langle\lambda, Z w\rangle+\psi\left(u, \theta, \lambda \mid \eta_{1}, \ldots, \eta_{k}, \xi\right) \\
= & \Phi .
\end{aligned}
$$

The function ψ is continuous because we require F, f and w to be continuous in the definitions.

Lemma 7. In the same setting as Lemma 6, define the auxiliary problem as

$$
\begin{equation*}
\Psi:=\sup _{\substack{(u, \theta) \in \mathbb{R}^{n} \times \Theta}}^{\left\langle H, P \Sigma^{1 / 2} w(\theta)\right\rangle \geq\| \| P \Sigma^{1 / 2} w(\theta)\left\|_{2} G+\sum_{i=1}^{k}\left\langle w(\theta), \Sigma w_{i}^{*}\right\rangle \eta_{i}-u\right\|_{2}} \left\lvert\, ~ F(\theta)-\frac{1}{n} \sum_{i=1}^{n} f\left(u_{i}, y_{i}, \theta\right)\right. \tag{59}
\end{equation*}
$$

654 then for any $t \in \mathbb{R}$, it holds that

$$
\begin{equation*}
\operatorname{Pr}\left(\sup _{\theta \in \mathcal{K}} F(\theta)-\hat{L}(\theta)>t\right) \leq 2 \operatorname{Pr}(\Psi \geq t) \tag{60}
\end{equation*}
$$

$$
\begin{align*}
\Phi_{r} & :=\sup _{(w, u, \theta) \in \mathcal{S}_{r}} \inf _{\lambda \in \mathbb{R}^{n}}\langle\lambda, Z w\rangle+\psi\left(u, \theta, \lambda \mid \eta_{1}, \ldots, \eta_{k}, \xi\right) \tag{61}\\
\Phi_{r, s} & :=\sup _{(w, u, \theta) \in \mathcal{S}_{r}\|\lambda\|_{2} \leq s}\langle\lambda, Z w\rangle+\psi\left(u, \theta, \lambda \mid \eta_{1}, \ldots, \eta_{k}, \xi\right) . \tag{62}
\end{align*}
$$

By definition, we have $\Phi_{r} \leq \Phi_{r, s}$ and so

$$
\operatorname{Pr}\left(\Phi_{r}>t\right) \leq \operatorname{Pr}\left(\Phi_{r, s}>t\right)
$$

The corresponding auxiliary problems are

$$
\left.\begin{array}{rl}
\Psi_{r, s}:= & \sup _{(w, u, \theta) \in \mathcal{S}_{r}} \inf _{\|\lambda\|_{2} \leq s}\|\lambda\|_{2}\langle H, w\rangle+\|w\|_{2}\langle G, \lambda\rangle+\psi\left(u, \theta, \lambda \mid \eta_{1}, \ldots, \eta_{k}, \xi\right) \\
= & \sup _{(w, u, \theta) \in \mathcal{S}_{r}} \inf _{n}\|\lambda\|_{2} \leq s
\end{array}\|\lambda\|_{2}\langle H, w\rangle+\left\langle\lambda,\|w\|_{2} G+\sum_{i=1}^{k} \eta_{i}\left\langle w(\theta), \Sigma w_{i}^{*}\right\rangle-u\right\rangle\right)
$$

and the limit of $s \rightarrow \infty$:

$$
\Psi_{r}:=\sup _{\langle H, w\rangle \geq\| \| w\left\|_{2} G+\sum_{i=1}^{k} \eta_{i}\left\langle w(\theta), \Sigma w_{i}^{*}\right\rangle-u\right\|_{2}} F(\theta)-\frac{1}{n} \sum_{i=1}^{n} f\left(u_{i}, g\left(\eta_{1, i}, \ldots, \eta_{k, i}, \xi_{i}\right), \theta\right)
$$

By definition, it holds that $\Psi_{r} \leq \Psi$ and so

$$
\operatorname{Pr}\left(\Psi_{r} \geq t\right) \leq \operatorname{Pr}(\Psi \geq t)
$$

664
Thus, it holds that

$$
\begin{aligned}
\operatorname{Pr}(\Phi>t) & =\lim _{r \rightarrow \infty} \operatorname{Pr}\left(\Phi_{r}>t\right) & & \text { by Lemma 1 } \\
& \leq \lim _{r \rightarrow \infty} \lim _{s \rightarrow \infty} \operatorname{Pr}\left(\Phi_{r, s}>t\right) & & \\
& \leq 2 \lim _{r \rightarrow \infty} \lim _{s \rightarrow \infty} \operatorname{Pr}\left(\Psi_{r, s} \geq t\right) & & \text { by Theorem } 8 \\
& =2 \lim _{r \rightarrow \infty} \operatorname{Pr}\left(\Psi_{r} \geq t\right) & & \text { by Lemma } 2 \\
& \leq 2 \operatorname{Pr}(\Psi \geq t) . & &
\end{aligned}
$$

The proof concludes by applying Lemma 6 and the tower law.

The following two simple lemmas will be useful to analyze the auxiliary problem.
Lemma 8. For $a, b, H>0$, we have

$$
\sup _{\lambda \geq 0}-\lambda a+\frac{\lambda}{H+\lambda} b=(\sqrt{b}-\sqrt{H a})_{+}^{2} .
$$

Proof. Observe that

$$
\sup _{\lambda \geq 0}-\lambda a+\frac{\lambda}{H+\lambda} b=b-\inf _{\lambda \geq 0} \lambda a+\frac{H}{H+\lambda} b .
$$

Define $f(\lambda)=\lambda a+\frac{H}{H+\lambda} b$, then

$$
\begin{aligned}
f^{\prime}(\lambda)=a-\frac{H b}{(H+\lambda)^{2}} \leq 0 & \Longleftrightarrow(H+\lambda)^{2} \leq \frac{H b}{a} \\
& \Longleftrightarrow-\sqrt{\frac{H b}{a}}-H \leq \lambda \leq \sqrt{\frac{H b}{a}}-H
\end{aligned}
$$

Since we require $\lambda \geq 0$, we only need to consider whether $\sqrt{\frac{H b}{a}}-H \geq 0 \Longleftrightarrow b \geq H a$. If $b<H a$, the infimum is attained at $\lambda=0$. Otherwise, the infimum is attained at $\lambda^{*}=\sqrt{\frac{H b}{a}}-H$, at which point

$$
f\left(\lambda^{*}\right)=2 \sqrt{H b a}-H a .
$$

Plugging in, we see that the expression is equivalent to $(\sqrt{b}-\sqrt{H a})_{+}^{2}$ in both cases.
Lemma 9. For $a, b \geq 0$, we have

$$
\sup _{\lambda \geq 0}-\lambda a-\frac{b}{\lambda}=-\sqrt{4 a b}
$$

Proof. Define $f(\lambda)=-\lambda a-\frac{b}{\lambda}$, then

$$
f^{\prime}(\lambda)=-a+\frac{b}{\lambda^{2}} \geq 0 \Longleftrightarrow \frac{b}{a} \geq \lambda^{2}
$$

and so in the domain $\lambda \geq 0$, the optimum is attained at $\lambda^{*}=\sqrt{b / a}$ at which point $f\left(\lambda^{*}\right)=$ $-2 \sqrt{a b}$.

We are now ready to analyze the auxiliary problem.
Lemma 10. In the same setting as in Lemma 6, assume that for every $\delta>0$
(A) $C_{\delta}: \mathbb{R}^{d} \rightarrow[0, \infty]$ is a continuous function such that with probability at least $1-\delta / 4$ over $H \sim \mathcal{N}\left(0, I_{d}\right)$, uniformly over all $w \in \mathbb{R}^{d}$, we have that

$$
\begin{equation*}
\left\langle\Sigma^{1 / 2} P H, w\right\rangle \leq C_{\delta}(w) \tag{63}
\end{equation*}
$$

(B) ϵ_{δ} is a positive real number such that with probability at least $1-\delta / 4 \operatorname{over}\left\{\left(\tilde{x}_{i}, \tilde{y}_{i}\right)\right\}_{i=1}^{n}$ drawn i.i.d. from \tilde{D}, it holds uniformly over all $\theta \in \Theta$ that

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} f\left(\left\langle\phi(w(\theta)), \tilde{x}_{i}\right\rangle, \tilde{y}_{i}, \theta\right) \geq \frac{1}{1+\epsilon_{\delta}} \mathbb{E}_{(\tilde{x}, \tilde{y}) \sim \tilde{D}}[f(\langle\phi(w(\theta)), \tilde{x}\rangle, \tilde{y}, \theta)] \tag{64}
\end{equation*}
$$

where the distribution \tilde{D} over (\tilde{x}, \tilde{y}) is given by

$$
\tilde{x} \sim \mathcal{N}\left(0, I_{k+1}\right), \quad \tilde{\xi} \sim \mathcal{D}_{\xi}, \quad \tilde{y}=g\left(\tilde{x}_{1}, \ldots, \tilde{x}_{k}, \tilde{\xi}\right)
$$

and the mapping $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k+1}$ is defined as

$$
\phi(w)=\left(\left\langle w, \Sigma w_{1}^{*}\right\rangle, \ldots,\left\langle w, \Sigma w_{k}^{*}\right\rangle,\left\|P \Sigma^{1 / 2} w\right\|_{2}\right)^{T}
$$

Next, we will lower bound the infimum term by weak duality to obtain upper bound on Ψ :

$$
\begin{aligned}
& \inf _{\substack{u \in \mathbb{R}^{n} \\
\|u\|_{2} \leq\left\langle H, P \Sigma^{1 / 2} w(\theta)\right\rangle}} \sum_{i=1}^{n} f\left(u_{i}+G_{i}\left\|P \Sigma^{1 / 2} w(\theta)\right\|_{2}+\sum_{l=1}^{k}\left\langle w(\theta), \Sigma w_{l}^{*}\right\rangle \eta_{l, i}, y_{i}, \theta\right) \\
& =\inf _{u \in \mathbb{R}^{n}} \sup _{\lambda \geq 0} \lambda\left(\|u\|_{2}^{2}-\left\langle\Sigma^{1 / 2} P H, w(\theta)\right\rangle^{2}\right) \\
& +\sum_{i=1}^{n} f\left(u_{i}+G_{i}\left\|P \Sigma^{1 / 2} w(\theta)\right\|_{2}+\sum_{l=1}^{k}\left\langle w(\theta), \Sigma w_{l}^{*}\right\rangle \eta_{l, i}, y_{i}, \theta\right) \\
& \geq \sup _{\lambda \geq 0}-\lambda\left\langle\Sigma^{1 / 2} P H, w(\theta)\right\rangle^{2} \\
& +\inf _{u \in \mathbb{R}^{n}} \sum_{i=1}^{n} f\left(u_{i}+G_{i}\left\|P \Sigma^{1 / 2} w(\theta)\right\|_{2}+\sum_{l=1}^{k}\left\langle w(\theta), \Sigma w_{l}^{*}\right\rangle \eta_{l, i}, y_{i}, \theta\right)+\lambda\|u\|_{2}^{2} \\
& =\sup _{\lambda \geq 0}-\lambda\left\langle\Sigma^{1 / 2} P H, w(\theta)\right\rangle^{2} \\
& +\sum_{i=1}^{n} \inf _{u_{i} \in \mathbb{R}} f\left(u_{i}+G_{i}\left\|P \Sigma^{1 / 2} w(\theta)\right\|_{2}+\sum_{l=1}^{k}\left\langle w(\theta), \Sigma w_{l}^{*}\right\rangle \eta_{l, i}, y_{i}, \theta\right)+\lambda u_{i}^{2} \\
& =\sup _{\lambda \geq 0}-\lambda\left\langle\Sigma^{1 / 2} P H, w(\theta)\right\rangle^{2}+\sum_{i=1}^{n} f_{\lambda}\left(G_{i}\left\|P \Sigma^{1 / 2} w(\theta)\right\|_{2}+\sum_{l=1}^{k}\left\langle w(\theta), \Sigma w_{l}^{*}\right\rangle \eta_{l, i}, y_{i}, \theta\right) .
\end{aligned}
$$

Then the following is true:
(i) suppose for some choice of M_{θ} that is continuous in θ, it holds for every $y \in \mathcal{Y}$ and $\theta \in \Theta$, f is M_{θ}-Lipschitz with respect to the first argument, then with probability at least $1-\delta$, uniformly over all $\theta \in \Theta$, we have

$$
L(\theta) \leq\left(1+\epsilon_{\delta}\right)\left(\hat{L}(\theta)+M_{\theta} \sqrt{\frac{C_{\delta}(w(\theta))^{2}}{n}}\right)
$$

(ii) suppose for some choice of H_{θ} that is continuous in θ, it holds for every $y \in \mathcal{Y}$ and $\theta \in \Theta$, f is non-negative and \sqrt{f} is $\sqrt{H_{\theta}}$-Lipschitz with respect to the first argument, then with probability at least $1-\delta$, uniformly over all $\theta \in \Theta$, we have

$$
L(\theta) \leq\left(1+\epsilon_{\delta}\right)\left(\sqrt{\hat{L}(\theta)}+\sqrt{\frac{H_{\theta} C_{\delta}(w(\theta))^{2}}{n}}\right)^{2}
$$

Proof. First, let's simplify the auxiliary problem (59). Changing variables to subtract the quantity $G_{i}\left\|P \Sigma^{1 / 2} w(\theta)\right\|_{2}+\sum_{l=1}^{k}\left\langle w(\theta), \Sigma w_{l}^{*}\right\rangle \eta_{l, i}$ from each of the former u_{i}, we have that

$$
\Psi=\sup _{\substack{(u, \theta) \in \mathbb{R}^{n} \times \Theta \\\|u\|_{2} \leq\left\langle H, P \Sigma^{1 / 2} w(\theta)\right\rangle}} F(\theta)-\frac{1}{n} \sum_{i=1}^{n} f\left(u_{i}+G_{i}\left\|P \Sigma^{1 / 2} w(\theta)\right\|_{2}+\sum_{l=1}^{k}\left\langle w(\theta), \Sigma w_{l}^{*}\right\rangle \eta_{l, i}, y_{i}, \theta\right)
$$

and separating the optimization problem in u and θ, we obtain

$$
\begin{aligned}
\Psi=\sup _{\theta \in \Theta} & F(\theta) \\
& -\frac{1}{n} \inf _{\substack{u \in \mathbb{R}^{n} i \\
\|u\|_{2} \leq\left\langle H, P \Sigma^{1 / 2} w(\theta)\right\rangle}} \sum_{i=1}^{n} f\left(u_{i}+G_{i}\left\|P \Sigma^{1 / 2} w(\theta)\right\|_{2}+\sum_{l=1}^{k}\left\langle w(\theta), \Sigma w_{l}^{*}\right\rangle \eta_{l, i}, y_{i}, \theta\right) .
\end{aligned}
$$

Suppose that for every $y \in \mathcal{Y}$ and $\theta \in \Theta, f$ is M_{θ}-Lipschitz with respect to the first argument, then by Proposition 2, the above can be further lower bounded by the following quantity:

$$
\sup _{\lambda \geq 0}-\lambda\left\langle\Sigma^{1 / 2} P H, w(\theta)\right\rangle^{2}-\frac{n M_{\theta}^{2}}{4 \lambda}+\sum_{i=1}^{n} f\left(\sum_{l=1}^{k}\left\langle w(\theta), \Sigma w_{l}^{*}\right\rangle \eta_{l, i}+\left\|P \Sigma^{1 / 2} w(\theta)\right\|_{2} G_{i}, y_{i}, \theta\right) .
$$

If \sqrt{f} is $\sqrt{H_{\theta}}$-Lipschitz, then by Lemma 8

$$
\begin{aligned}
\Psi & \leq \sup _{\theta \in \mathcal{K}} F(\theta)-\sup _{\lambda \geq 0}-\lambda \frac{C_{\delta}(w(\theta))^{2}}{n}+\frac{\lambda}{H_{\theta}+\lambda} \frac{1}{1+\epsilon_{\delta}} L(\theta) \\
& =\sup _{\theta \in \mathcal{K}} F(\theta)-\left(\sqrt{\frac{L(\theta)}{1+\epsilon_{\delta}}}-\sqrt{\frac{H_{\theta} C_{\delta}(w(\theta))^{2}}{n}}\right)^{2} .
\end{aligned}
$$

Consequently, by taking $F(\theta)=\left(\sqrt{\frac{L(\theta)}{1+\epsilon_{\delta}}}-\sqrt{\frac{H_{\theta} C_{\delta}(w(\theta))^{2}}{n}}\right)^{2}$ and Lemma 7, we have shown that with probability at least $1-\delta$, we have

$$
\sup _{\theta \in \mathcal{K}} F(\theta)-\hat{L}(\theta) \leq 0
$$

Rearranging, either we have

$$
\sqrt{\frac{L(\theta)}{1+\epsilon_{\delta}}}-\sqrt{\frac{H_{\theta} C_{\delta}(w(\theta))^{2}}{n}}<0 \Longrightarrow L(\theta)<\left(1+\epsilon_{\delta}\right) \frac{H_{\theta} C_{\delta}(w(\theta))^{2}}{n}
$$

or we have

$$
\begin{aligned}
\sqrt{\frac{L(\theta)}{1+\epsilon_{\delta}}}-\sqrt{\frac{H_{\theta} C_{\delta}(w(\theta))^{2}}{n}} \geq 0 & \Longrightarrow\left(\sqrt{\frac{L(\theta)}{1+\epsilon_{\delta}}}-\sqrt{\frac{H_{\theta} C_{\delta}(w(\theta))^{2}}{n}}\right)^{2} \leq \hat{L}(\theta) \\
& \Longrightarrow L(\theta) \leq\left(1+\epsilon_{\delta}\right)\left(\sqrt{\hat{L}(\theta)}+\sqrt{\frac{H_{\theta} C_{\delta}(w(\theta))^{2}}{n}}\right)^{2}
\end{aligned}
$$

In either case, the desired bound holds.
Finally, we are ready to prove Theorem 6. In the version below, we also provide uniform convergence guarantee (with sharp constant) for Lipschitz loss.
Theorem 14. Suppose that assumptions $(A),(B),(E)$ and (F) hold. For any $\delta \in(0,1)$, let C_{δ} : $\mathbb{R}^{d} \rightarrow[0, \infty]$ be a continuous function such that with probability at least $1-\delta / 4$ over $x \sim \mathcal{N}(0, \Sigma)$, uniformly over all $\theta \in \Theta$,

$$
\begin{equation*}
\left\langle w(\theta), Q^{T} x\right\rangle \leq C_{\delta}(w(\theta)) \tag{67}
\end{equation*}
$$

Then it holds that
(i) if for each $\theta \in \Theta$ and $y \in \mathcal{Y}, f$ is M_{θ}-Lipschitz with respect to the first argument and M_{θ} is continuous in θ, then with probability at least $1-\delta$, it holds that uniformly over all $\theta \in \Theta$, we have

$$
\begin{equation*}
(1-\epsilon) L(\theta) \leq \hat{L}(\theta)+M_{\theta} \sqrt{\frac{C_{\delta}(w(\theta))^{2}}{n}} \tag{68}
\end{equation*}
$$

(ii) if for each $\theta \in \Theta$ and $y \in \mathcal{Y}, f$ is non-negative and \sqrt{f} is $\sqrt{H_{\theta}}$-Lipschitz with respect to the first argument, and H_{θ} is continuous in θ, then with probability at least $1-\delta$, it holds that uniformly over all $\theta \in \Theta$, we have

$$
\begin{equation*}
(1-\epsilon) L(\theta) \leq\left(\sqrt{\hat{L}(\theta)}+\sqrt{\frac{H_{\theta} C_{\delta}(w(\theta))^{2}}{n}}\right)^{2} \tag{69}
\end{equation*}
$$

where $\epsilon=O\left(\tau \sqrt{\frac{h \log (n / h)+\log (1 / \delta)}{n}}\right)$.

Proof. We apply the reduction argument at the beginning of the appendix. Given \mathcal{D} that satisfies assumptions (A) and (B), we define $\left[\tilde{w}_{1}^{*}, \ldots, \tilde{w}_{k}^{*}\right]=\tilde{W}=W\left(W^{T} \Sigma W\right)^{-1 / 2}$ and \tilde{f}, \tilde{g} as in (54) and (55). For $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$ sampled independently from \mathcal{D}, we observe that the joint distribution of $\left(x_{i}-\mu, y_{i}\right)$ can also be described by \mathcal{D}^{\prime} as follows:
($\left.\mathrm{A}^{\prime}\right) x \sim \mathcal{N}(0, \Sigma)$
(B') $y=\tilde{g}\left(\eta_{1}, \ldots, \eta_{k}, \xi\right)$ where $\eta_{i}=\left\langle x, \tilde{w}_{i}\right\rangle$.
Indeed, we can check that

$$
\begin{aligned}
y & =g\left(x^{T} W, \xi\right) \\
& =g\left((x-\mu)^{T} \tilde{W}\left(W^{T} \Sigma W\right)^{1 / 2}+\mu^{T} W, \xi\right) \\
& =\tilde{g}\left((x-\mu)^{T} \tilde{W}, \xi\right) .
\end{aligned}
$$

Moreover, by construction, we have

$$
\begin{aligned}
\hat{L}(\theta) & =\frac{1}{n} \sum_{i=1}^{n} \tilde{f}\left(\left\langle w(\theta), x_{i}-\mu\right\rangle, y_{i}, \theta\right) \\
L(\theta) & =\mathbb{E}_{\mathcal{D}^{\prime}} \tilde{f}\left(\left\langle w(\theta), x_{i}\right\rangle, y_{i}, \theta\right)
\end{aligned}
$$

and \mathcal{D}^{\prime} satisfies assumptions (A) and (B) with $\mu=0$ and orthonormal $\Sigma^{1 / 2} \tilde{w}_{1}^{*}, \ldots, \Sigma^{1 / 2} \tilde{w}_{1}^{*}$ and falls into the setting in Lemma 6. We see that f being Lipschitz or square-root Lipschitz is equivalent to
\tilde{f} being Lipschitz or square-root Lipschitz. It remains to check assumptions (63) and (64) and then apply Lemma 10. Observe that

$$
\begin{align*}
\Sigma^{-1 / 2} P \Sigma^{1 / 2} & =\Sigma^{-1 / 2}\left(I_{d}-\Sigma^{1 / 2} \tilde{W} \tilde{W}^{T} \Sigma^{1 / 2}\right) \Sigma^{1 / 2} \\
& =I_{d}-\tilde{W} \tilde{W}^{T} \Sigma=I-W\left(W^{T} \Sigma W\right)^{-1} W^{T} \Sigma \tag{70}\\
& =Q
\end{align*}
$$

and so $\Sigma^{1 / 2} P=Q^{T} \Sigma^{1 / 2}$.
To check that (63) holds, observe that $\left\langle\Sigma^{1 / 2} P H, w\right\rangle$ has the same distribution as $\langle Q w, x\rangle$. To check that (64) holds, we will apply Theorem 13. Note that the joint distribution of $(\langle\phi(w(\theta)), \tilde{x}\rangle, \tilde{y})$ with $(\tilde{x}, \tilde{y}) \sim \tilde{\mathcal{D}}$ is exactly the same as $(\langle w(\theta), x\rangle, y)$ with $(x, y) \sim \mathcal{D}^{\prime}$ and so

$$
\frac{\mathbb{E}_{\tilde{\mathcal{D}}}\left[\tilde{f}(\langle\phi(w(\theta)), x\rangle, y, \theta)^{4}\right]^{1 / 4}}{\mathbb{E}_{\tilde{\mathcal{D}}}[\tilde{f}(\langle\phi(w(\theta)), x\rangle, y, \theta)]}=\frac{\mathbb{E}_{\mathcal{D}^{\prime}}\left[\tilde{f}(\langle w(\theta), x\rangle, y, \theta)^{4}\right]^{1 / 4}}{\mathbb{E}_{\mathcal{D}^{\prime}}[\tilde{f}(\langle w(\theta), x\rangle, y, \theta)]}=\frac{\mathbb{E}_{\mathcal{D}}\left[f(\langle w(\theta), x\rangle, y, \theta)^{4}\right]^{1 / 4}}{\mathbb{E}_{\mathcal{D}}[f(\langle w(\theta), x\rangle, y, \theta)]} .
$$

Therefore, the assumption (E) is equivalent to the hypercontractivity condition in Theorem 13. Note that $\{(x, y) \mapsto \mathbb{1}\{\tilde{f}(\langle\phi(w(\theta)), x\rangle, y, \theta)>t\}:(\theta, t) \in \Theta \times \mathbb{R}\}$ is a subclass of $\{(x, y) \mapsto$ $\left.\mathbb{1}\{f(\langle w, x\rangle+b, y, \theta)>t\}:(w, b, t, \theta) \in \mathbb{R}^{k+1} \times \mathbb{R} \times \mathbb{R} \times \Theta\right\}$. Therefore, by assumption (F), we can apply Theorem 13 and (64) holds.

D Norm Bounds

The following lemma is a version of Lemma 7 of Koehler et al. (2021) and follows straightforwardly from CGMT (Theorem 7), though it requires a slightly different truncation argument compared to the proof Theorem 6. For simplicity, we won't repeat the proof here and simply use it for our applications.

Lemma 11 (Koehler et al. 2021, Lemma 7). Let $Z: n \times d$ be a matrix with i.i.d. $\mathcal{N}(0,1)$ entries and suppose $G \sim \mathcal{N}\left(0, I_{n}\right)$ and $H \sim \mathcal{N}\left(0, I_{d}\right)$ are independent of Z and each other. Fix an arbitrary norm $\|\cdot\|$, any covariance matrix Σ, and any non-random vector $\xi \in \mathbb{R}^{n}$, consider the Primary Optimization (PO) problem:

$$
\begin{equation*}
\Phi:=\min _{\substack{w \in \mathbb{R}^{d}: \\ Z \Sigma^{1 / 2} w=\xi}}\|w\| \tag{71}
\end{equation*}
$$

and the Auxiliary Optimization (AO) problem:

$$
\begin{equation*}
\Psi:=\min _{\substack{w \in \mathbb{R}^{d}: \\\|G\| \Sigma^{1 / 2} w\left\|_{2}-\xi\right\|_{2} \leq\left\langle\Sigma^{1 / 2} H, w\right\rangle}}\|w\| . \tag{72}
\end{equation*}
$$

Then for any $t \in \mathbb{R}$, it holds that

$$
\begin{equation*}
\operatorname{Pr}(\Phi>t) \leq 2 \operatorname{Pr}(\phi \geq t) \tag{73}
\end{equation*}
$$

The next lemma analyzes the AO in Lemma 11. Our proof closely follows Lemma 8 of Koehler et al. 2021, but we don't make assumptions on ξ yet to allow more applications.

Lemma 12. Let $Z: n \times d$ be a matrix with i.i.d. $\mathcal{N}(0,1)$ entries. Fix any $\delta>0$, covariance matrix Σ and non-random vector $\xi \in \mathbb{R}^{n}$, then there exists $\epsilon \lesssim \log (1 / \delta)\left(\frac{1}{n}+\frac{1}{\sqrt{R(\Sigma)}}+\frac{n}{R(\Sigma)}\right)$ such that with probability at least $1-\delta$, it holds that

$$
\begin{equation*}
\min _{\substack{w \in \mathbb{R}^{d}: \\ Z \Sigma^{1 / 2} w=\xi}}\|w\|_{2}^{2} \leq(1+\epsilon) \frac{\|\xi\|_{2}^{2}}{\operatorname{Tr}(\Sigma)} \tag{74}
\end{equation*}
$$

Proof. By a union bound, there exists a constant $C>0$ such that the following events occur together with probability at least $1-\delta / 2$:

1. Since $\langle G, \xi\rangle \sim \mathcal{N}\left(0,\|\xi\|_{2}^{2}\right)$, by the standard Gaussian tail bound $\operatorname{Pr}(|Z| \geq t) \leq 2 e^{-t^{2} / 2}$, we have

$$
|\langle G, \xi\rangle| \leq\|\xi\|_{2} \sqrt{2 \log (32 / \delta)}
$$

2. Using subexponential Bernstein's inequality (Theorem 2.8 .1 of Vershynin (2018)), requiring $n=\Omega(\log (1 / \delta))$, we have

$$
\|G\|_{2}^{2} \leq 2 n
$$

3. Using the first part of Lemma 4, we have

$$
\left\|\Sigma^{1 / 2} H\right\|_{2}^{2} \geq \operatorname{Tr}(\Sigma)\left(1-C \frac{\log (32 / \delta)}{\sqrt{R(\Sigma)}}\right)
$$

4. Using the last part of Lemma 4 , requiring $R(\Sigma) \gtrsim \log (32 / \delta)^{2}$

$$
\frac{\|\Sigma H\|_{2}^{2}}{\left\|\Sigma^{1 / 2} H\right\|_{2}^{2}} \leq C \log (32 / \delta) \frac{\operatorname{Tr}\left(\Sigma^{2}\right)}{\operatorname{Tr}(\Sigma)}
$$

Therefore, by the AM-GM inequality, it holds that

$$
\begin{aligned}
\|G\| \Sigma^{1 / 2} w\left\|_{2}-\xi\right\|_{2}^{2} & =\|G\|_{2}^{2}\left\|\Sigma^{1 / 2} w\right\|_{2}^{2}+\|\xi\|_{2}^{2}-2\langle G, \xi\rangle\left\|\Sigma^{1 / 2} w\right\|_{2} \\
& \leq 2 n\left\|\Sigma^{1 / 2} w\right\|_{2}^{2}+\|\xi\|_{2}^{2}+2\|\xi\|_{2} \sqrt{2 \log (32 / \delta)}\left\|\Sigma^{1 / 2} w\right\|_{2} \\
& \leq 3 n\left\|\Sigma^{1 / 2} w\right\|_{2}^{2}+\left(1+\frac{2 \log (32 / \delta)}{n}\right)\|\xi\|_{2}^{2}
\end{aligned}
$$

To apply lemma 11, we will consider w of the form $w=\alpha \frac{\Sigma^{1 / 2} H}{\left\|\Sigma^{1 / 2} H\right\|_{2}}$ for some $\alpha>0$. Then we have

$$
\|G\| \Sigma^{1 / 2} w\left\|_{2}-\xi\right\|_{2}^{2} \leq 3 n C \log (32 / \delta) \frac{\operatorname{Tr}\left(\Sigma^{2}\right)}{\operatorname{Tr}(\Sigma)} \alpha^{2}+\left(1+\frac{2 \log (32 / \delta)}{n}\right)\|\xi\|_{2}^{2}
$$

and

$$
\left\langle\Sigma^{1 / 2} H, w\right\rangle^{2}=\alpha^{2}\left\|\Sigma^{1 / 2} H\right\|_{2}^{2} \geq \alpha^{2} \operatorname{Tr}(\Sigma)\left(1-C \frac{\log (32 / \delta)}{\sqrt{R(\Sigma)}}\right)
$$

So it suffices to choose α such that

$$
\begin{aligned}
\alpha^{2} & \geq \frac{\left(1+\frac{2 \log (32 / \delta)}{n}\right)\|\xi\|_{2}^{2}}{\operatorname{Tr}(\Sigma)\left(1-C \frac{\log (32 / \delta)}{\sqrt{R(\Sigma)}}\right)-3 n C \log (32 / \delta) \frac{\operatorname{Tr}\left(\Sigma^{2}\right)}{\operatorname{Tr}(\Sigma)}} \\
& =\frac{1+\frac{2 \log (32 / \delta)}{n}}{1-C \log (32 / \delta)\left(\frac{1}{\sqrt{R(\Sigma)}}+3 \frac{n}{R(\Sigma)}\right)} \frac{\|\xi\|_{2}^{2}}{\operatorname{Tr}(\Sigma)}
\end{aligned}
$$

and we are done.

A challenge for analyzing the minimal norm to interpolate is that the projection matrix Q is not necessarily an orthogonal projection. However, the following lemma suggests that if $\Sigma^{\perp}=Q^{T} \Sigma Q$ has high effective rank, then we can let R be the orthogonal projection matrix onto the image of Q and $R \Sigma R$ is approximately the same as Σ^{\perp} in terms of the quantities that are relevant to the norm analysis.
Lemma 13. Consider $Q=I-\sum_{i=1}^{k} w_{i}^{*}\left(w_{i}^{*}\right)^{T} \Sigma$ where $\Sigma^{1 / 2} w_{1}^{*}, \ldots, \Sigma^{1 / 2} w_{k}^{*}$ are orthonormal and we let R be the orthogonal projection matrix onto the image of Q. Then it holds that $\operatorname{rank}(R)=d-k$ and

$$
R \Sigma w_{i}^{*}=0 \quad \text { for any } i=1, \ldots, k
$$

Moreover, we have $Q R=R$ and $R Q=Q$, and so

$$
\begin{aligned}
\frac{1}{\operatorname{Tr}(R \Sigma R)} & \leq\left(1-\frac{k}{n}-\frac{n}{R\left(Q^{T \Sigma Q)}\right.}\right)^{-1} \frac{1}{\operatorname{Tr}\left(Q^{T \Sigma Q)}\right.} \\
\frac{n}{R(R \Sigma R)} & \leq\left(1-\frac{k}{n}-\frac{n}{R\left(Q^{T} \Sigma Q\right)}\right)^{-2} \frac{n}{R\left(Q^{T \Sigma Q)}\right.}
\end{aligned}
$$

Proof. It is obvious that $\operatorname{rank}(R)=\operatorname{rank}(Q)$ and by the rank-nullity theorem, it suffices to show the nullity of Q is k. To this end, we observe that

$$
\begin{aligned}
Q w=0 & \Longleftrightarrow \Sigma^{-1 / 2}\left(I-\sum_{i=1}^{k}\left(\Sigma^{1 / 2} w_{i}^{*}\right)\left(\Sigma^{1 / 2} w_{i}^{*}\right)^{T}\right) \Sigma^{1 / 2} w=0 \\
& \Longleftrightarrow\left(I-\sum_{i=1}^{k}\left(\Sigma^{1 / 2} w_{i}^{*}\right)\left(\Sigma^{1 / 2} w_{i}^{*}\right)^{T}\right) \Sigma^{1 / 2} w=0 \\
& \Longleftrightarrow \Sigma^{1 / 2} w \in \operatorname{span}\left\{\Sigma^{1 / 2} w_{1}^{*}, \ldots, \Sigma^{1 / 2} w_{k}^{*}\right\} \\
& \Longleftrightarrow w \in \operatorname{span}\left\{w_{1}^{*}, \ldots, w_{k}^{*}\right\} .
\end{aligned}
$$

It is also straightforward to verify that $Q^{2}=Q$ and $Q^{T} \Sigma w_{i}^{*}=0$ for $i=1, \ldots, k$. For any $v \in \mathbb{R}^{d}$, $R v$ lies in the image of Q and so there exists w such that $R v=Q w$. Then we can check that

$$
\begin{aligned}
v^{T} R \Sigma w_{i}^{*} & =\left\langle R v, \Sigma w_{i}^{*}\right\rangle \\
& =\left\langle Q w, \Sigma w_{i}^{*}\right\rangle=\left\langle w, Q^{T} \Sigma w_{i}^{*}\right\rangle=0
\end{aligned}
$$

and

$$
\begin{aligned}
(Q R) v & =Q(R v) \\
& =Q(Q w)=Q^{2} w \\
& =Q w=R v
\end{aligned}
$$

Since the choice of v is arbitrary, it must be the case that $R \Sigma w_{i}^{*}=0$ and $Q R=R$. For any $v \in \mathbb{R}^{d}$, we can check

$$
(R Q) v=R(Q v)=Q v
$$

by the definition of orthogonal projection. Therefore, it must be the case that $R Q=Q$. Finally, we use $R=Q R=R Q^{T}$ to show that

$$
\begin{aligned}
\operatorname{Tr}(R \Sigma R) & =\operatorname{Tr}\left(R Q^{T} \Sigma Q R\right)=\operatorname{Tr}\left(Q^{T} \Sigma Q R\right) \\
& =\operatorname{Tr}\left(Q^{T} \Sigma Q\right)-\operatorname{Tr}\left(Q^{T} \Sigma Q(I-R)\right) \\
& \geq \operatorname{Tr}\left(Q^{T} \Sigma Q\right)-\sqrt{\operatorname{Tr}\left(\left(Q^{T} \Sigma Q\right)^{2}\right) \operatorname{Tr}\left((I-R)^{2}\right)} \\
& =\operatorname{Tr}\left(Q^{T} \Sigma Q\right)\left(1-\sqrt{\frac{k}{R\left(Q^{T} \Sigma Q\right)}}\right) \\
& =\operatorname{Tr}\left(Q^{T} \Sigma Q\right)\left(1-\frac{k}{n}-\frac{n}{R\left(Q^{T} \Sigma Q\right)}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Tr}\left((R \Sigma R)^{2}\right) & =\operatorname{Tr}(\Sigma R \Sigma R) \\
& =\operatorname{Tr}\left(\Sigma Q R Q^{T} \Sigma Q R Q^{T}\right) \\
& =\operatorname{Tr}\left(\left(R Q^{T} \Sigma Q\right) R\left(Q^{T} \Sigma Q R\right)\right) \\
& \leq \operatorname{Tr}\left(\left(R Q^{T} \Sigma Q\right)\left(Q^{T} \Sigma Q R\right)\right)=\operatorname{Tr}\left(\left(Q^{T} \Sigma Q\right)^{2} R\right) \\
& \leq \operatorname{Tr}\left(\left(Q^{T} \Sigma Q\right)^{2}\right)
\end{aligned}
$$

Rearranging concludes the proof.

D. 1 Phase Retrieval

Theorem 2. Under assumptions (A) and (B), let $f: \mathbb{R} \times \mathcal{Y} \rightarrow \mathbb{R}$ be given by $f(\hat{y}, y):=(|\hat{y}|-y)^{2}$ with $\mathcal{Y}=\mathbb{R}_{\geq 0}$. Let Q be the same as in Theorem 1 and $\Sigma^{\perp}=Q^{T} \Sigma Q$. Fix any $w^{\sharp} \in \mathbb{R}^{d}$ such that $Q w^{\sharp}=0$ and for some $\rho \in(0,1)$, it holds that

$$
\begin{equation*}
\hat{L}_{f}\left(w^{\sharp}\right) \leq(1+\rho) L_{f}\left(w^{\sharp}\right) . \tag{9}
\end{equation*}
$$

Then with probability at least $1-\delta$, for some $\epsilon \lesssim \rho+\log \left(\frac{1}{\delta}\right)\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{R\left(\Sigma^{\perp}\right)}}+\frac{k}{n}+\frac{n}{R\left(\Sigma^{\perp}\right)}\right)$, it holds that

$$
\begin{equation*}
\min _{\substack{w \in \mathbb{R}^{d}: \\ \forall i \in[n],\left\langle w, x_{i}\right\rangle^{2}=y_{i}^{2}}}\|w\|_{2} \leq\left\|w^{\sharp}\right\|_{2}+(1+\epsilon) \sqrt{\frac{n L_{f}\left(w^{\sharp}\right)}{\operatorname{Tr}\left(\Sigma^{\perp}\right)}} . \tag{10}
\end{equation*}
$$

Proof. Without loss of generality, we assume that μ lies in the span of $\left\{\Sigma w_{1}^{*}, \ldots, \Sigma w_{k}^{*}\right\}$ because otherwise we can simply increase k by one. Moreover, we can assume that $\left\{\Sigma^{1 / 2} w_{1}^{*}, \ldots, \Sigma^{1 / 2} w_{k}^{*}\right\}$ are orthonormal because otherwise we let $\tilde{W}=W\left(W^{T} \Sigma W\right)^{-1}$ and conditioning on $W^{T}(x-\mu)$ is the same as conditioning on $\tilde{W}^{T}(x-\mu)$. By Lemma 5 , conditioned on

$$
\left(\begin{array}{c}
\eta_{1}^{T} \\
\ldots \\
\eta_{k}^{T}
\end{array}\right)=\left[W^{T}\left(x_{1}-\mu\right), \ldots, W^{T}\left(x_{n}-\mu\right)\right]
$$

the distribution of X is the same as

$$
X=1 \mu^{T}+\sum_{i=1}^{k} \eta_{i}\left(\Sigma w_{i}^{*}\right)^{T}+Z \Sigma^{1 / 2} Q
$$

where Z has i.i.d. standard normal entries. Furthermore, conditioned on $W^{T}(x-\mu)$ and the noise of variable in y (which is independent of x), by the multi-index assumption (B), the label y is non-random. Since $Q w^{\sharp}=0$, we have $w^{\sharp}=\sum_{i=1}^{k}\left\langle w_{i}^{*}, \Sigma w^{\sharp}\right\rangle w_{i}^{*}$ and so

$$
\left\langle w^{\sharp}, x\right\rangle=\left\langle w^{\sharp}, \mu\right\rangle+\sum_{i=1}^{k}\left\langle w_{i}^{*}, \Sigma w^{\sharp}\right\rangle\left\langle w_{i}^{*}, x-\mu\right\rangle .
$$

Therefore, $\left\langle w^{\sharp}, x\right\rangle$ also becomes non-random after conditioning. We can let $I=\left\{i \in[n]:\left\langle w^{\sharp}, x_{i}\right\rangle \geq\right.$ $0\}$ and define $\xi \in \mathbb{R}^{n}$ by

$$
\xi_{i}= \begin{cases}y_{i}-\left|\left\langle w^{\sharp}, x_{i}\right\rangle\right| & \text { if } i \in I \\ \left|\left\langle w^{\sharp}, x_{i}\right\rangle\right|-y_{i} & \text { if } i \notin I\end{cases}
$$

and ξ is non-random after conditioning. Following the construction discussed in the main text, for any $w^{\sharp} \in \mathbb{R}^{d}$, the predictor $w=w^{\sharp}+w^{\perp}$ satisfies $\left|\left\langle w, x_{i}\right\rangle\right|=y_{i}$ where

$$
w^{\perp}=\underset{\substack{w \in \mathbb{R}^{d} \\ X w=\dot{\xi}}}{\arg \min }\|w\|_{2}
$$

by the definition of ξ. Hence, we have

$$
\min _{w \in \mathbb{R}^{d}: \forall i \in[n],\left\langle w, x_{i}\right\rangle^{2}=y_{i}^{2}}\|w\|_{2} \leq\left\|w^{\sharp}\right\|_{2}+\left\|w^{\perp}\right\|_{2}
$$

and it suffices to control $\left\|w^{\perp}\right\|_{2}$.
Let R be the orthogonal projection matrix onto the image of Q and we consider w of the form $R w$ to upper bound $\left\|w^{\perp}\right\|_{2}$. By Lemma 13, we know $Q R=R$ and $R \Sigma w_{i}^{*}=0$. By the assumption that μ lies in the span of $\left\{\Sigma w_{1}^{*}, \ldots, \Sigma w_{k}^{*}\right\}$, we have

$$
\left(1 \mu^{T}+\sum_{i=1}^{k} \eta_{i}\left(\Sigma w_{i}^{*}\right)^{T}+Z \Sigma^{1 / 2} Q\right) R w=Z \Sigma^{1 / 2} R w
$$

Since R is an orthogonal projection, it holds that $\|R w\|_{2} \leq\|w\|_{2}$. Finally, we observe that the distribution of $Z \Sigma^{1 / 2} R$ is the same as $Z(R \Sigma R)^{1 / 2}$ and so

$$
\left\|w^{\perp}\right\|_{2} \leq \min _{\substack{w \in \mathbb{R}^{d}: \\ Z(R \Sigma R)^{1 / 2} w=\xi}}\|w\|_{2}
$$

We are now ready to apply Lemma 12 to the covariance $R \Sigma R$. We are allowed to replace the dependence on $R \Sigma R$ by the dependence on Σ^{\perp} by the last two inequalities of Lemma 13. The desired conclusion follows by the observation that $\|\xi\|_{2}^{2}=n \hat{L}_{f}\left(w^{\sharp}\right)$ and the assumption that $\hat{L}_{f}\left(w^{\sharp}\right) \leq$ $(1+\rho) L_{f}\left(w^{\sharp}\right)$.

D. 2 ReLU Regression

The proof of Theorem 3 will closely follow the proof of Theorem 2.
Theorem 3. Under assumptions (A) and (B), let $f: \mathbb{R} \times \mathcal{Y} \rightarrow \mathbb{R}$ be the loss defined in (13) with $\mathcal{Y}=\mathbb{R}_{\geq 0}$. Let Q be the same as in Theorem 1 and $\Sigma^{\perp}=Q^{T} \Sigma Q$. Fix any $\left(w^{\sharp}, b^{\sharp}\right) \in \mathbb{R}^{d+1}$ such that $Q w^{\sharp}=0$ and for some $\rho \in(0,1)$, it holds that

$$
\begin{equation*}
\hat{L}_{f}\left(w^{\sharp}, b^{\sharp}\right) \leq(1+\rho) L_{f}\left(w^{\sharp}, b^{\sharp}\right) . \tag{14}
\end{equation*}
$$

Then with probability at least $1-\delta$, for some $\epsilon \lesssim \rho+\log \left(\frac{1}{\delta}\right)\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{R\left(\Sigma^{\perp}\right)}}+\frac{k}{n}+\frac{n}{R\left(\Sigma^{\perp}\right)}\right)$, it holds that

$$
\begin{equation*}
\min _{\substack{(w, b) \in \mathbb{R}^{d+1}: \\ \forall i \in[n], \sigma\left(\left\langle w, x_{i}\right\rangle+b\right)=y_{i}}}\|w\|_{2} \leq\left\|w^{\sharp}\right\|_{2}+(1+\epsilon) \sqrt{\frac{n L_{f}\left(w^{\sharp}, b^{\sharp}\right)}{\operatorname{Tr}\left(\Sigma^{\perp}\right)}} . \tag{15}
\end{equation*}
$$

Proof. We let $I=\left\{i \in[n]: y_{i}>0\right\}$ and for any $\left(w^{\sharp}, b^{\sharp}\right) \in \mathbb{R}^{d+1}$, we define $\xi \in \mathbb{R}^{n}$ by

$$
\xi_{i}= \begin{cases}y_{i}-\left\langle w^{\sharp}, x_{i}\right\rangle-b^{\sharp} & \text { if } i \in I \\ -\sigma\left(\left\langle w^{\sharp}, x_{i}\right\rangle+b^{\sharp}\right) & \text { if } i \notin I .\end{cases}
$$

By the definition of ξ, the predictor $(w, b)=\left(w^{\sharp}+w^{\perp}, b^{\sharp}\right)$ satisfies $\sigma\left(\left\langle w, x_{i}\right\rangle+b\right)=y_{i}$ where

$$
w^{\perp}=\underset{\substack{w \in \mathbb{R}^{d} \dot{j} \\ X w=\dot{\xi}}}{\arg \min }\|w\|_{2} .
$$

Hence, we have

$$
\min _{\substack{(w, b) \in \mathbb{R}^{d+1}: \\ \forall i \in[n], \sigma\left(\left\langle w, x_{i}\right\rangle+b\right)=y_{i}}}\|w\|_{2} \leq\left\|w^{\sharp}\right\|_{2}+\left\|w^{\perp}\right\|_{2}
$$

and it suffices to control $\left\|w^{\perp}\right\|_{2}$.
Similar to the proof of Theorem 2, we make the simplifying assumption that μ lies in the span of $\left\{\Sigma w_{1}^{*}, \ldots, \Sigma w_{k}^{*}\right\}$ and $\left\{\Sigma^{1 / 2} w_{1}^{*}, \ldots, \Sigma^{1 / 2} w_{k}^{*}\right\}$ are orthonormal. Conditioned on $W^{T}\left(x_{i}-\mu\right)$ and the noise variable in y_{i}, both y_{i} and $\left\langle w^{\sharp}, x_{i}\right\rangle$ are non-random, and so ξ is also non-random. The distribution of X is the same as

$$
X=1 \mu^{T}+\sum_{i=1}^{k} \eta_{i}\left(\Sigma w_{i}^{*}\right)^{T}+Z \Sigma^{1 / 2} Q
$$

If we consider w of the form $R w$, then we have

$$
\left\|w^{\perp}\right\|_{2} \leq \min _{\substack{w \in \mathbb{R}^{d}: \\ Z(R \Sigma R)^{1 / 2} \\ w=\xi}}\|w\|_{2}
$$

We are now ready to apply Lemma 12 to the covariance $R \Sigma R$. We are allowed to replace the dependence on $R \Sigma R$ by the dependence on Σ^{\perp} by the last two inequalities of Lemma 13. The desired conclusion follows by the observation that $\|\xi\|_{2}^{2}=n \hat{L}_{f}\left(w^{\sharp}, b^{\sharp}\right)$ due to the definition (13) and the assumption that $\hat{L}_{f}\left(w^{\sharp}\right) \leq(1+\rho) L_{f}\left(w^{\sharp}, b^{\sharp}\right)$.

D. 3 Low-rank Matrix Sensing

Theorem 4. Suppose that $d_{1} d_{2}>n$, then there exists some $\epsilon \lesssim \sqrt{\frac{\log (32 / \delta)}{n}}+\frac{n}{d_{1} d_{2}}$ such that with probability at least $1-\delta$, it holds that

$$
\begin{equation*}
\min _{\forall i \in[n],\left\langle A_{i}, X\right\rangle=y_{i}}\|X\|_{*} \leq \sqrt{r}\left\|X^{*}\right\|_{F}+(1+\epsilon) \sqrt{\frac{n \sigma^{2}}{d_{1} \vee d_{2}}} . \tag{17}
\end{equation*}
$$

Proof. Without loss of generality, we will assume that $d_{1} \leq d_{2}$. We will vectorize the measurement matrices and estimator $A_{1}, \ldots, A_{n}, X \in \mathbb{R}^{d_{1} \times d_{2}}$ as $a_{1}, \ldots, \bar{a}_{n}, x \in \mathbb{R}^{d_{1} d_{2}}$ and define $\|x\|_{*}=\|X\|_{*}$. Denote $A=\left[a_{1}, \ldots, a_{n}\right]^{T} \in \mathbb{R}^{n \times d_{1} d_{2}}$. We define the primary problem Φ by

$$
\Phi:=\min _{\forall i \in[n],\left\langle A_{i}, X\right\rangle=\xi}\|X\|_{*}=\min _{A x=\xi}\|x\|_{*}
$$

By Lemma 11, it suffices to consider the auxiliary problem

$$
\Psi:=\min _{\|G\| x\left\|_{2}-\xi\right\|_{2} \leq-\langle H, x\rangle}\|x\|_{*} .
$$

We will pick x of the form $x=-\alpha H$ for some $\alpha \geq 0$, which needs to satisfy $\alpha\|H\|_{2}^{2} \geq\|\alpha G\| H \|_{2}-$ $\xi \|_{2}$. By a union bound, the following events occur simultaneously with probability at least $1-\delta / 2$:

1. by Lemma 3, it holds that

$$
\begin{aligned}
\|G\|_{2} & \leq \sqrt{n}+2 \sqrt{\log (32 / \delta)} \\
\frac{\|\xi\|_{2}}{\sigma} & \leq \sqrt{n}+2 \sqrt{\log (32 / \delta)} \\
\|H\|_{2} & \leq \sqrt{d_{1} d_{2}}+2 \sqrt{\log (32 / \delta)}
\end{aligned}
$$

2. Condition on ξ, we have $\frac{1}{\|\xi\|}\langle G, \xi\rangle \sim \mathcal{N}(0,1)$ and so by standard Gaussian tail bound $\operatorname{Pr}(|Z|>t) \leq 2 e^{-t^{2} / 2}$

$$
\frac{|\langle G, \xi\rangle|}{\|\xi\|} \leq \sqrt{2 \log (16 / \delta)}
$$

Then we can use AM-GM inequality to show for sufficiently large n

$$
\begin{aligned}
& \|\alpha G\| H\left\|_{2}-\xi\right\|_{2}^{2} \\
= & \alpha^{2}\|G\|_{2}^{2}\|H\|_{2}^{2}+\|\xi\|^{2}-2 \alpha\|H\|_{2}\langle G, \xi\rangle \\
\leq & n \alpha^{2}\|H\|_{2}^{2}\left(1+2 \sqrt{\frac{\log (32 / \delta)}{n}}\right)^{2}+\|\xi\|^{2}+2 \sqrt{n} \alpha\|H\|_{2}\|\xi\|_{2} \sqrt{\frac{2 \log (16 / \delta)}{n}} \\
\leq & n \alpha^{2}\|H\|_{2}^{2}\left(1+10 \sqrt{\frac{\log (32 / \delta)}{n}}\right)+\left(1+\sqrt{\frac{2 \log (16 / \delta)}{n}}\right)\|\xi\|_{2}^{2}
\end{aligned}
$$

and it suffices to let

$$
\alpha^{2}\|H\|_{2}^{4} \geq n \alpha^{2}\|H\|_{2}^{2}\left(1+10 \sqrt{\frac{\log (32 / \delta)}{n}}\right)+\left(1+\sqrt{\frac{2 \log (16 / \delta)}{n}}\right)\|\xi\|_{2}^{2}
$$

Rearranging the above inequality, we can choose

$$
\alpha=\left(\frac{1+10 \sqrt{\frac{\log (32 / \delta)}{n}}}{1-\frac{n}{d_{1} d_{2}}\left(1+10 \sqrt{\frac{\log (32 / \delta)}{n}}\right)\left(1+2 \sqrt{\frac{\operatorname{log(32/\delta)}}{d_{1} d_{2}}}\right)^{2}}\right)^{1 / 2} \frac{\sqrt{n \sigma^{2}}}{\|H\|_{2}^{2}}
$$

and since H as a matrix can have at most rank d_{1}, by Cauchy-Schwarz inequality on the singular values of H, we have $\|H\|_{*} \leq \sqrt{d_{1}}\|H\|_{2}$ and

$$
\|x\|_{*}=\alpha\|H\|_{*} \leq \alpha \sqrt{d_{1}}\|H\|_{2} \leq(1+\epsilon) \sqrt{\frac{d_{1}\left(n \sigma^{2}\right)}{d_{1} d_{2}}}=(1+\epsilon) \sqrt{\frac{n \sigma^{2}}{d_{2}}}
$$

for some $\epsilon \lesssim \sqrt{\frac{\log (32 / \delta)}{n}}+\frac{n}{d_{1} d_{2}}$. The desired conclusion follows by the observation that $\left\|X^{*}\right\|_{*} \leq$ $\sqrt{r}\left\|X^{*}\right\|_{F}$ because X^{*} has rank r.

Theorem 5. Fix any $\delta \in(0,1)$. There exist constants $c_{1}, c_{2}, c_{3}>0$ such that if $d_{1} d_{2}>c_{1} n$, $d_{2}>c_{2} d_{1}, n>c_{3} r\left(d_{1}+d_{2}\right)$, then with probability at least $1-\delta$ that

$$
\begin{equation*}
\frac{\left\|\hat{X}-X^{*}\right\|_{F}^{2}}{\left\|X^{*}\right\|_{F}^{2}} \lesssim \frac{r\left(d_{1}+d_{2}\right)}{n}+\sqrt{\frac{r\left(d_{1}+d_{2}\right)}{n}} \frac{\sigma}{\left\|X^{*}\right\|_{F}}+\left(\sqrt{\frac{d_{1}}{d_{2}}}+\frac{n}{d_{1} d_{2}}\right) \frac{\sigma^{2}}{\left\|X^{*}\right\|_{F}^{2}} . \tag{18}
\end{equation*}
$$

Proof. Note that $\left\langle A, X^{*}\right\rangle \sim \mathcal{N}\left(0,\left\|X^{*}\right\|_{F}^{2}\right)$ and so by the standard Gaussian tail bound $\operatorname{Pr}(|Z| \geq$ $t) \leq 2 e^{-t^{2} / 2}$, Theorem 9 and a union bound, it holds with probability at least $1-\delta / 8$ that

$$
\begin{aligned}
\left|\left\langle A, X^{*}\right\rangle\right| & \leq \sqrt{2 \log (32 / \delta)}\left\|X^{*}\right\|_{F} \\
\|A\|_{o p} & \leq \sqrt{d_{1}}+\sqrt{d_{2}}+\sqrt{2 \log (32 / \delta)}
\end{aligned}
$$

Then it holds that

$$
\begin{aligned}
\left\|A-\frac{\left\langle A, X^{*}\right\rangle}{\left\|X^{*}\right\|_{F}^{2}} X^{*}\right\|_{o p} & \leq\|A\|_{o p}+\frac{\left|\left\langle A, X^{*}\right\rangle\right|}{\left\|X^{*}\right\|_{F}^{2}}\left\|X^{*}\right\|_{o p} \\
& \leq \sqrt{d_{1}}+\sqrt{d_{2}}+\sqrt{2 \log (32 / \delta)}+\frac{\left\|X^{*}\right\|_{o p}}{\left\|X^{*}\right\|_{F}} \sqrt{2 \log (32 / \delta)} \\
& \leq \sqrt{d_{1}}+\sqrt{d_{2}}+\sqrt{8 \log (32 / \delta)}
\end{aligned}
$$

Therefore, we can choose C_{δ} in Theorem 1 by

$$
C_{\delta}(X):=\left(\sqrt{d_{1}}+\sqrt{d_{2}}+\sqrt{8 \log (32 / \delta)}\right)\|X\|_{*}
$$

and applying Theorem 1 and Theorem 4, we have

$$
\begin{aligned}
& (1-\epsilon) L(\hat{X}) \leq \frac{C_{\delta}(X)^{2}}{n} \\
\leq & \frac{\left(\sqrt{d_{1}}+\sqrt{d_{2}}+\sqrt{8 \log (32 / \delta)}\right)^{2}}{n}\left(\sqrt{r}\left\|X^{*}\right\|_{F}+(1+\epsilon) \sqrt{\frac{n \sigma^{2}}{d_{1} \vee d_{2}}}\right)^{2} \\
= & \left(\sqrt{\frac{d_{1}}{d_{1} \vee d_{2}}}+\sqrt{\frac{d_{2}}{d_{1} \vee d_{2}}}+\sqrt{\frac{8 \log (32 / \delta)}{d_{1} \vee d_{2}}}\right)^{2}\left(\sqrt{\frac{r\left(d_{1} \vee d_{2}\right)}{n}}+(1+\epsilon) \frac{\sigma}{\left\|X^{*}\right\|_{F}}\right)^{2}\left\|X^{*}\right\|_{F}^{2}
\end{aligned}
$$

where ϵ is the maximum of the two ϵ in Theorem 1 and Theorem 4. Finally, recall that

$$
L(\hat{X})=\sigma^{2}+\left\|\hat{X}-X^{*}\right\|_{F}^{2}
$$

Assuming that $d_{1} \leq d_{2}$, then the above implies that

$$
\left.\begin{array}{rl}
& \left\|\hat{X}-X^{*}\right\|_{F}^{2} \\
\left\|X^{*}\right\|_{F}^{2}
\end{array}\right] \begin{aligned}
& \\
& \leq \\
& \lesssim \\
& \lesssim \\
& \frac{r\left(d_{1}+d_{2}\right)}{n}+\sqrt{\frac{r\left(d_{1}+d_{2}\right)}{n}} \frac{\sigma}{\left\|X^{*}\right\|_{F}}+\left(\sqrt{\frac{d_{1}}{d_{2}}}+\frac{n}{d_{1} d_{2}}\right) \frac{\sigma^{2}}{\left\|X^{*}\right\|_{F}^{2}}
\end{aligned}
$$

and we are done.

E Counterexample to Gaussian Universality

By assumption (G), we can write $x_{i \mid d-k}=h\left(x_{i \mid k}\right) \cdot \Sigma_{\mid d-k}^{1 / 2} z_{i}$ where $z_{i} \sim \mathcal{N}\left(0, I_{d-k}\right)$. We will denote the matrix $Z=\left[z_{1}, \ldots, z_{n}\right]^{T} \in \mathbb{R}^{n \times(d-k)}$. Following the notation in section 7 , we will also write $X=\left[X_{\mid k}, X_{\mid d-k}\right]$ where $X_{\mid k} \in \mathbb{R}^{n \times k}$ and $X_{\mid d-k} \in \mathbb{R}^{n \times(d-k)}$. The proofs in this section closely follows the proof of Theorem 6.

Proof. Note that

$$
\left\langle w_{\mid d-k}, x_{i \mid d-k}\right\rangle=h\left(x_{i \mid k}\right) \cdot\left\langle w_{\mid d-k}, \Sigma_{\mid d-k}^{1 / 2} z_{i}\right\rangle
$$

and so for any $f: \mathbb{R} \times \mathcal{Y} \times \mathbb{R}^{k} \rightarrow \mathbb{R}$, we can write

$$
\begin{aligned}
& \Phi:=\sup _{w \in \mathbb{R}^{d}} F(w)-\frac{1}{n} \sum_{i=1}^{n} f\left(\left\langle w, x_{i}\right\rangle, y_{i}, x_{i \mid k}\right) \\
= & \sup _{\substack{w \in \mathbb{R}^{d}, u \in \mathbb{R}^{n} \\
u=Z \Sigma_{\mid d-k}^{1 / 2} w_{\mid d-k}}} F(w)-\frac{1}{n} \sum_{i=1}^{n} f\left(\left\langle w_{\mid k}, x_{i \mid k}\right\rangle+h\left(x_{i \mid k}\right) u_{i}, y_{i}, x_{i \mid k}\right) \\
= & \sup _{w \in \mathbb{R}^{d}, u \in \mathbb{R}^{n}} \inf _{\lambda \in \mathbb{R}^{n}}\left\langle\lambda, Z \Sigma_{\mid d-k}^{1 / 2} w_{\mid d-k}-u\right\rangle+F(w)-\frac{1}{n} \sum_{i=1}^{n} f\left(\left\langle w_{\mid k}, x_{i \mid k}\right\rangle+h\left(x_{i \mid k}\right) u_{i}, y_{i}, x_{i \mid k}\right) .
\end{aligned}
$$

By the same truncation argument used in Lemma 7, it suffices to consider the auxiliary problem:

$$
\left.\left.\begin{array}{rl}
\Psi:= & \sup _{w \in \mathbb{R}^{d}, u \in \mathbb{R}^{n}} \inf _{\lambda \in \mathbb{R}^{n}} \|
\end{array} \right\rvert\, \lambda \|_{2}\left\langle H, \Sigma_{\mid d-k}^{1 / 2} w_{\mid d-k}\right\rangle+\left\langle G\left\|\Sigma_{\mid d-k}^{1 / 2} w_{\mid d-k}\right\|_{2}-u, \lambda\right\rangle\right) \text { } \begin{aligned}
&+F(w)-\frac{1}{n} \sum_{i=1}^{n} f\left(\left\langle w_{\mid k}, x_{i \mid k}\right\rangle+h\left(x_{i \mid k}\right) u_{i}, y_{i}, x_{i \mid k}\right) \\
&=\sup _{w \in \mathbb{R}^{d}, u \in \mathbb{R}^{n}} \inf _{\lambda \geq 0} \lambda\left(\left\langle H, \Sigma_{\mid d-k}^{1 / 2} w_{\mid d-k}\right\rangle-\|G\| \Sigma_{\mid d-k}^{1 / 2} w_{\mid d-k}\left\|_{2}-u\right\|_{2}\right) \\
&+F(w)-\frac{1}{n} \sum_{i=1}^{n} f\left(\left\langle w_{\mid k}, x_{i \mid k}\right\rangle+h\left(x_{i \mid k}\right) u_{i}, y_{i}, x_{i \mid k}\right)
\end{aligned}
$$

Therefore, it holds that

$$
\begin{aligned}
\Psi= & \sup _{\substack{w \in \mathbb{R}^{d}, u \in \mathbb{R}^{n} \\
\left\langle H, \Sigma_{\mid d-k}^{1 / 2} w_{\mid d-k}\right\rangle \geq\|G\| \Sigma_{\mid d-k}^{1 / 2} w_{\mid d-k}\left\|_{2}-u\right\|_{2}}} F(w)-\frac{1}{n} \sum_{i=1}^{n} f\left(\left\langle w_{\mid k}, x_{i \mid k}\right\rangle+h\left(x_{i \mid k}\right) u_{i}, y_{i}, x_{i \mid k}\right) \\
= & \sup _{w \in \mathbb{R}^{d}} F(w)-\frac{1}{n} \inf _{\substack{ \\
\left\langle H, \Sigma_{\mid d-k}^{1 / 2} w_{\mid d-k}\right\rangle \geq\|G\| \Sigma_{\mid d-k}^{1 / 2} w_{\mid d-k}\left\|_{2}-u\right\|_{2}}} \sum_{i=1}^{n} f\left(\left\langle w_{\mid k}, x_{i \mid k}\right\rangle+h\left(x_{i \mid k}\right) u_{i}, y_{i}, x_{i \mid k}\right) .
\end{aligned}
$$

Next, we analyze the infimum term:

$$
\begin{aligned}
& \inf _{\substack{u \in \mathbb{R}^{n} \\
\left\langle H, \Sigma_{\mid d-k}^{1 / 2} w_{\mid d-k}\right\rangle \geq\|G\| \Sigma_{\mid d-k}^{1 / 2} w_{\mid d-k} \|_{2}-u}} \sum_{i=1}^{n} f\left(\left\langle w_{\mid k}, x_{i \mid k}\right\rangle+h\left(x_{i \mid k}\right) u_{i}, y_{i}, x_{i \mid k}\right) \\
& =\inf _{\substack{u \in \mathbb{R}^{n} \\
\|u\|_{2} \leq\left\langle H, \Sigma_{\mid d-k}^{1 / 2} w_{\mid d-k}\right\rangle}} \sum_{i=1}^{n} f\left(\left\langle w_{\mid k}, x_{i \mid k}\right\rangle+h\left(x_{i \mid k}\right)\left(u_{i}+\left\|\Sigma_{\mid d-k}^{1 / 2} w_{\mid d-k}\right\|_{2} G_{i}\right), y_{i}, x_{i \mid k}\right) \\
& =\inf _{u \in \mathbb{R}^{n}} \sup _{\lambda \geq 0} \lambda\left(\|u\|^{2}-\left\langle H, \Sigma_{\mid d-k}^{1 / 2} w_{\mid d-k}\right\rangle^{2}\right) \\
& +\sum_{i=1}^{n} f\left(\left\langle w_{\mid k}, x_{i \mid k}\right\rangle+h\left(x_{i \mid k}\right)\left(u_{i}+\left\|\Sigma_{\mid d-k}^{1 / 2} w_{\mid d-k}\right\|_{2} G_{i}\right), y_{i}, x_{i \mid k}\right) \\
& \geq \sup _{\lambda \geq 0} \inf _{u \in \mathbb{R}^{n}} \lambda\left(\|u\|^{2}-\left\langle H, \Sigma_{\mid d-k}^{1 / 2} w_{\mid d-k}\right\rangle^{2}\right) \\
& +\sum_{i=1}^{n} f\left(\left\langle w_{\mid k}, x_{i \mid k}\right\rangle+h\left(x_{i \mid k}\right)\left(u_{i}+\left\|\Sigma_{\mid d-k}^{1 / 2} w_{\mid d-k}\right\|_{2} G_{i}\right), y_{i}, x_{i \mid k}\right) \\
& =\sup _{\lambda \geq 0}-\lambda\left\langle H, \Sigma_{\mid d-k}^{1 / 2} w_{\mid d-k}\right\rangle^{2} \\
& +\sum_{i=1}^{n} \inf _{u_{i} \in \mathbb{R}} f\left(\left\langle w_{\mid k}, x_{i \mid k}\right\rangle+u_{i}+\left\|\Sigma_{\mid d-k}^{1 / 2} w_{\mid d-k}\right\|_{2} h\left(x_{i \mid k}\right) G_{i}, y_{i}, x_{i \mid k}\right)+\frac{\lambda}{h\left(x_{i \mid k}\right)^{2}} u_{i}^{2} .
\end{aligned}
$$

Now suppose that f takes the form $f\left(\hat{y}, y, x_{\mid k}\right)=\frac{1}{h\left(x_{\mid k}\right)^{2}} \tilde{f}(\hat{y}, y)$ for some 1 square-root Lipschitz \tilde{f} and by a union bound, it holds with probability at least $1-\delta$ that

$$
\begin{aligned}
\left\langle\Sigma_{\mid d-k}^{1 / 2} H, w_{\mid d-k}\right\rangle^{2} & \leq C_{\delta}\left(w_{\mid d-k}\right)^{2} \\
\frac{1}{n} \sum_{i=1}^{n} \frac{1}{h\left(x_{i \mid k}\right)^{2}} \tilde{f}\left(\left\langle w_{\mid k}, x_{i \mid k}\right\rangle+\left\|\Sigma_{\mid d-k}^{1 / 2} w_{\mid d-k}\right\|_{2} h\left(x_{i \mid k}\right) G_{i}, y_{i}\right) & \geq\left(1-\epsilon_{\delta}\right) \mathbb{E}\left[\frac{1}{h\left(x_{\mid k}\right)^{2}} \tilde{f}(\langle w, x\rangle, y)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { then the above becomes } \\
& \qquad \sup _{\lambda \geq 0}-\lambda\left\langle\Sigma_{\mid d-k}^{1 / 2} H, w_{\mid d-k}\right\rangle^{2}+\sum_{i=1}^{n} \frac{1}{h\left(x_{i \mid k}\right)^{2}} \tilde{f}_{\lambda}\left(\left\langle w_{\mid k}, x_{i \mid k}\right\rangle+\left\|\Sigma_{\mid d-k}^{1 / 2} w_{\mid d-k}\right\|_{2} h\left(x_{i \mid k}\right) G_{i}, y_{i}\right) \\
& \geq \sup _{\lambda \geq 0}-\lambda\left\langle\Sigma_{\mid d-k}^{1 / 2} H, w_{\mid d-k}\right\rangle^{2}+\frac{\lambda}{\lambda+1} \sum_{i=1}^{n} \frac{1}{h\left(x_{i \mid k}\right)^{2}} \tilde{f}\left(\left\langle w_{\mid k}, x_{i \mid k}\right\rangle+\left\|\Sigma_{\mid d-k}^{1 / 2} w_{\mid d-k}\right\|_{2} h\left(x_{i \mid k}\right) G_{i}, y_{i}\right) \\
& \geq \sup _{\lambda \geq 0}-\lambda C_{\delta}\left(w_{\mid d-k}\right)^{2}+\frac{\lambda}{\lambda+1}(1-\epsilon) n \mathbb{E}\left[\frac{1}{h\left(x_{\mid k}\right)^{2}} \tilde{f}(\langle w, x\rangle, y)\right] \\
& \geq n\left(\sqrt{\left(1-\epsilon_{\delta}\right) \mathbb{E}\left[\frac{1}{h\left(x_{\mid k}\right)^{2}} \tilde{f}(\langle w, x\rangle, y)\right]}-\frac{C_{\delta}\left(w_{\mid d-k}\right)}{\sqrt{n}}\right)_{+}^{2}
\end{aligned}
$$

897
where we apply Lemma 8 in the last step. Then if we take

$$
F(w)=\left(\sqrt{\left(1-\epsilon_{\delta}\right) \mathbb{E}\left[\frac{1}{h\left(x_{\mid k}\right)^{2}} \tilde{f}(\langle w, x\rangle, y)\right]}-\frac{C_{\delta}\left(w_{\mid d-k}\right)}{\sqrt{n}}\right)_{+}^{2}
$$

898
then we have $\Psi \leq 0$. To summarize, we have shown

$$
\left(\sqrt{\left(1-\epsilon_{\delta}\right) \mathbb{E}\left[\frac{1}{h\left(x_{\mid k}\right)^{2}} \tilde{f}(\langle w, x\rangle, y)\right]}-\frac{C_{\delta}\left(w_{\mid d-k}\right)}{\sqrt{n}}\right)_{+}^{2}-\frac{1}{n} \sum_{i=1}^{n} \frac{1}{h\left(x_{i \mid k}\right)^{2}} \tilde{f}\left(\left\langle w, x_{i}\right\rangle, y_{i}\right) \leq 0
$$

899
which implies

$$
\mathbb{E}\left[\frac{1}{h\left(x_{\mid k}\right)^{2}} \tilde{f}(\langle w, x\rangle, y)\right] \leq\left(1-\epsilon_{\delta}\right)^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} \frac{1}{h\left(x_{i \mid k}\right)^{2}} \tilde{f}\left(\left\langle w, x_{i}\right\rangle, y_{i}\right)+\frac{C_{\delta}\left(w_{\mid d-k}\right)}{\sqrt{n}}\right)^{2}
$$

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n}\left(\frac{y_{i}-\left\langle w_{\mid k}^{*}, x_{i \mid k}\right\rangle}{h\left(x_{i \mid k}\right)}\right)^{2} \leq(1+\rho) \cdot \mathbb{E}\left[\left(\frac{y-\left\langle w_{\mid k}^{*}, x_{\mid k}\right\rangle}{h\left(x_{\mid k}\right)}\right)^{2}\right] \tag{77}
\end{equation*}
$$

902 Then with probability at least $1-\delta$, for some $\epsilon \lesssim \rho+\log \left(\frac{1}{\delta}\right)\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{R\left(\Sigma_{\mid d-k}\right)}}+\frac{n}{R\left(\Sigma_{\mid d-k}\right)}\right)$, it 903 holds that

$$
\begin{equation*}
\min _{w \in \mathbb{R}^{d}: \forall i,\left\langle w, x_{i}\right\rangle=y_{i}}\|w\|_{2}^{2} \leq\left\|w_{\mid k}^{*}\right\|_{2}^{2}+(1+\epsilon) \frac{n \mathbb{E}\left[\left(\frac{y-\left\langle w_{\mid k}^{*}, x_{\mid k}\right\rangle}{h\left(x_{\mid k}\right)}\right)^{2}\right]}{\operatorname{Tr}\left(\Sigma_{\mid d-k}\right)} \tag{78}
\end{equation*}
$$

Proof. Fix any $w_{\mid k}^{*} \in \mathbb{R}^{k}$, we observe that

$$
\begin{aligned}
& \min _{w \in \mathbb{R}^{d}: \forall i,\left\langle w, x_{i}\right\rangle=y_{i}}\|w\|_{2}^{2}=\min _{w \in \mathbb{R}^{d}: \forall i,\left\langle w_{\mid k}, x_{i \mid k}\right\rangle+\left\langle w_{\mid d-k}, x_{i \mid d-k}\right\rangle=y_{i}}\left\|w_{\mid k}\right\|_{2}^{2}+\left\|w_{\mid d-k}\right\|_{2}^{2} \\
& \leq\left\|w_{\mid k}^{*}\right\|_{2}^{2}+\underset{m_{\mid c k} \in \mathbb{R}^{d-k}:}{w_{\mid d-k}} \quad\left\|w_{\mid d-k}\right\|_{2}^{2} . \\
& \forall i,\left\langle w_{\mid d-k}, x_{i \mid d-k}\right\rangle=y_{i}-\left\langle w_{\mid k}^{*}, x_{i \mid k}\right\rangle
\end{aligned}
$$

Therefore, it is enough analyze

$$
\Phi:=\min _{\substack{w_{\mid d-k} \in \mathbb{R}^{d-k}:}}\left\|w_{\mid d-k}\right\|_{2}=\min _{\substack{w_{\mid d-k} \in \mathbb{R}^{d-k}:}}^{\forall i,\left\langle w_{\mid d-k}, x_{i \mid d-k}\right\rangle=y_{i}-\left\langle w_{\mid k}^{*}, x_{i \mid k}\right\rangle}<⿻ w_{\mid d-k} \|_{2}
$$

By introducing the Lagrangian, we have

$$
\begin{aligned}
\Phi & =\min _{w_{\mid d-k} \in \mathbb{R}^{d-k}} \max _{\lambda \in \mathbb{R}^{n}} \sum_{i=1}^{n} \lambda_{i}\left(\left\langle\Sigma_{\mid d-k}^{1 / 2} w_{\mid d-k}, z_{i}\right\rangle-\frac{y_{i}-\left\langle w_{\mid k}^{*}, x_{i \mid k}\right\rangle}{h\left(x_{i \mid k}\right)}\right)+\left\|w_{\mid d-k}\right\|_{2} \\
& =\min _{w_{\mid d-k} \in \mathbb{R}^{d-k}} \max _{\lambda \in \mathbb{R}^{n}}\left\langle\lambda, Z \Sigma_{\mid d-k}^{1 / 2} w_{\mid d-k}\right\rangle-\sum_{i=1}^{n} \lambda_{i}\left(\frac{y_{i}-\left\langle w_{\mid k}^{*}, x_{i \mid k}\right\rangle}{h\left(x_{i \mid k}\right)}\right)+\left\|w_{\mid d-k}\right\|_{2} .
\end{aligned}
$$

Similarly, the above is only random in Z after conditioning on $X_{\mid k} w_{\mid k}^{*}$ and ξ and the distribution of Z remains unchanged after conditioning because of the independence. By the same truncation argument as before and CGMT, it suffices to consider the auxiliary problem:

$$
\begin{aligned}
\min _{w_{\mid d-k} \in \mathbb{R}^{d-k}} \max _{\lambda \in \mathbb{R}^{n}} \| & \left\|\|_{2}\left\langle H, \Sigma_{\mid d-k}^{1 / 2} w_{\mid d-k}\right\rangle+\sum_{i=1}^{n} \lambda_{i}\left(\left\|\Sigma_{\mid d-k}^{1 / 2} w_{\mid d-k}\right\|_{2} G_{i}-\frac{y_{i}-\left\langle w_{\mid k}^{*}, x_{i \mid k}\right\rangle}{h\left(x_{i \mid k}\right)}\right)\right. \\
& +\left\|w_{\mid d-k}\right\|_{2} \\
=\min _{w_{\mid d-k} \in \mathbb{R}^{d-k}} \max _{\lambda \in \mathbb{R}^{n}} \| & \|\lambda\|_{2}\left(\left\langle H, \Sigma_{\mid d-k}^{1 / 2} w_{\mid d-k}\right\rangle+\sqrt{\sum_{i=1}^{n}\left(\left\|\Sigma_{\mid d-k}^{1 / 2} w_{\mid d-k}\right\|_{2} G_{i}-\frac{y_{i}-\left\langle w_{\mid k}^{*}, x_{i \mid k}\right\rangle}{h\left(x_{i \mid k}\right)}\right)^{2}}\right) \\
& +\left\|w_{\mid d-k}\right\|_{2}
\end{aligned}
$$

910 and so we can define

$$
\Psi:=\frac{\min _{w_{\mid d-k} \in \mathbb{R}^{d-k}:}}{\sqrt{\sum_{i=1}^{n}\left(\left\|\Sigma_{\mid d-k}^{1 / 2} w_{\mid d-k}\right\|_{2} G_{i}-\frac{y_{i}-\left\langle w_{\mid k}^{*}, x_{i \mid k}\right\rangle}{h\left(x_{i \mid k}\right)}\right)^{2}} \leq\left\langle-\Sigma_{\mid d-k}^{1 / 2} H, w_{\mid d-k}\right\rangle}\left\|w_{\mid d-k}\right\|_{2} .
$$

911 To upper bound Ψ, we consider $w_{\mid d-k}$ of the form $-\alpha \frac{\Sigma_{\mid d-k}^{1 / 2} H}{\left\|\Sigma_{\mid d-k}^{1 / 2} H\right\|_{2}}$, then we just need

$$
\sum_{i=1}^{n}\left(\alpha \frac{\left\|\Sigma_{\mid d-k} H\right\|_{2}}{\left\|\Sigma_{\mid d-k}^{1 / 2} H\right\|_{2}} G_{i}-\frac{y_{i}-\left\langle w_{\mid k}^{*}, x_{i \mid k}\right\rangle}{h\left(x_{i \mid k}\right)}\right)^{2} \leq \alpha^{2}\left\|\Sigma_{\mid d-k}^{1 / 2} H\right\|_{2}^{2}
$$

After some rearrangements, it is easy to see that we can choose

$$
\alpha^{2}=\frac{\left(1+\sqrt{\frac{2 \log (32 / \delta)}{n}}\right)(1+\rho)}{1-C \frac{\log (32 / \delta)}{\sqrt{R\left(\Sigma_{\mid d-k}\right)}}-C \log (32 / \delta)\left(2+\sqrt{\frac{2 \log (32 / \delta)}{n}}\right) \frac{n}{R\left(\sum_{\mid d-k}\right)}} \frac{n \mathbb{E}\left[\left(\frac{y-\left\langle w_{\mid k}^{*}, x_{\mid k}\right\rangle}{h\left(x_{\mid k}\right)}\right)^{2}\right]}{\operatorname{Tr}\left(\Sigma_{\mid d-k}\right)} .
$$

By a union bound, the following occur together with probability at least $1-\delta / 2$ for some absolute constant $C>0$:

1. Using the first part of Lemma 4, we have

$$
\left\|\Sigma_{\mid d-k}^{1 / 2} H\right\|_{2}^{2} \geq \operatorname{Tr}\left(\Sigma_{\mid d-k}\right)\left(1-C \frac{\log (32 / \delta)}{\sqrt{R\left(\Sigma_{\mid d-k}\right)}}\right)
$$

2. Using the last part of Lemma 4, requiring $R\left(\Sigma_{\mid d-k}\right) \gtrsim \log (32 / \delta)^{2}$

$$
\frac{\left\|\Sigma_{\mid d-k} H\right\|_{2}^{2}}{\left\|\Sigma_{\mid d-k}^{1 / 2} H\right\|_{2}^{2}} \leq C \log (32 / \delta) \frac{\operatorname{Tr}\left(\Sigma_{\mid d-k}^{2}\right)}{\operatorname{Tr}\left(\Sigma_{\mid d-k}\right)}
$$

3. Using subexponential Bernstein's inequality (Theorem 2.8.1 of Vershynin (2018)), requiring $n=\Omega(\log (1 / \delta))$,

$$
\frac{1}{n} \sum_{i=1}^{n} G_{i}^{2} \leq 2
$$

4. Using standard Gaussian tail bound $\operatorname{Pr}(|Z| \geq t) \leq 2 e^{-t^{2} / 2}$, we have

$$
\left|\frac{1}{n} \sum_{i=1}^{n} \frac{G_{i}\left(y_{i}-\left\langle w_{\mid k}^{*}, x_{i \mid k}\right\rangle\right)}{h\left(x_{i \mid k}\right)}\right| \leq \sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(\frac{y_{i}-\left\langle w_{\mid k}^{*}, x_{i \mid k}\right\rangle}{h\left(x_{i \mid k}\right)}\right)^{2}} \sqrt{\frac{2 \log (32 / \delta)}{n}}
$$

5. By assumption, it holds that

$$
\frac{1}{n} \sum_{i=1}^{n}\left(\frac{y_{i}-\left\langle w_{\mid k}^{*}, x_{i \mid k}\right\rangle}{h\left(x_{i \mid k}\right)}\right)^{2} \leq(1+\rho) \cdot \mathbb{E}\left[\left(\frac{y-\left\langle w_{\mid k}^{*}, x_{\mid k}\right\rangle}{h\left(x_{\mid k}\right)}\right)^{2}\right]
$$

Then we use the above and the AM-GM inequality to show that

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n}\left(\alpha \frac{\left\|\Sigma_{\mid d-k} H\right\|_{2}}{\left\|\Sigma_{\mid d-k}^{1 / 2} H\right\|_{2}} G_{i}-\frac{y_{i}-\left\langle w_{\mid k}^{*}, x_{i \mid k}\right\rangle}{h\left(x_{i \mid k}\right)}\right)^{2} \\
\leq & 2 \alpha^{2} \frac{\left\|\Sigma_{\mid d-k} H\right\|_{2}^{2}}{\left\|\Sigma_{\mid d-k}^{1 / 2} H\right\|_{2}^{2}}+(1+\rho) \cdot \mathbb{E}\left[\left(\frac{y-\left\langle w_{\mid k}^{*}, x_{\mid k}\right\rangle}{h\left(x_{\mid k}\right)}\right)^{2}\right] \\
& +2 \frac{\alpha\left\|\Sigma_{\mid d-k} H\right\|_{2}}{\left\|\Sigma_{\mid d-k}^{1 / 2} H\right\|_{2}} \sqrt{(1+\rho) \cdot \mathbb{E}\left[\left(\frac{y-\left\langle w_{\mid k}^{*}, x_{\mid k}\right\rangle}{h\left(x_{\mid k}\right)}\right)^{2}\right]} \sqrt{\frac{2 \log (32 / \delta)}{n}} \\
\leq & C \log (32 / \delta)\left(2+\sqrt{\frac{2 \log (32 / \delta)}{n}}\right) \alpha^{2} \frac{\operatorname{Tr}\left(\Sigma_{\mid d-k}^{2}\right)}{\operatorname{Tr}\left(\Sigma_{\mid d-k}\right)} \\
& +\left(1+\sqrt{\frac{2 \log (32 / \delta)}{n}}\right)(1+\rho) \cdot \mathbb{E}\left[\left(\frac{y-\left\langle w_{\mid k}^{*}, x_{\mid k}\right\rangle}{h\left(x_{\mid k}\right)}\right)^{2}\right] .
\end{aligned}
$$

and the proof is complete.

[^0]: ${ }^{1}$ The definition of smoothness can be stated without twice differentiability, by instead requiring the gradient to be Lipschitz. We make this assumption here simply for convenience.

