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Abstract

We establish generic uniform convergence guarantees for Gaussian data in terms
of the Rademacher complexity of the hypothesis class and the Lipschitz constant
of the square root of the scalar loss function. We show how these guarantees
substantially generalize previous results based on smoothness (Lipschitz constant
of the derivative), and allow us to handle the broader class of square-root-Lipschitz
losses, which includes also non-smooth loss functions appropriate for studying
phase retrieval and ReLU regression, as well as rederive and better understand
“optimistic rate” and interpolation learning guarantees.

1 Introduction

The phenomenon of "interpolation learning", where a learning algorithm perfectly interpolates noisy
training labels while still generalizing well to unseen data, has attracted significant interest in recent
years. As Shamir (2022) pointed out, one of the difficulties in understanding interpolation learning
is that we need to determine which loss function we should use to analyze the test error. In linear
regression, interpolating the square loss is equivalent to interpolating many other losses (such as
the absolute loss) on the training set. Similarly, in the context of linear classification, many works
(Soudry et al. 2018; Ji and Telgarsky 2019; Muthukumar et al. 2021) have shown that optimizing
the logistic, exponential, or even square loss would all lead to the maximum margin solution, which
interpolates the hinge loss. Even though there are many possible loss functions to choose from to
analyze the population error, consistency is often possible with respect to only one loss function
because different loss functions generally have different population error minimizers.

In linear regression, it has been shown that minimal norm interpolant can be consistent with respect to
the square loss (Bartlett et al. 2020; Muthukumar et al. 2020; Negrea et al. 2020; Koehler et al. 2021),
while the appropriate loss for benign overfitting in linear classification is the squared hinge loss
(Shamir 2022; Zhou et al. 2022). In this line of work, uniform convergence has emerged as a general
and useful technique to understand interpolation learning (Koehler et al. 2021; Zhou et al. 2022).
Though the Lipschitz contraction technique has been very useful to establish uniform convergence in
classical learning theory, the appropriate loss functions to study interpolation learning (such as the
square loss and the squared hinge loss) are usually not Lipschitz. In fact, many papers (Nagarajan and
Kolter 2019; Zhou et al. 2020; Negrea et al. 2020) have shown that the traditional notion of uniform
convergence implied by Lipschitz contraction fails in the setting of interpolation learning. Instead, we
need to find other properties of the loss function to establish a different type of uniform convergence.
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Zhou et al. (2022) recently showed that the Moreau envelope of the square loss or the squared hinge
loss is proportional to itself and this property is sufficient to establish a type of uniform convergence
guarantee known as "optimistic rate" (Panchenko 2002; Srebro et al. 2010). Roughly speaking, if
this condition holds, then the difference between the square roots of the population error and the
training error can be bounded by the Rademacher complexity of the hypothesis class. Specializing
to predictors with zero training error, the test error can then be controlled by the square of the
Rademacher complexity, which exactly matches the Bayes error for the minimal norm interpolant
when it is consistent (Koehler et al. 2021). However, the Moreau envelope of a loss function is not
always easy to solve in closed-form, and it is unclear whether this argument can be applied to problems
beyond linear regression and max-margin classification. Moreover, considering the difference of
square roots seem like a mysterious choice and does not have a good intuitive explanation.

In this paper, by showing that optimistic rate holds for any square-root Lipschitz loss, we argue that
the class of square-root Lipschitz losses is the more natural class of loss functions to consider. In
fact, any loss whose Moreau envelope is proportional to itself is square-root Lipschitz. Our result
also provides an intuitive explanation for optimistic rate: when the loss is Lipschitz, the difference
between the test and training error can be bounded by Rademacher complexity; therefore, when
the loss is square-root Lipschitz, the difference between the square roots of the test and training
error can be bounded by Rademacher complexity. In addition to avoiding any hidden constant and
logarithmic factor, our uniform convergence guarantee substantially generalize previous results based
on smoothness (Lipschitz constant of the derivative, such as Srebro et al. 2010). The generality of
our results allows us to handle non-differentiable losses. In the problems of phase retrieval and ReLU
regression, we identify the consistent loss through a norm calculation, and we apply our theory to
prove novel consistency results. In the context of noisy matrix sensing, we also establish benign
overfitting for the minimal nuclear norm solution. Finally, we show that our results extend to fully
optimized neural networks with weight sharing in the first layer.

2 Related Work

Optimistic rates. In the context of generalization theory, our results are related to a phenomena
known as “optimistic rates” — generalization bounds which give strengthened guarantees for predic-
tors with smaller training error. Such bounds can be contrasted with “pessimistic” bounds which do
not attempt to adapt to the training error of the predictor. See for example Vapnik 1982; Panchenko
2003; Panchenko 2002. The work of Srebro et al. 2010 showed that optimistic rates control the
generalization error of function classes learned with smooth losses, and recently the works Zhou
et al. 2021; Koehler et al. 2021; Zhou et al. 2020 showed that a much sharper version of optimism
can naturally explain the phenomena of benign overfitting in Gaussian linear models. (These works
are in turn connected with a celebrated line of work in proportional asymptotics for M-estimation
such as Stojnic 2013, see references within.) In the present work, we show that the natural setting for
optimistic rates is actually square-root-Lipschitz losses and this allows us to capture new applications
such as phase retrieval where the loss is not smooth.

Phase retrieval, ReLU Regression, Matrix sensing. Recent works (Maillard et al. 2020; Barbier
et al. 2019; Mondelli and Montanari 2018; Luo et al. 2019) analyzed the statistical limits of phase
retrieval in a high-dimensional limit for certain types of sensing designs (e.g. i.i.d. Real or Complex
Gaussian), as well as the performance of Approximate Message Passing in this problem (which is
used to predict a computational-statistical gap). In the noiseless case, the works Andoni et al. 2017;
Song et al. 2021 gave better computationally efficient estimators for phase retrieval based upon the
LLL algorithm. Our generalization bound can naturally be applied to any estimator for phase retrieval,
including these methods or other ones, such as those based on non-convex optimization (Sun et al.
2018; Netrapalli et al. 2013). For the same reason, they can also naturally be applied in the context of
sparse phase retrieval (see e.g. Li and Voroninski 2013; Candes et al. 2015).

Similarly, there have been many works studying the computational tractability of ReLU regression.
See for example the work of Auer et al. 1995 where the “matching loss” technique was developed
for learning well-specified GLMs including ReLUs. Under misspecification, learning ReLUs can
be hard and approximate results have been established, see e.g. Goel et al. 2017; Diakonikolas et al.
2020. In particular, learning a ReLU agnostically in squared loss, even over Gaussian marginals, is
known to be hard under standard average-case complexity assumptions (Goel et al. 2019). Again, our
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generalization bound has the merit that it can be applied to any estimator. For matrix sensing, we
consider nuclear norm minimization (as in e.g. Recht et al. 2010) which is a convex program, so it
can always be computed in polynomial time.

Weight-tied neural networks. The work of Bietti et al. 2022 studies a similar two-layer neu-
ral network model with weight tying. Their focus is primarily on understanding the non-convex
optimization of this model via gradient-based methods. Again, our generalization bound can be
straightforwardly combined with the output of their algorithm. The use of norm-based bounds as in
our result is common in the generalization theory for neural networks, see e.g. Bartlett (1996) and
Anthony, Bartlett, et al. (1999). Compared to existing generalization bounds, the key advantage of
our bound is its quantitative sharpness (e.g. small constants and no extra logarithmic factors).

3 Problem Formulation

In most of this paper, we consider the setting of generalized linear models. Given any loss function
f : R×Y → R≥0 and independent sample pairs (xi, yi) from some data distribution D over Rd×Y ,
we can learn a linear model (ŵ, b̂) by minimizing the empirical loss L̂f with the goal of achieving
small population loss Lf :

L̂f (w, b) =
1

n

n∑
i=1

f(⟨w, xi⟩+ b, yi), Lf (w, b) = E(x,y)∼D[f(⟨w, x⟩+ b, y)]. (1)

In the above, Y is an abstract label space. For example, Y = R for linear regression and Y = R≥0

for phase retrieval (section 5.1) and ReLU regression (section 5.2). If we view xi as vectorization of
the sensing matrices, then our setting (1) also includes the problem of matrix sensing (section 5.3).

For technical reasons, we assume that the distribution D follows a Gaussian multi-index model (Zhou
et al. 2022).

(A) d-dimensional Gaussian features with arbitrary mean and covariance: x ∼ N (µ,Σ)

(B) a generic multi-index model: there exist a low-dimensional projection W = [w∗
1 , ..., w

∗
k] ∈

Rd×k, a random variable ξ ∼ Dξ independent of x (not necessarily Gaussian), and an
unknown link function g : Rk+1 → Y such that

ηi = ⟨w∗
i , x⟩, y = g(η1, ..., ηk, ξ). (2)

We require x to be Gaussian because the proof of our generalization bound depends on the Gaussian
Minimax Theorem (Gordon 1985; Thrampoulidis et al. 2014), as in many other works (Koehler et al.
2021; Zhou et al. 2022; Wang et al. 2021; Donhauser et al. 2022). In settings where the features are
not Gaussian, many works (Goldt et al. 2020; Mei and Montanari 2022; Misiakiewicz 2022; Hu and
Lu 2023; Han and Shen 2022) have established universality results showing that the test and training
error are asymptotically equivalent to the error of a Gaussian model with matching covariance matrix.
However, we show in section 7 that Gaussian universality is not always valid and we discuss potential
extensions of the Gaussian feature assumption there.

The multi-index assumption is a generalization of a well-specified linear model y = ⟨w∗, x⟩ + ξ,
which corresponds to k = 1 and g(η, ξ) = η+ ξ in (2). Since g is not even required to be continuous,
the assumption on y is quite general. It allows nonlinear trend and heteroskedasticity, which pose
significant challenges for the analyses using random matrix theory (but not for uniform convergence).
In Zhou et al. (2022), the range of g is taken to be Y = {−1, 1} in order to study binary classification.
In section 5.2, we allow the conditional distribution of y to have a point mass at zero, which is crucial
for distinguishing ReLU regression from standard linear regression.

4 Optimistic Rate

In order to establish uniform convergence, we need two additional technical assumptions because we
have not made any assumption on f and g.
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(C) hypercontractivity: there exists a universal constant τ > 0 such that uniformly over all
(w, b) ∈ Rd × R, it holds that

E[f(⟨w, x⟩+ b, y)4]1/4

E[f(⟨w, x⟩+ b, y)]
≤ τ. (3)

(D) the class of functions on Rk+1 × Y defined below has VC dimension at most h:

{(x, y) → 1{f(⟨w, x⟩, y) > t} : (w, t) ∈ Rk+1 × R}. (4)

Crucially, the quantities τ and h only depend on the number of indices k in assumption (B) instead of
the feature dimension d. This is a key distinction because k can be a small constant even when the
feature dimension is very large. For example, recall that k = 1 in a well-specified model and it is
completely free of d. The feature dimension plays no role in equation (3) because conditioned on
WTx ∈ Rk and ξ ∈ R, the response y is non-random and the distribution of ⟨w, x⟩ for any w ∈ Rd

only depends on wTµ and wTΣw by properties of the Gaussian distribution.

The hypercontractivity (or “norm equivalence”) assumption (3) is one of a few different common
assumptions made in the statistical learning theory literature to rule out the possibility of a very
heavy-tailed loss function. The reason is that if the loss function has a very tiny chance of being
extremely large, it is not possible to state any meaningful learning guarantee from a finite number of
samples. Hypercontractivity was used as an assumption already in Vapnik 1982. Another common
and incomparable assumption made in the literature is boundedness, but this is not suitable for us
because, e.g., the squared loss under the Gaussian distribution will not be bounded almost surely. On
the other hand, if f is the squared loss then (3) holds with τ = 4

√
105 by standard properties of the

Gaussian distribution. We can also state other versions of our main theorem by using other results in
statistical learning theory to handle the low-dimensional concentration; in our proof we simply use a
result from Vapnik 1982 in a contained and black-box fashion. (See e.g. Mendelson 2017; Vapnik
1982 for more discussion of the different possible assumptions.)

Similar assumptions are made in Zhou et al. (2022) and more background on these assumptions can
be found there, but we note that our assumption (C) and (D) are weaker than theirs because we do not
require (3) and (4) to hold uniformly over all Moreau envelopes of f .

We are now ready to state the uniform convergence results for square-root Lipschitz losses.
Theorem 1. Assume that (A), (B), (C), and (D) holds, and let Q = I −W (WTΣW )−1WTΣ. For
any δ ∈ (0, 1), let Cδ : Rd → [0,∞] be a continuous function such that with probability at least
1− δ/4 over x ∼ N (0,Σ), uniformly over all w ∈ Rd,〈

w,QTx
〉
≤ Cδ(w). (5)

If for each y ∈ Y , f is non-negative and
√
f is

√
H-Lipschitz with respect to the first argument, then

with probability at least 1− δ, it holds that uniformly over all (w, b) ∈ Rd × R, we have

(1− ϵ)Lf (w, b) ≤

(√
L̂f (w, b) +

√
H Cδ(w)2

n

)2

(6)

where ϵ = O

(
τ
√

h log(n/h)+log(1/δ)
n

)
.

Since the label y only depends on x through WTx, the matrix Q is simply a (potentially oblique)
projection such that QTx is independent of y. In the proof, we separate x into a low-dimensional
component related to y and the independent component QTx. We establish a low-dimensional
concentration result using VC theory, which is reflected in the ϵ term that does not depend on d, and
we control the the remaining high-dimensional component using a scale-sensitive measure Cδ .

The complexity termCδ(w)/
√
n should be thought of as a (localized form of) Rademacher complexity

Rn. For example, for any norm ∥ · ∥, we have ⟨w,QTx⟩ ≤ ∥w∥ · ∥QTx∥∗ and the Rademacher
complexity for linear predictors with norm bounded by B is B · E∥x∥∗/

√
n (Shalev-Shwartz and

Ben-David 2014). More generally, if we only care about linear predictors in a set K, then Cδ ≈
E
[
supw∈K

〈
w,QTx

〉]
is simply the Gaussian width (Bandeira 2016; Gordon 1988; Koehler et al.

2021) of K with respect to Σ⊥ = QTΣQ and is exactly equivalent to the expected Rademacher
complexity of the class of functions (e.g., Proposition 1 of Zhou et al. 2021).
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5 Applications

We now go on to analyze several different problems using optimistic rates and sqrt-lipschitz losses.
One of the key insights we want to highlight is the identification of the consistent loss for many of
these problems — in other word, the test loss which is implicitly being minimized. When we consider
interpolators/overfit models, this is not obvious because an interpolator simultaneously minimizes
many different training losses (and when we look at the test loss, each different loss functional may
correspond to a different minimizer). Nevertheless, we are able to analyze phenomena like benign
overfitting by identifying the particular sqrt-Lipschitz losses which the interpolator is consistent in,
i.e. for which it approaches the minimum of the test loss in the appropriate limit.

5.1 Benign Overfitting in Phase Retrieval

In this section, we study the problem of phase retrieval where only the magnitude of the label y can
be measured. If the number of observations n < d, the minimal norm interpolant is

ŵ = argmin
w∈Rd:∀i∈[n],⟨w,xi⟩2=y2

i

∥w∥2. (7)

We are particularly interested in the generalization error of (7) when yi are noisy labels and so ŵ
overfits to the training set. It is well-known that gradient descent initialized at zero converges to a
KKT point of the problem (7) when it reaches a zero training error solution (see e.g. Gunasekar et al.
2018). While is not always computationally feasible to compute ŵ, we can study it as a theoretical
model for benign overfitting in phase retrieval.

Due to our uniform convergence guarantee in Theorem 1, it suffices to analyze the norm of ŵ and
we can use the norm calculation to find the appropriate loss for phase retrieval. The key observation
is that for any w♯ ∈ Rd, we can let I = {i ∈ [n] : ⟨w♯, xi⟩ ≥ 0} and the predictor w = w♯ + w⊥

satisfies |⟨w, xi⟩| = yi where

w⊥ = argmin
w∈Rd:

∀i∈I,⟨w,xi⟩=yi−|⟨w♯,xi⟩|
∀i/∈I,⟨w,xi⟩=|⟨w♯,xi⟩|−yi

∥w∥2. (8)

Then it holds that ∥ŵ∥2 ≤ ∥w∥2 ≤ ∥w♯∥2 + ∥w⊥∥2. By treating yi − |⟨w♯, xi⟩| and |⟨w♯, xi⟩| − yi
as the residuals, the norm calculation for ∥w⊥∥2 is the same as the case of linear regression (Koehler
et al. 2021; Zhou et al. 2022). Going through this analysis yields the following norm bound (here
R(Σ) = Tr(Σ)2/Tr(Σ2) is a measure of effective rank, as in (Bartlett et al. 2020)):

Theorem 2. Under assumptions (A) and (B), let f : R× Y → R be given by f(ŷ, y) := (|ŷ| − y)2

with Y = R≥0. Let Q be the same as in Theorem 1 and Σ⊥ = QTΣQ. Fix any w♯ ∈ Rd such that
Qw♯ = 0 and for some ρ ∈ (0, 1), it holds that

L̂f (w
♯) ≤ (1 + ρ)Lf (w

♯). (9)

Then with probability at least 1− δ, for some ϵ ≲ ρ+ log
(
1
δ

)(
1√
n
+ 1√

R(Σ⊥)
+ k

n + n
R(Σ⊥)

)
, it

holds that

min
w∈Rd:

∀i∈[n],⟨w,xi⟩2=y2
i

∥w∥2 ≤ ∥w♯∥2 + (1 + ϵ)

√
nLf (w♯)

Tr(Σ⊥)
. (10)

Note that in this result we used the loss f(ŷ, y) = (|ŷ| − y)2, which is 1-square-root Lipschitz and
naturally arises in the analysis. We will now show that this is the correct loss in the sense that benign
overfitting is consistent with this loss. To establish consistency result, we can pick w♯ to be the
minimizer of the population error. The population minimizer always satisfies Qw♯ = 0 because
Lf ((I − Q)w) ≤ Lf (w) for all w ∈ Rd by Jensen’s inequality. Condition (9) can also be easily
checked because we just need concentration of the empirical loss at a single non-random parameter.
Applying Theorem 1, we obtain the following.
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Corollary 1. In the same setting as in Theorem 2, with probability at least 1− δ, it holds that for
some

ρ ≲ τ

√
k log(n/k) + log(1/δ)

n
+ log (1/δ)

(
1√
n
+

1√
R(Σ⊥)

+
k

n
+

n

R(Σ⊥)

)
,

the minimal norm interpolant ŵ given by (7) enjoys the learning guarantee:

L(ŵ, b̂) ≤ (1 + ρ)

(√
L(w♯, b♯) + ∥w♯∥2

√
Tr(Σ⊥)

n

)2

. (11)

Therefore, ŵ is consistent if the same benign overfitting conditions from Bartlett et al. (2020) and
Zhou et al. (2022) hold: k = o(n), R(Σ⊥) = ω(n) and ∥w♯∥22 Tr(Σ⊥) = o(n).

5.2 Benign Overfitting in ReLU Regression

Since we only need
√
f to be Lipschitz, for any 1-Lipschitz function σ : R → R, we can consider

(i) f(ŷ, y) = (σ(ŷ)− y)2 when Y = R
(ii) f(ŷ, y) = (1− σ(ŷ)y)2+ when Y = {−1, 1}.

We can interpret the above loss function f as learning a neural network with a single hidden unit.
Indeed, Theorem 1 can be straightforwardly applied to these situations. However, we do not always
expect benign overfitting under these loss functions for the following simple reason, as pointed out
in Shamir (2022): when σ is invertible, interpolating the loss f(ŷ, y) = (σ(ŷ)− y)2 is the same as
interpolating the loss f(ŷ, y) = (ŷ−σ−1(y))2 and so the learned function would be the minimizer of
E[(⟨w, x⟩+ b−σ−1(y))2] which is typically different from the minimizer of E[(σ(⟨w, x⟩+ b)−y)2].
The situation of ReLU regression, where σ(ŷ) = max{ŷ, 0}, is more interesting because σ is not
invertible. In order to be able to interpolate, we must have y ≥ 0. If y > 0 with probability 1, then
σ(ŷ) = y is the same as ŷ = y and we are back to interpolating the square loss f(ŷ, y) = (ŷ − y)2.
From this observation, we see that f(ŷ, y) = (σ(ŷ)−y)2 cannot be the appropriate loss for consistency
even though it’s 1 square-root Lipschitz. In contrast, when there is some probability mass at y = 0, it
suffices to output any non-positive value and the minimal norm to interpolate is potentially smaller
than requiring ŷ = 0. Similar to the previous section, we can let I = {i ∈ [n] : yi > 0} and for any
(w♯, b♯) ∈ Rd+1, the predictor w = w♯ + w⊥ satisfies σ(⟨w, xi⟩+ b♯) = yi where

w⊥ = argmin
w∈Rd:

∀i∈I,⟨w,xi⟩=yi−⟨w♯,xi⟩−b♯

∀i/∈I,⟨w,xi⟩=−σ(⟨w♯,xi⟩+b♯)

∥w∥2 (12)

Our analysis will show that the consistent loss for benign overfitting with ReLU regression is

f(ŷ, y) =

{
(ŷ − y)2 if y > 0

σ(ŷ)2 if y = 0.
. (13)

We first state the norm bound below.
Theorem 3. Under assumptions (A) and (B), let f : R × Y → R be the loss defined in (13) with
Y = R≥0. Let Q be the same as in Theorem 1 and Σ⊥ = QTΣQ. Fix any (w♯, b♯) ∈ Rd+1 such that
Qw♯ = 0 and for some ρ ∈ (0, 1), it holds that

L̂f (w
♯, b♯) ≤ (1 + ρ)Lf (w

♯, b♯). (14)

Then with probability at least 1− δ, for some ϵ ≲ ρ+ log
(
1
δ

)(
1√
n
+ 1√

R(Σ⊥)
+ k

n + n
R(Σ⊥)

)
, it

holds that

min
(w,b)∈Rd+1:

∀i∈[n],σ(⟨w,xi⟩+b)=yi

∥w∥2 ≤ ∥w♯∥2 + (1 + ϵ)

√
nLf (w♯, b♯)

Tr(Σ⊥)
. (15)

Since the loss defined in (13) is also 1-square-root Lipschitz, it can be straightforwardly combined
with Theorem 1 to establish benign overfitting in ReLU regression under this loss. The details are
exactly identical to the previous section and so we omit it here.
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5.3 Benign Overfitting in Matrix Sensing

We now consider the problem of matrix sensing: given random matrices A1, ..., An (with i.i.d.
standard Gaussian entries) and independent linear measurements y1, ..., yn given by yi = ⟨Ai, X

∗⟩+
ξi where ξi is independent of Ai, and Eξ = 0 and Eξ2 = σ2, we hope to reconstruct the matrix
X∗ ∈ Rd1×d2 with sample size n≪ d1d2. To this end, we assume that X∗ has rank r. In this setting,
since the measurement matrices have i.i.d. standard Gaussian entries, the test error is closely related
to the estimation error:

L(X) = E(⟨A,X⟩ − y)2 = ∥X −X∗∥2F + σ2.

The classical approach to this problem is to find the minimum nuclear norm solution:

X̂ = argmin
X∈Rd1×d2 :⟨Ai,X⟩=yi

∥X∥∗. (16)

Gunasekar et al. (2017) also shows that gradient descent converges to the minimal nuclear norm
solution in matrix factorization problems. It is well known that having low nuclear norm can ensure
generalization (Foygel and Srebro 2011; Srebro and Shraibman 2005) and minimizing the nuclear
norm ensures reconstruction (Candès and Recht 2009; Recht et al. 2010). However, if the noise level
σ is high, then even the minimal nuclear norm solution X̂ can have large nuclear norm. Since our
result can be adapted to different norms as regularizer, our uniform convergence guarantee can be
directly applied. The dual norm of the nuclear norm is the spectral norm, and it is well-known that
the spectrum norm of a Gaussian random matrix is approximately

√
d1 +

√
d2 (Vershynin 2018) . It

remains to analyze the minimal nuclear norm required to interpolate. For simplicity, we assume that
ξ are Gaussian below, but we can extend it to be sub-Gaussian.

Theorem 4. Suppose that d1d2 > n, then there exists some ϵ ≲
√

log(32/δ)
n + n

d1d2
such that with

probability at least 1− δ, it holds that

min
∀i∈[n],⟨Ai,X⟩=yi

∥X∥∗ ≤
√
r∥X∗∥F + (1 + ϵ)

√
nσ2

d1 ∨ d2
. (17)

Without loss of generality, we will assume d1 ≤ d2 from now on because otherwise we can take the
transpose of A and X . Similar to assuming n/R(Σ⊥) → 0 in linear regression, we implicitly assume
that n/d1d2 → 0 in matrix sensing. Such scaling is necessary for benign overfitting because of the
lower bound on the test error for any interpolant (e.g., Proposition 4.3 of Zhou et al. 2020). Finally,
we apply the uniform convergence guarantee.
Theorem 5. Fix any δ ∈ (0, 1). There exist constants c1, c2, c3 > 0 such that if d1d2 > c1n,
d2 > c2d1, n > c3r(d1 + d2), then with probability at least 1− δ that

∥X̂ −X∗∥2F
∥X∗∥2F

≲
r(d1 + d2)

n
+

√
r(d1 + d2)

n

σ

∥X∗∥F
+

(√
d1
d2

+
n

d1d2

)
σ2

∥X∗∥2F
. (18)

From Theorem 5, we see that when the signal to noise ratio ∥X∗∥2
F

σ2 is bounded away from zero,

then we obtain consistency ∥X̂−X∗∥2
F

∥X∗∥2
F

→ 0 if (i) r(d1 + d2) = o(n), (ii) d1d2 = ω(n), and (iii)

d1/d2 → {0,∞}. This can happen for example when r = Θ(1), d1 = Θ(n1/2), d2 = Θ(n2/3). As
discussed earlier, the second condition is necessary for benign overfitting, and the first consistency
condition should be necessary even for regularized estimators. It is possible that the final condition is
not necessary and we leave a tighter understanding of matrix sensing as future work.

6 Single-Index Neural Networks

We show that our results extend a even more general setting than (1). Suppose that we have a
parameter space Θ ⊆ Rp and a continuous mapping w from θ ∈ Θ to a linear predictor w(θ) ∈ Rd.
Given a function f : R× Y ×Θ → R and i.i.d. sample pairs (xi, yi) drawn from distribution D, we
consider training and test error of the form:

L̂(θ) =
1

n

n∑
i=1

f(⟨w(θ), xi⟩, yi, θ) and L(θ) = E[f(⟨w(θ), x⟩, y, θ)]. (19)
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We make the same assumptions (A) and (B) on D. Assumptions (C) and (D) can be naturally extended
to the following:

(E) there exists a universal constant τ > 0 such that uniformly over all θ ∈ Θ, it holds that

E[f(⟨w(θ), x⟩, y, θ)4]1/4

E[f(⟨w(θ), x⟩, y, θ)]
≤ τ. (20)

(F) bounded VC dimensions: the class of functions on Rk+1 × Y defined by

{(x, y) → 1{f(⟨w, x⟩, y, θ) > t} : (w, t, θ) ∈ Rk+1 × R×Θ} (21)

has VC dimension at most h.

Now we can state the extension of Theorem 1.
Theorem 6. Suppose that assumptions (A), (B), (E) and (F) hold. For any δ ∈ (0, 1), let Cδ :
Rd → [0,∞] be a continuous function such that with probability at least 1− δ/4 over x ∼ N (0,Σ),
uniformly over all θ ∈ Θ, 〈

w(θ), QTx
〉
≤ Cδ(w(θ)). (22)

If for each θ ∈ Θ and y ∈ Y , f is non-negative and
√
f is

√
Hθ-Lipschitz with respect to the first

argument, and Hθ is continuous in θ, then with probability at least 1− δ, it holds that uniformly over
all θ ∈ Θ, we have

(1− ϵ)L(θ) ≤

(√
L̂(θ) +

√
Hθ Cδ(w(θ))2

n

)2

. (23)

Next, we show that the generality of our result allows us to establish uniform convergence bound for
two-layer neural networks with weight sharing. In particular, we let σ(x) = max(x, 0) be the ReLU
activation function and θ = (w, a, b) ∈ Rd+2N , where N is the number of hidden units. Consider
the loss function

f(ŷ, y, θ) =

(
N∑
i=1

aiσ(ŷ − bi)− y

)2

or f(ŷ, y, θ) =

(
1−

N∑
i=1

aiσ(ŷ − bi)y

)2

+

, (24)

then L(θ) is the test error of a neural network of the form hθ(x) :=
∑N

i=1 aiσ(⟨w, x⟩ − bi). Since
our uniform convergence guarantee holds uniformly over all θ, it applies to networks whose first and
second layer weights are optimized at the same time. Without loss of generality, we can assume that
b1 ≤ ... ≤ bN are sorted, then it is easy to see that

√
f is maxj∈[N ]

∣∣∣∑j
i=1 ai

∣∣∣ Lipschitz. Applying
Theorem 6, we obtain the following corollary.
Corollary 2. Fix an arbitrary norm ∥ · ∥ and consider f as defined in (24). Assume that the data
distribution D satisfy (A), (B), and (E). Then with probability at least 1− δ, it holds that uniformly
over all θ = (w, a, b) ∈ Rd+2N , we have

(1− ϵ)L(θ) ≤

√L̂(θ) + maxj∈[N ]

∣∣∣∑j
i=1 ai

∣∣∣ ∥w∥ (E∥QTx∥∗ + ϵ′)
√
n

2

(25)

where ϵ is the same as in Theorem 6 with h = Õ(k+N) and ϵ′ = O
(
sup∥u∥≤1 ∥u∥Σ⊥

√
log(1/δ)

)
.

The above theorem says given a network parameter θ, after sorting the bi’s, a good complexity measure
to look at is maxj∈[N ]

∣∣∣∑j
i=1 ai

∣∣∣ · ∥w∥ and equation (25) precisely quantify how the complexity of a
network controls generalization.

7 On Gaussian Universality

In this section, we discuss a counterexample to Gaussian universality motivated by Shamir (2022). In
particular, we consider a data distribution D over (x, y) given by:
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(G) x = (x|k, x|d−k) where x|k ∼ N (0,Σ|k) and there exists a function h : Rk → R such that

x|d−k = h(x|k) · z with z ∼ N
(
0,Σ|d−k

)
independent of x|k (26)

(H) there exists a function g : Rk+1 → R such that

y = g(x|k, ξ) (27)

where ξ ∼ Dξ is independent of x (but not necessarily Gaussian).

By the independence between z and x|k, we can easily see that x|k and x|d−k are uncorrelated.
Moreover, the covariance matrix of x|d−k is

E[x|d−kx
T
|d−k] = E[h(x|k)2] · Σ|d−k

which is just a re-scaling of Σ|d−k and therefore has the same effective rank as R(Σ|d−k). Even
though the feature x in D is non-Gaussian, its tail x|d−k is Gaussian conditioned on x|k. Therefore,
our proof technique is still applicable after a conditioning step. However, it turns out that the uniform
convergence bound in Theorem 1 is no longer valid. Instead, we have to re-weight the loss function.
The precise theorem statements can be found in the appendix. We briefly describe our theoretical
results below, which follow the same ideas as in section 4 and 5.

Uniform Convergence. Under a similar low-dimensional concentration assumption such as (C), if
we let Cδ be such that ⟨w, z⟩ ≤ Cδ(w) for all w ∈ Rd−k with high probability, it holds that

E
[
f(⟨w, x⟩, y)
h(x|k)2

]
≤ (1 + o(1))

(
1

n

n∑
i=1

f(⟨w, xi⟩, yi)
h(xi|k)2

+
Cδ(w|d−k)√

n

)2

. (28)

Note that the distribution of z is specified in (G) and different to the distribution of x|d−k.

Norm Bound. Next, we focus on linear regression and compute the minimal norm required to
interpolate. If we pick Σ|d−k to satisfy the benign overfitting conditions, for any w∗

|k ∈ Rk, we have

min
w∈Rd:

∀i∈[n],⟨w,xi⟩=yi

∥w∥22 ≤ ∥w∗
|k∥

2
2 + (1 + o(1))

nE
[(

y−⟨w∗
|k,x|k⟩

h(x|k)

)2]
Tr(Σ|d−k)

(29)

It is easy to see that the w∗ that minimizes the population weighted square loss satisfy w∗
|d−k = 0,

and so we can let w∗
|k to be the minimizer.

Benign Overfitting. Let ŵ = argminw∈Rd:Xw=Y ∥w∥2 be the minimal norm interpolant. Plug-
ging in the norm bound (29) into the uniform convergence guarantee (28), we show that

E
[
(⟨ŵ, x⟩ − y)2

h(x|k)2

]
≤ (1 + o(1))

∥ŵ∥22 Tr(Σ|d−k)

n
→ E

[
(⟨w∗, x⟩ − y)2

h(x|k)2

]
. (30)

which recovers the consistency result of Shamir (2022).

Contradiction. Suppose that Gaussian universality holds, then our optimistic rate theory would
predict that

E[(⟨ŵ, x⟩ − y)2] ≤ (1 + o(1))
∥ŵ∥22 · E[h(x|k)2] Tr(Σ|d−k)

n
. (31)

Combining (30) with (31), we obtain that

min
w

E[(⟨w, x⟩ − y)2] ≤ (1 + o(1))min
w

E[h(x|k)2] · E

[(
y − ⟨w, x⟩
h(x|k)

)2
]

(32)
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which cannot always hold. For example, let’s consider the case where k = 1, x1 ∼ N (0, 1),
h(x1) = 1 + |x1| and y = h(x1)

2. Then it is straightforward to verify that the left hand side of (32)
equals E[h(x1)4] and the right hand side equals E[h(x1)2]2, but this is impossible because

E[h(x1)4]− E[h(x1)2]2 = Var(h(x1)
2) > 0.

In the counterexample above, we see that it is possible to introduce strong dependence between the
signal and the tail component of x while ensuring that they are uncorrelated. The dependence will
prevent the norm of the tail from concentrating around its mean, no matter how large the sample size
is. In contrast, the norm of the tail will concentrate for Gaussian features with a matching covariance
— such discrepancy results in an over-optimistic bound for non-Gaussian data.

8 Conclusion

In this paper, we extend a type of sharp uniform convergence guarantee proven for the square loss
in Zhou et al. (2021) to any square-root Lipschitz loss. Uniform convergence with square-root
Lipschitz loss is an important tool because the appropriate loss to study interpolation learning is
usually square-root Lipschitz instead of Lipschitz. Compared to the prior work of Zhou et al. 2022,
our view significantly simplify the assumptions to establish optimistic rate. Since we don’t need to
explicitly compute the Moreau envelope for each application, our framework easily leads to many
novel benign overfitting results, including low-rank matrix sensing.

In the applications to phase retrieval and ReLU, we identify the appropriate loss function f and
our norm calculation overcomes the challenge that f is non-convex and so CGMT cannot be di-
rectly applied. Furthermore, we explore new extensions of the uniform convergence technique to
study single-index neural networks and suggest a promising research direction to understand the
generalization of neural networks. Finally, we argue that Gaussian universality cannot always be
taken for granted by analyzing a model where only the weighted square loss enjoys an optimistic
rate. Our results highlight the importance of tail concentration and shed new lights on the necessary
conditions for universality. An important future direction is to extend optimistic rate beyond Gaussian
data, possibly through worst-case Rademacher complexity. Understanding the performance of more
practical algorithms in phase retrieval and deriving the necessary and sufficient conditions for benign
overfitting in matrix sensing are also interesting problems.

Acknowledgements. F.K. was supported in part by NSF award CCF-1704417, NSF award IIS-
1908774, and N. Anari’s Sloan Research Fellowship.
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A Organization of the Appendices

In the Appendix, we give proofs of all results from the main text. In Appendix B, we study properties
of square-root-Lipschitz functions and introduce some technical tools that we use throughout the
appendix. In Appendix C, we prove our main uniform convergence guarantee (Theorem 1 and
the more general version Theorem 6). In Appendix D, we obtain bounds on the minimal norm
required to interpolate in the settings studied in section 5. In Appendix E, we provide details on the
counterexample to Gaussian universality described in section 7.

B Preliminaries

B.1 Properties of Square-root Lipschitz Loss

In this section, we prove that square-root Lipschitzness can be equivalently characterized by a
relationship between a function and its Moreau envelope, which can be used to establish uniform
convergence results based on the recent work of Zhou et al. 2022. We formally define Lipschitz
functions and Moreau envelope below.
Definition 1. A function f : R → R is M -Lipschitz if for all x, y in R,

|f(x)− f(y)| ≤M |x− y|. (33)

Definition 2. The Moreau envelope of a function f : R → R associated with smoothing parameter
λ ∈ R+ is defined as

fλ(x) := inf
y∈R

f(y) + λ(y − x)2. (34)

Though we define Lipschitz functions and Moreau envelope for univariate functions from R to R
above, we can easily extend definitions 1 and 2 to loss functions f : R×Y → R or f : R×Y×Θ → R.
We say a function f : R× Y → R is M -Lipschitz if for any y ∈ Y and ŷ1, ŷ2 ∈ R, we have

|f(ŷ1, y)− f(ŷ2, y)| ≤M |ŷ1 − ŷ2|.

Similarly, we say a function f : R × Y × Θ → R is M -Lipschitz if for any y ∈ Y, θ ∈ Θ and
ŷ1, ŷ2 ∈ R, we have

|f(ŷ1, y, θ)− f(ŷ2, y, θ)| ≤M |ŷ1 − ŷ2|.
We can also define the Moreau envelope of a function f : R× Y → R by

fλ(ŷ, y) := inf
u∈R

f(u, y) + λ(u− ŷ)2,

and the Moreau envelope of a function f : R× Y ×Θ → R is defined as

fλ(ŷ, y, θ) := inf
u∈R

f(u, y, θ) + λ(u− ŷ)2.

The proof of all results in this section can be straightforwardly extended to these settings. For
simplicity, we ignore the additional arguments in Y and Θ in this section.

The Moreau envelope is usually viewed as a smooth approximation to the original function f ; its
minimizer is known as the proximal operator. It plays an important role in convex analysis (see
e.g. Boyd et al. 2004; Bauschke, Combettes, et al. 2011; Rockafellar 1970), but is also useful and
well-defined when f is nonconvex. The canonical example of a

√
H-square-root-Lipschitz function

is f(x) = Hx2, for which we can easily check

fλ(x) =
λ

λ+H
f(x).

In proposition 1 below, we show that the condition fλ ≥ λ
λ+H f is exactly equivalent to

√
H-square-

root-Lipschitzness.

Proposition 1. A function f : R → R is non-negative and
√
H-square-root-Lipschitz if and only if

for any x ∈ R and λ ≥ 0, it holds that

fλ(x) ≥
λ

λ+H
f(x). (35)
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Proof. Suppose that equation (35) holds, then by taking λ = 0 and the definition in equation (2), we
see that f must be non-negative. For an non-negative function f , we observe for any x ∈ R, it holds
that

∀λ ≥ 0, fλ(x) ≥
λ

λ+H
f(x)

⇐⇒ ∀λ > 0, fλ(x) ≥
λ

λ+H
f(x) since fλ ≥ 0

⇐⇒ inf
λ>0

λ+H

λ
fλ(x) ≥ f(x)

⇐⇒ inf
λ>0

λ+H

λ
inf
y∈R

f(y) + λ(y − x)2 ≥ f(x) by equation (2)

⇐⇒ inf
y∈R

inf
λ>0

(
1 +

H

λ

)
f(y) + (λ+H)(y − x)2 ≥ f(x)

⇐⇒ inf
y∈R

f(y) +H(y − x)2 + 2
√
f(y)H(y − x)2 ≥ f(x) by λ∗ =

√
Hf(y)

(y − x)2

⇐⇒ ∀y ∈ R, (
√
f(y) +

√
H|y − x|)2 ≥ f(x)

⇐⇒ ∀y ∈ R,
√
H|y − x| ≥

√
f(x)−

√
f(y) since f ≥ 0.

Therefore, f must be
√
H-square-root-Lipschitz as well. Conversely, if f is non-negative and√

H-square-root-Lipschitz, then the above implies that (2) must hold and we are done.

Interestingly, there is a similar equivalent characterization for Lipschitz functions as well.
Proposition 2. A function f : R → R is M -Lipschitz if and only if for any x ∈ R and λ > 0, it holds
that

fλ(x) ≥ f(x)− M2

4λ
. (36)

Proof. Observe that for any x ∈ R, it holds that

∀λ > 0, fλ(x) ≥ f(x)− M2

4λ

⇐⇒ inf
λ>0

fλ(x) +
M2

4λ
≥ f(x)

⇐⇒ inf
λ>0,y∈R

f(y) + λ(y − x)2 +
M2

4λ
≥ f(x) by equation (2)

⇐⇒ inf
y∈R

f(y) +M |y − x| ≥ f(x) by λ∗ =
M

2|y − x|
⇐⇒ ∀y ∈ R, M |y − x| ≥ f(x)− f(y)

and we are done.

Finally, we show that any smooth loss is square-root-Lipschitz. Therefore, the class of square-root-
Lipschitz losses is more general than the class of smooth losses studied in Srebro et al. 2010.
Definition 3. A twice differentiable1 function f : R → R is H-smooth if for all x in R

|f ′′(x)| ≤ H.

The following result is similar to to Lemma 2.1 in Srebro et al. 2010:
Proposition 3. Let f : R → R be a H-smooth and non-negative function. Then for any x ∈ R, it
holds that

|f ′(x)| ≤
√

2Hf(x).

Therefore,
√
f is

√
H/2-Lipschitz.

1The definition of smoothness can be stated without twice differentiability, by instead requiring the gradient
to be Lipschitz. We make this assumption here simply for convenience.
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Proof. Since f is H-smooth and non-negative, by Taylor’s theorem, for any x, y ∈ R, we have

0 ≤ f(y)

= f(x) + f ′(x)(y − x) +
f ′′(a)

2
(y − x)2

≤ f(x) + f ′(x)(y − x) +
H

2
(y − x)2

where a ∈ [min(x, y),max(x, y)]. Setting y = x− f ′(x)
H yields the desired bound. To show that

√
f

is Lipschitz, we observe that for any x ∈ R∣∣∣∣ ddx√f(x)
∣∣∣∣ =

∣∣∣∣∣ f ′(x)

2
√
f(x)

∣∣∣∣∣ ≤√H/2
and so we apply Taylor’s theorem again to show that

|
√
f(x)−

√
f(y)| ≤

√
H/2 |x− y|

which is the desired definition.

B.2 Properties of Gaussian Distribution

We will make use of the following results without proof.

Gaussian Minimax Theorem. Our proof of Theorem 1 and 6 will closely follow prior works that
apply Gaussian Minimax Theorem (GMT) to uniform convergence (Koehler et al. 2021; Zhou et al.
2021; Zhou et al. 2022; Wang et al. 2021; Donhauser et al. 2022). The following result is Theorem 3
of Thrampoulidis et al. 2015 (see also Theorem 1 in the same reference). As explained there, it is a
consequence of the main result of Gordon (1985), known as Gordon’s Theorem.
Theorem 7 (Thrampoulidis et al. 2015; Gordon 1985). Let Z : n× d be a matrix with i.i.d. N (0, 1)
entries and suppose G ∼ N (0, In) and H ∼ N (0, Id) are independent of Z and each other. Let
Sw, Su be compact sets and ψ : Sw × Su → R be an arbitrary continuous function. Define the
Primary Optimization (PO) problem

Φ(Z) := min
w∈Sw

max
u∈Su

⟨u, Zw⟩+ ψ(w, u) (37)

and the Auxiliary Optimization (AO) problem

ϕ(G,H) := min
w∈Sw

max
u∈Su

∥w∥2⟨G, u⟩+ ∥u∥2⟨H,w⟩+ ψ(w, u). (38)

Under these assumptions, Pr(Φ(Z) < c) ≤ 2Pr(ϕ(G,H) ≤ c) for any c ∈ R.

Furthermore, if we suppose that Sw, Su are convex sets and ψ(w, u) is convex in w and concave in u,
then Pr(Φ(Z) > c) ≤ 2Pr(ϕ(G,H) ≥ c).

GMT is an extremely useful tool because it allows us to convert a problem involving a random
matrix into a problem involving only two random vectors. In our analysis, we will make use of a
slightly more general version of Theorem 7, introduced by Koehler et al. (2021), to include additional
variables which only affect the deterministic term in the minmax problem.
Theorem 8 (Variant of GMT). Let Z : n × d be a matrix with i.i.d. N (0, 1) entries and suppose
G ∼ N (0, In) and H ∼ N (0, Id) are independent of Z and each other. Let SW , SU be compact
sets in Rd × Rd′

and Rn × Rn′
respectively, and let ψ : SW × SU → R be an arbitrary continuous

function. Define the Primary Optimization (PO) problem

Φ(Z) := min
(w,w′)∈SW

max
(u,u′)∈SU

⟨u, Zw⟩+ ψ((w,w′), (u, u′)) (39)

and the Auxiliary Optimization (AO) problem

ϕ(G,H) := min
(w,w′)∈SW

max
(u,u′)∈SU

∥w∥2⟨G, u⟩+ ∥u∥2⟨H,w⟩+ ψ((w,w′), (u, u′)). (40)

Under these assumptions, Pr(Φ(Z) < c) ≤ 2Pr(ϕ(G,H) ≤ c) for any c ∈ R.
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Theorem 8 requires SW and SU to be compact. However, we can usually get around the compactness
requirement by a truncation argument.
Lemma 1 (Zhou et al. 2022, Lemma 6). Let f : Rd → R be an arbitrary function and Sd

r = {x ∈
Rd : ∥x∥2 ≤ r}, then for any set K, it holds that

lim
r→∞

sup
w∈K∩Sd

r

f(w) = sup
w∈K

f(w). (41)

If f is a random function, then for any t ∈ R

Pr

(
sup
w∈K

f(w) > t

)
= lim

r→∞
Pr

(
sup

w∈K∩Sd
r

f(w) > t

)
. (42)

Lemma 2 (Zhou et al. 2022, Lemma 7). Let K be a compact set and f, g be continuous real-valued
functions on Rd. Then it holds that

lim
r→∞

sup
w∈K

inf
0≤λ≤r

λf(w) + g(w) = sup
w∈K:f(w)≥0

g(w). (43)

If f and g are random functions, then for any t ∈ R

Pr

(
sup

w∈K:f(w)≥0

g(w) ≥ t

)
= lim

r→∞
Pr

(
sup
w∈K

inf
0≤λ≤r

λf(w) + g(w) ≥ t

)
. (44)

Concentration inequalities. Let σmin(A) denote the minimum singular value of an arbitrary matrix
A, and σmax the maximum singular value. We use ∥A∥op = σmax(A) to denote the operator norm
of matrix A. The following concentration results for Gaussian vector and matrix are standard.
Lemma 3 (Special case of Theorem 3.1.1 of Vershynin 2018). Suppose that Z ∼ N (0, In). Then

Pr(
∣∣∥Z∥2 −√

n
∣∣ ≥ t) ≤ 4e−t2/4. (45)

Lemma 4 (Koehler et al. 2021, Lemma 10). For any covariance matrix Σ and H ∼ N (0, Id), with
probability at least 1− δ, it holds that

1− ∥Σ1/2H∥22
Tr(Σ)

≲
log(4/δ)√
R(Σ)

(46)

and
∥ΣH∥22 ≲ log(4/δ) Tr(Σ2). (47)

Therefore, provided that R(Σ) ≳ log(4/δ)2, it holds that(
∥ΣH∥2

∥Σ1/2H∥2

)2

≲ log(4/δ)
Tr(Σ2)

Tr(Σ)
. (48)

Theorem 9 (Vershynin 2010, Corollary 5.35). Let n,N ∈ N. Let A ∈ RN×n be a random matrix
with entries i.i.d. N (0, 1). Then for any t > 0, it holds with probability at least 1− 2 exp(−t2/2)
that √

N −
√
n− t ≤ σmin(A) ≤ σmax(A) ≤

√
N +

√
n+ t. (49)

Conditional Distribution of Gaussian. To handle arbitrary multi-index conditional distributions
of y given by assumption (B), we will apply a conditioning argument. After conditioning on WTx
and ξ, the response y is no longer random. Importantly, the conditional distribution of x remains
Gaussian (though with a different mean and covariance) and so we can still apply GMT. In the lemma
below, Z ∈ Rn×d is a random matrix with i.i.d. N (0, 1) entries and X = ZΣ1/2.
Lemma 5 (Zhou et al. 2022, Lemma 4). Fix any integer k < d and any k vectors w∗

1 , ..., w
∗
k in Rd

such that Σ1/2w∗
1 , ...,Σ

1/2w∗
k are orthonormal. Denoting

P = Id −
k∑

i=1

(Σ1/2w∗
i )(Σ

1/2w∗
i )

T , (50)

the distribution of X conditional on Xw∗
1 = η1, ..., Xw

∗
k = ηk is the same as that of

k∑
i=1

ηi(Σw
∗
i )

T + ZPΣ1/2. (51)
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B.3 Vapnik-Chervonenkis (VC) theory

By the conditioning step mentioned above, we will separate x into a low-dimensional component
WTx and the independent component QTx. Concentration results for the low-dimensional compo-
nent can be easily established using VC theory. As mentioned in Zhou et al. 2022, low-dimensional
concentration can be established using alternative results (e.g., Vapnik 1982; Panchenko 2002;
Panchenko 2003; Mendelson 2017).

Recall the following definition of VC-dimension from Shalev-Shwartz and Ben-David (2014).
Definition 4. Let H be a class of functions from X to {0, 1} and let C = {c1, ..., cm} ⊂ X . The
restriction of H to C is

HC = {(h(c1), ..., h(cm)) : h ∈ H}.
A hypothesis class H shatters a finite set C ⊂ X if |HC | = 2|C|. The VC-dimension of H is the
maximal size of a set that can be shattered by H. If H can shatter sets of arbitrary large size, we say
H has infinite VC-dimension.

Also, we have the following well-known result for the class of nonhomogenous halfspaces in Rd

(Theorem 9.3 of Shalev-Shwartz and Ben-David (2014)), and the result on VC-dimension of the
union of two hypothesis classes (Lemma 3.2.3 of Blumer et al. (1989)):
Theorem 10. The class {x 7→ sign(⟨w, x⟩+ b) : w ∈ Rd, b ∈ R} has VC-dimension d+ 1.
Theorem 11. Let H a hypothesis classes of finite VC-dimension d ≥ 1. Let H2 := {max(h1, h2) :
h1, h2 ∈ H} and H3 := {min(h1, h2) : h1, h2 ∈ H}. Then, both the VC-dimension of H2 and the
VC-dimension of H3 are O(d).

By combining Theorem 10 and 11, we can easily verify the VC assumption in Corollary 1 for the
phase retrieval loss f(ŷ, y) = (|ŷ| − y)2. Similar results can be proven for ReLU regression. To
verify the VC assumption for single-index neural nets in Corollary 2, we can use the following result
(equation 2 of Bartlett et al. (2019)):
Theorem 12. The VC-dimension of a neural network with piecewise linear activation function, W
parameters, and L layers has VC-dimension O(WL logW ).

We can easily establish low-dimensional concentration due to the following result:
Theorem 13 (Vapnik 1982, Special case of Assertion 4 in Chapter 7.8; see also Theorem 7.6).
Suppose that the loss function l : Z ×Θ → R≥0 satisfies

(i) for every θ ∈ Θ, the function l(·, θ) is measurable with respect to the first argument

(ii) the class of functions {z 7→ 1{l(z, θ) > t} : (θ, t) ∈ Θ× R} has VC-dimension at most h

and the distribution D over Z satisfies for every θ ∈ Θ

Ez∼D[l(z, θ)
4]1/4

Ez∼D[l(z, θ)]
≤ τ, (52)

then for any n > h, with probability at least 1 − δ over the choice of (z1, . . . , zn) ∼ Dn, it holds
uniformly over all θ ∈ Θ that

1

n

n∑
i=1

l(zi, θ) ≥

(
1− 8τ

√
h(log(2n/h) + 1) + log(12/δ)

n

)
Ez∼D[l(z, θ)]. (53)

C Proof of Theorem 6

It is clear that Theorem 1 is a special case of Theorem 6. Therefore, we will prove the more general
result here.

Notation. Following the tradition in statistics, we denote X = (x1, ..., xn)
T ∈ Rn×d as the design

matrix. In the proof section, we slightly abuse the notation of ηi to mean Xw∗
i and ξ to mean the

n-dimensional random vector whose i-th component satisfies yi = g(η1,i, ..., ηk,i, ξi). We will write
X = ZΣ1/2 where Z is a random matrix with i.i.d. standard normal entries if µ = 0.
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Throughout this section, we can first assume µ = 0 in Assumption (A) without loss of generality
because if we define f̃ : R× Y ×Θ → R by

f̃(ŷ, y, θ) := f(ŷ + ⟨w(θ), µ⟩, y, θ), (54)
then by definition, it holds that

f(⟨w(θ), x⟩, y, θ) = f̃(⟨w(θ), x− µ⟩, y, θ)
and so we can apply the theory on f̃ first and then translate to the problem on f . Similarly, we can
also assume Σ1/2w∗

1 , ...,Σ
1/2w∗

k are orthonormal without loss of generality. This is because we can
denote W ∈ Rd×k by W = [w∗

1 , ..., w
∗
k] and let W̃ =W (WTΣW )−1/2. By definition, it holds that

W̃TΣW̃ = I and so the columns of W̃ = [w̃∗
1 , ..., w̃

∗
k] satisfy Σ1/2w̃∗

1 , ...,Σ
1/2w̃∗

k are orthonormal.
If we define g̃ : Rk+1 → R by

g̃(η1, ..., ηk, ξ) = g([η1, ..., ηk](W
TΣW )1/2 + µTW, ξ), (55)

then y = g̃(xT W̃ , ξ) and so we can apply the theory on g̃.

We will write the generalization problem as a Primary Optimization problem in Theorem 8. For
generality, we will let F be any deterministic function and then choose it in the end.
Lemma 6. Fix an arbitrary set Θ ⊆ Rp and let F : Θ → R be any deterministic and continuous
function. Consider dataset (X,Y ) drawn i.i.d. from the data distribution D according to (A) and (B)
with µ = 0 and orthonormal Σ1/2w∗

1 , ...,Σ
1/2w∗

k. Then conditioned on Xw∗
1 = η1, ..., Xw

∗
k = ηk

and ξ, if we define

Φ := sup
(w,u,θ)∈Rd×Rn×Θ

w=PΣ1/2w(θ)

inf
λ∈Rn

⟨λ, Zw⟩+ ψ(u, θ, λ | η1, ..., ηk, ξ) (56)

where P is defined in (50) and ψ is a deterministic and continuous function given by

ψ(u, θ, λ | η1, ..., ηk, ξ) = F (θ)− 1

n

n∑
i=1

f(ui, g(η1,i, ..., ηk,i, ξi), θ)

+ ⟨λ,

(
k∑

i=1

ηi(Σw
∗
i )

T

)
w(θ)− u⟩,

(57)

then it holds that for any t ∈ R, we have

Pr

(
sup
θ∈Θ

F (θ)− L̂(θ) > t
∣∣∣ η1, ..., ηk, ξ) = Pr(Φ > t). (58)

Proof. By introducing a variable u = Xw(θ), we have

sup
θ∈Θ

F (θ)− L̂(θ) = sup
θ∈Θ

F (θ)− 1

n

n∑
i=1

f(⟨w(θ), xi⟩, yi, θ)

= sup
θ∈Θ,u∈Rn

inf
λ∈Rn

⟨λ,Xw(θ)− u⟩+ F (θ)− 1

n

n∑
i=1

f(ui, yi, θ).

Conditioned on Xw∗
1 = η1, ..., Xw

∗
k = ηk and ξ, the above is only random in X by our multi-index

model assumption on y. By Lemma 5, the above is equal in law to

sup
θ∈Θ,u∈Rn

inf
λ∈Rn

⟨λ,

(
k∑

i=1

ηi(Σw
∗
i )

T + ZPΣ1/2

)
w(θ)− u⟩+ F (θ)− 1

n

n∑
i=1

f(ui, yi, θ)

= sup
θ∈Θ,u∈Rn

inf
λ∈Rn

⟨λ,
(
ZPΣ1/2

)
w(θ)⟩+ ψ(u, θ, λ | η1, ..., ηk, ξ)

= sup
(w,u,θ)∈Rd×Rn×Θ

w=PΣ1/2w(θ)

inf
λ∈Rn

⟨λ, Zw⟩+ ψ(u, θ, λ | η1, ..., ηk, ξ)

=Φ.

The function ψ is continuous because we require F, f and w to be continuous in the definitions.
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Next, we are ready to apply Gaussian Minimax Theorem. Although the domains in (56) are not
compact, we can use the truncation lemmas 1 and 2 in Appendix B.
Lemma 7. In the same setting as Lemma 6, define the auxiliary problem as

Ψ := sup
(u,θ)∈Rn×Θ

⟨H,PΣ1/2w(θ)⟩≥∥∥PΣ1/2w(θ)∥2G+
∑k

i=1⟨w(θ),Σw∗
i ⟩ηi−u∥

2

F (θ)− 1

n

n∑
i=1

f(ui, yi, θ) (59)

then for any t ∈ R, it holds that

Pr

(
sup
θ∈K

F (θ)− L̂(θ) > t

)
≤ 2Pr(Ψ ≥ t). (60)

where the randomness in the second probability is taken over G,H, η1, ..., ηk and ξ.

Proof. Denote Sr = {(w, u, θ) ∈ Rd×Rn×Θ : w = PΣ1/2w(θ) and ∥w∥2+∥u∥2+∥θ∥2 ≤ r}.
The set Sr is bounded by definition and closed by the continuity of w. Hence, it is compact. Next,
we denote the truncated problems:

Φr := sup
(w,u,θ)∈Sr

inf
λ∈Rn

⟨λ, Zw⟩+ ψ(u, θ, λ | η1, ..., ηk, ξ) (61)

Φr,s := sup
(w,u,θ)∈Sr

inf
∥λ∥2≤s

⟨λ, Zw⟩+ ψ(u, θ, λ | η1, ..., ηk, ξ). (62)

By definition, we have Φr ≤ Φr,s and so
Pr(Φr > t) ≤ Pr(Φr,s > t).

The corresponding auxiliary problems are
Ψr,s := sup

(w,u,θ)∈Sr

inf
∥λ∥2≤s

∥λ∥2⟨H,w⟩+ ∥w∥2⟨G,λ⟩+ ψ(u, θ, λ | η1, ..., ηk, ξ)

= sup
(w,u,θ)∈Sr

inf
∥λ∥2≤s

∥λ∥2⟨H,w⟩+ ⟨λ, ∥w∥2G+

k∑
i=1

ηi⟨w(θ),Σw∗
i ⟩ − u⟩

+ F (θ)− 1

n

n∑
i=1

f(ui, g(η1,i, ..., ηk,i, ξi), θ)

= sup
(w,u,θ)∈Sr

inf
0≤λ≤s

λ

(
⟨H,w⟩ −

∥∥∥∥∥∥w∥2G+

k∑
i=1

ηi⟨w(θ),Σw∗
i ⟩ − u

∥∥∥∥∥
2

)

+ F (θ)− 1

n

n∑
i=1

f(ui, g(η1,i, ..., ηk,i, ξi), θ)

and the limit of s→ ∞:

Ψr := sup
(w,u,θ)∈Sr

⟨H,w⟩≥∥∥w∥2G+
∑k

i=1 ηi⟨w(θ),Σw∗
i ⟩−u∥

2

F (θ)− 1

n

n∑
i=1

f(ui, g(η1,i, ..., ηk,i, ξi), θ)

By definition, it holds that Ψr ≤ Ψ and so
Pr(Ψr ≥ t) ≤ Pr(Ψ ≥ t).

Thus, it holds that
Pr(Φ > t) = lim

r→∞
Pr(Φr > t) by Lemma 1

≤ lim
r→∞

lim
s→∞

Pr(Φr,s > t)

≤ 2 lim
r→∞

lim
s→∞

Pr(Ψr,s ≥ t) by Theorem 8

= 2 lim
r→∞

Pr(Ψr ≥ t) by Lemma 2

≤ 2Pr(Ψ ≥ t).

The proof concludes by applying Lemma 6 and the tower law.
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The following two simple lemmas will be useful to analyze the auxiliary problem.
Lemma 8. For a, b,H > 0, we have

sup
λ≥0

−λa+ λ

H + λ
b = (

√
b−

√
Ha)2+.

Proof. Observe that

sup
λ≥0

−λa+ λ

H + λ
b = b− inf

λ≥0
λa+

H

H + λ
b.

Define f(λ) = λa+ H
H+λb, then

f
′
(λ) = a− Hb

(H + λ)2
≤ 0 ⇐⇒ (H + λ)2 ≤ Hb

a

⇐⇒ −
√
Hb

a
−H ≤ λ ≤

√
Hb

a
−H

Since we require λ ≥ 0, we only need to consider whether
√

Hb
a − H ≥ 0 ⇐⇒ b ≥ Ha. If

b < Ha, the infimum is attained at λ = 0. Otherwise, the infimum is attained at λ∗ =
√

Hb
a −H , at

which point
f(λ∗) = 2

√
Hba−Ha.

Plugging in, we see that the expression is equivalent to (
√
b−

√
Ha)2+ in both cases.

Lemma 9. For a, b ≥ 0, we have

sup
λ≥0

−λa− b

λ
= −

√
4ab

Proof. Define f(λ) = −λa− b
λ , then

f
′
(λ) = −a+ b

λ2
≥ 0 ⇐⇒ b

a
≥ λ2

and so in the domain λ ≥ 0, the optimum is attained at λ∗ =
√
b/a at which point f(λ∗) =

−2
√
ab.

We are now ready to analyze the auxiliary problem.
Lemma 10. In the same setting as in Lemma 6, assume that for every δ > 0

(A) Cδ : Rd → [0,∞] is a continuous function such that with probability at least 1− δ/4 over
H ∼ N (0, Id), uniformly over all w ∈ Rd, we have that

⟨Σ1/2PH,w⟩ ≤ Cδ(w) (63)

(B) ϵδ is a positive real number such that with probability at least 1− δ/4 over {(x̃i, ỹi)}ni=1

drawn i.i.d. from D̃, it holds uniformly over all θ ∈ Θ that

1

n

n∑
i=1

f(⟨ϕ(w(θ)), x̃i⟩, ỹi, θ) ≥
1

1 + ϵδ
E(x̃,ỹ)∼D̃[f(⟨ϕ(w(θ)), x̃⟩, ỹ, θ)]. (64)

where the distribution D̃ over (x̃, ỹ) is given by

x̃ ∼ N (0, Ik+1), ξ̃ ∼ Dξ, ỹ = g(x̃1, ..., x̃k, ξ̃)

and the mapping ϕ : Rd → Rk+1 is defined as

ϕ(w) = (⟨w,Σw∗
1⟩, ..., ⟨w,Σw∗

k⟩, ∥PΣ1/2w∥2)T .
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Then the following is true:

(i) suppose for some choice of Mθ that is continuous in θ, it holds for every y ∈ Y and θ ∈ Θ,
f is Mθ-Lipschitz with respect to the first argument, then with probability at least 1 − δ,
uniformly over all θ ∈ Θ, we have

L(θ) ≤ (1 + ϵδ)

(
L̂(θ) +Mθ

√
Cδ(w(θ))2

n

)
. (65)

(ii) suppose for some choice of Hθ that is continuous in θ, it holds for every y ∈ Y and θ ∈ Θ,
f is non-negative and

√
f is

√
Hθ-Lipschitz with respect to the first argument, then with

probability at least 1− δ, uniformly over all θ ∈ Θ, we have

L(θ) ≤ (1 + ϵδ)

(√
L̂(θ) +

√
HθCδ(w(θ))2

n

)2

. (66)

Proof. First, let’s simplify the auxiliary problem (59). Changing variables to subtract the quantity
Gi

∥∥PΣ1/2w(θ)
∥∥
2
+
∑k

l=1⟨w(θ),Σw∗
l ⟩ηl,i from each of the former ui, we have that

Ψ = sup
(u,θ)∈Rn×Θ

∥u∥2≤⟨H,PΣ1/2w(θ)⟩

F (θ)− 1

n

n∑
i=1

f

(
ui +Gi

∥∥∥PΣ1/2w(θ)
∥∥∥
2
+

k∑
l=1

⟨w(θ),Σw∗
l ⟩ηl,i, yi, θ

)

and separating the optimization problem in u and θ, we obtain
Ψ = sup

θ∈Θ
F (θ)

− 1

n
inf

u∈Rn:
∥u∥2≤⟨H,PΣ1/2w(θ)⟩

n∑
i=1

f

(
ui +Gi

∥∥∥PΣ1/2w(θ)
∥∥∥
2
+

k∑
l=1

⟨w(θ),Σw∗
l ⟩ηl,i, yi, θ

)
.

Next, we will lower bound the infimum term by weak duality to obtain upper bound on Ψ:

inf
u∈Rn:

∥u∥2≤⟨H,PΣ1/2w(θ)⟩

n∑
i=1

f

(
ui +Gi

∥∥∥PΣ1/2w(θ)
∥∥∥
2
+

k∑
l=1

⟨w(θ),Σw∗
l ⟩ηl,i, yi, θ

)

= inf
u∈Rn

sup
λ≥0

λ(∥u∥22 − ⟨Σ1/2PH,w(θ)⟩2)

+

n∑
i=1

f

(
ui +Gi

∥∥∥PΣ1/2w(θ)
∥∥∥
2
+

k∑
l=1

⟨w(θ),Σw∗
l ⟩ηl,i, yi, θ

)
≥ sup

λ≥0
−λ⟨Σ1/2PH,w(θ)⟩2

+ inf
u∈Rn

n∑
i=1

f

(
ui +Gi

∥∥∥PΣ1/2w(θ)
∥∥∥
2
+

k∑
l=1

⟨w(θ),Σw∗
l ⟩ηl,i, yi, θ

)
+ λ∥u∥22

=sup
λ≥0

−λ⟨Σ1/2PH,w(θ)⟩2

+

n∑
i=1

inf
ui∈R

f

(
ui +Gi

∥∥∥PΣ1/2w(θ)
∥∥∥
2
+

k∑
l=1

⟨w(θ),Σw∗
l ⟩ηl,i, yi, θ

)
+ λu2i

=sup
λ≥0

−λ⟨Σ1/2PH,w(θ)⟩2 +
n∑

i=1

fλ

(
Gi

∥∥∥PΣ1/2w(θ)
∥∥∥
2
+

k∑
l=1

⟨w(θ),Σw∗
l ⟩ηl,i, yi, θ

)
.

Suppose that for every y ∈ Y and θ ∈ Θ, f is Mθ-Lipschitz with respect to the first argument, then
by Proposition 2, the above can be further lower bounded by the following quantity:

sup
λ≥0

−λ⟨Σ1/2PH,w(θ)⟩2 − nM2
θ

4λ
+

n∑
i=1

f

(
k∑

l=1

⟨w(θ),Σw∗
l ⟩ηl,i +

∥∥∥PΣ1/2w(θ)
∥∥∥
2
Gi, yi, θ

)
.
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On the other hand, suppose that for every y ∈ Y and θ ∈ Θ, f is non-negative and
√
f is

√
Hθ-

Lipschitz with respect to the first argument, then by Proposition 1, the above can be further lower
bounded by:

sup
λ≥0

−λ⟨Σ1/2PH,w(θ)⟩2 + λ

Hθ + λ

[
n∑

i=1

f

(
k∑

l=1

⟨w(θ),Σw∗
l ⟩ηl,i +

∥∥∥PΣ1/2w(θ)
∥∥∥
2
Gi, yi, θ

)]
.

Notice that if we write x̃i = (η1,i, ..., ηk,i, Gi), then (x̃i, yi) are independent with distribution exactly
equal to D̃. Moreover, we have

f

(
k∑

l=1

⟨w(θ),Σw∗
l ⟩ηl,i +

∥∥∥PΣ1/2w(θ)
∥∥∥
2
Gi, yi, θ

)
= f(⟨ϕ(w(θ)), x̃i⟩, yi, θ)

and it is easy to see that the joint distribution of (⟨ϕ(w(θ)), x̃⟩, y) with (x̃, y) ∼ D̃ is exactly the
same as (⟨w(θ), x⟩, y) with (x, y) ∼ D. As a result, we have that

E(x̃,y)∼D̃[f(⟨ϕ(w(θ)), x̃⟩, y, θ)] = L(θ).

By our assumption (63), (64) and a union bound, we have with probability at least 1− δ/2

|⟨Σ1/2PH,w(θ)⟩| ≤ Cδ(w(θ))

1

n

n∑
i=1

f

(
k∑

l=1

⟨w(θ),Σw∗
l ⟩ηl,i +

∥∥∥PΣ1/2w(θ)
∥∥∥
2
Gi, yi, θ

)
≥ 1

1 + ϵδ
L(θ).

Therefore, if f is Mθ-Lipschitz, then by by Lemma 9, we have

Ψ ≤ sup
θ∈Θ

F (θ)− sup
λ≥0

−λCδ(w(θ))
2

n
− M2

θ

4λ
+

1

1 + ϵδ
L(θ)

= sup
θ∈Θ

F (θ) +

√
M2

θ

Cδ(w(θ))2

n
− 1

1 + ϵδ
L(θ)

Consequently, by taking F (θ) = 1
1+ϵδ

L(θ) −Mθ

√
Cδ(w(θ))2

n and Lemma 7, we have shown that
with probability at least 1− δ, we have

sup
θ∈K

F (θ)− L̂(θ) ≤ 0 =⇒ 1

1 + ϵδ
L(θ) ≤ L̂(θ) +Mθ

√
Cδ(w(θ))2

n
.

If
√
f is

√
Hθ-Lipschitz, then by Lemma 8

Ψ ≤ sup
θ∈K

F (θ)− sup
λ≥0

−λCδ(w(θ))
2

n
+

λ

Hθ + λ

1

1 + ϵδ
L(θ)

= sup
θ∈K

F (θ)−

√ L(θ)

1 + ϵδ
−
√
HθCδ(w(θ))2

n

2

+

.

Consequently, by taking F (θ) =
(√

L(θ)
1+ϵδ

−
√

HθCδ(w(θ))2

n

)2

+

and Lemma 7, we have shown that

with probability at least 1− δ, we have

sup
θ∈K

F (θ)− L̂(θ) ≤ 0.

Rearranging, either we have√
L(θ)

1 + ϵδ
−
√
HθCδ(w(θ))2

n
< 0 =⇒ L(θ) < (1 + ϵδ)

HθCδ(w(θ))
2

n
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or we have√
L(θ)

1 + ϵδ
−
√
HθCδ(w(θ))2

n
≥ 0 =⇒

√ L(θ)

1 + ϵδ
−
√
HθCδ(w(θ))2

n

2

≤ L̂(θ)

=⇒ L(θ) ≤ (1 + ϵδ)

(√
L̂(θ) +

√
HθCδ(w(θ))2

n

)2

.

In either case, the desired bound holds.

Finally, we are ready to prove Theorem 6. In the version below, we also provide uniform convergence
guarantee (with sharp constant) for Lipschitz loss.
Theorem 14. Suppose that assumptions (A), (B), (E) and (F) hold. For any δ ∈ (0, 1), let Cδ :
Rd → [0,∞] be a continuous function such that with probability at least 1− δ/4 over x ∼ N (0,Σ),
uniformly over all θ ∈ Θ, 〈

w(θ), QTx
〉
≤ Cδ(w(θ)). (67)

Then it holds that

(i) if for each θ ∈ Θ and y ∈ Y , f is Mθ-Lipschitz with respect to the first argument and Mθ is
continuous in θ, then with probability at least 1− δ, it holds that uniformly over all θ ∈ Θ,
we have

(1− ϵ)L(θ) ≤ L̂(θ) +Mθ

√
Cδ(w(θ))2

n
(68)

(ii) if for each θ ∈ Θ and y ∈ Y , f is non-negative and
√
f is

√
Hθ-Lipschitz with respect to

the first argument, and Hθ is continuous in θ, then with probability at least 1− δ, it holds
that uniformly over all θ ∈ Θ, we have

(1− ϵ)L(θ) ≤

(√
L̂(θ) +

√
Hθ Cδ(w(θ))2

n

)2

(69)

where ϵ = O

(
τ
√

h log(n/h)+log(1/δ)
n

)
.

Proof. We apply the reduction argument at the beginning of the appendix. Given D that satisfies
assumptions (A) and (B), we define [w̃∗

1 , ..., w̃
∗
k] = W̃ =W (WTΣW )−1/2 and f̃ , g̃ as in (54) and

(55). For {(xi, yi)}ni=1 sampled independently from D, we observe that the joint distribution of
(xi − µ, yi) can also be described by D′ as follows:

(A’) x ∼ N (0,Σ)

(B’) y = g̃(η1, ..., ηk, ξ) where ηi = ⟨x, w̃i⟩.

Indeed, we can check that

y = g(xTW, ξ)

= g((x− µ)T W̃ (WTΣW )1/2 + µTW, ξ)

= g̃((x− µ)T W̃ , ξ).

Moreover, by construction, we have

L̂(θ) =
1

n

n∑
i=1

f̃(⟨w(θ), xi − µ⟩, yi, θ)

L(θ) = ED′ f̃(⟨w(θ), xi⟩, yi, θ)

and D′ satisfies assumptions (A) and (B) with µ = 0 and orthonormal Σ1/2w̃∗
1 , ...,Σ

1/2w̃∗
1 and falls

into the setting in Lemma 6. We see that f being Lipschitz or square-root Lipschitz is equivalent to
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f̃ being Lipschitz or square-root Lipschitz. It remains to check assumptions (63) and (64) and then
apply Lemma 10. Observe that

Σ−1/2PΣ1/2 = Σ−1/2
(
Id − Σ1/2W̃W̃TΣ1/2

)
Σ1/2

= Id − W̃W̃TΣ = I −W (WTΣW )−1WTΣ

= Q

(70)

and so Σ1/2P = QTΣ1/2.

To check that (63) holds, observe that ⟨Σ1/2PH,w⟩ has the same distribution as ⟨Qw, x⟩. To check
that (64) holds, we will apply Theorem 13. Note that the joint distribution of (⟨ϕ(w(θ)), x̃⟩, ỹ) with
(x̃, ỹ) ∼ D̃ is exactly the same as (⟨w(θ), x⟩, y) with (x, y) ∼ D′ and so

ED̃[f̃(⟨ϕ(w(θ)), x⟩, y, θ)4]1/4

ED̃[f̃(⟨ϕ(w(θ)), x⟩, y, θ)]
=

ED′ [f̃(⟨w(θ), x⟩, y, θ)4]1/4

ED′ [f̃(⟨w(θ), x⟩, y, θ)]
=

ED[f(⟨w(θ), x⟩, y, θ)4]1/4

ED[f(⟨w(θ), x⟩, y, θ)]
.

Therefore, the assumption (E) is equivalent to the hypercontractivity condition in Theorem 13.
Note that {(x, y) 7→ 1{f̃(⟨ϕ(w(θ)), x⟩, y, θ) > t} : (θ, t) ∈ Θ × R} is a subclass of {(x, y) 7→
1{f(⟨w, x⟩+ b, y, θ) > t} : (w, b, t, θ) ∈ Rk+1 × R× R×Θ}. Therefore, by assumption (F), we
can apply Theorem 13 and (64) holds.

D Norm Bounds

The following lemma is a version of Lemma 7 of Koehler et al. (2021) and follows straightforwardly
from CGMT (Theorem 7), though it requires a slightly different truncation argument compared
to the proof Theorem 6. For simplicity, we won’t repeat the proof here and simply use it for our
applications.

Lemma 11 (Koehler et al. 2021, Lemma 7). Let Z : n× d be a matrix with i.i.d. N (0, 1) entries and
suppose G ∼ N (0, In) and H ∼ N (0, Id) are independent of Z and each other. Fix an arbitrary
norm ∥ · ∥, any covariance matrix Σ, and any non-random vector ξ ∈ Rn, consider the Primary
Optimization (PO) problem:

Φ := min
w∈Rd:

ZΣ1/2w=ξ

∥w∥ (71)

and the Auxiliary Optimization (AO) problem:

Ψ := min
w∈Rd:

∥G∥Σ1/2w∥2−ξ∥2≤⟨Σ1/2H,w⟩

∥w∥. (72)

Then for any t ∈ R, it holds that

Pr(Φ > t) ≤ 2Pr(ϕ ≥ t). (73)

The next lemma analyzes the AO in Lemma 11. Our proof closely follows Lemma 8 of Koehler et al.
2021, but we don’t make assumptions on ξ yet to allow more applications.

Lemma 12. Let Z : n× d be a matrix with i.i.d. N (0, 1) entries. Fix any δ > 0, covariance matrix

Σ and non-random vector ξ ∈ Rn, then there exists ϵ ≲ log(1/δ)

(
1
n + 1√

R(Σ)
+ n

R(Σ)

)
such that

with probability at least 1− δ, it holds that

min
w∈Rd:

ZΣ1/2w=ξ

∥w∥22 ≤ (1 + ϵ)
∥ξ∥22
Tr(Σ)

. (74)

Proof. By a union bound, there exists a constant C > 0 such that the following events occur together
with probability at least 1− δ/2:
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1. Since ⟨G, ξ⟩ ∼ N (0, ∥ξ∥22), by the standard Gaussian tail bound Pr(|Z| ≥ t) ≤ 2e−t2/2,
we have

|⟨G, ξ⟩| ≤ ∥ξ∥2
√
2 log(32/δ)

2. Using subexponential Bernstein’s inequality (Theorem 2.8.1 of Vershynin (2018)), requiring
n = Ω(log(1/δ)), we have

∥G∥22 ≤ 2n

3. Using the first part of Lemma 4, we have

∥Σ1/2H∥22 ≥ Tr(Σ)

(
1− C

log(32/δ)√
R(Σ)

)

4. Using the last part of Lemma 4, requiring R(Σ) ≳ log(32/δ)2

∥ΣH∥22
∥Σ1/2H∥22

≤ C log(32/δ)
Tr(Σ2)

Tr(Σ)

Therefore, by the AM-GM inequality, it holds that

∥G∥Σ1/2w∥2 − ξ∥22 = ∥G∥22∥Σ1/2w∥22 + ∥ξ∥22 − 2⟨G, ξ⟩∥Σ1/2w∥2
≤ 2n∥Σ1/2w∥22 + ∥ξ∥22 + 2∥ξ∥2

√
2 log(32/δ)∥Σ1/2w∥2

≤ 3n∥Σ1/2w∥22 +
(
1 +

2 log(32/δ)

n

)
∥ξ∥22.

To apply lemma 11, we will consider w of the form w = α Σ1/2H
∥Σ1/2H∥2

for some α > 0. Then we have

∥G∥Σ1/2w∥2 − ξ∥22 ≤ 3nC log(32/δ)
Tr(Σ2)

Tr(Σ)
α2 +

(
1 +

2 log(32/δ)

n

)
∥ξ∥22

and

⟨Σ1/2H,w⟩2 = α2∥Σ1/2H∥22 ≥ α2 Tr(Σ)

(
1− C

log(32/δ)√
R(Σ)

)
.

So it suffices to choose α such that

α2 ≥

(
1 + 2 log(32/δ)

n

)
∥ξ∥22

Tr(Σ)

(
1− C log(32/δ)√

R(Σ)

)
− 3nC log(32/δ)Tr(Σ

2)
Tr(Σ)

=
1 + 2 log(32/δ)

n

1− C log(32/δ)

(
1√
R(Σ)

+ 3 n
R(Σ)

) ∥ξ∥22
Tr(Σ)

and we are done.

A challenge for analyzing the minimal norm to interpolate is that the projection matrix Q is not
necessarily an orthogonal projection. However, the following lemma suggests that if Σ⊥ = QTΣQ
has high effective rank, then we can let R be the orthogonal projection matrix onto the image of Q
and RΣR is approximately the same as Σ⊥ in terms of the quantities that are relevant to the norm
analysis.

Lemma 13. Consider Q = I −
∑k

i=1 w
∗
i (w

∗
i )

TΣ where Σ1/2w∗
1 , ...,Σ

1/2w∗
k are orthonormal and

we letR be the orthogonal projection matrix onto the image ofQ. Then it holds that rank(R) = d−k
and

RΣw∗
i = 0 for any i = 1, ..., k.

Moreover, we have QR = R and RQ = Q, and so

1

Tr(RΣR)
≤
(
1− k

n
− n

R(QTΣQ)

)−1
1

Tr(QTΣQ)

n

R(RΣR)
≤
(
1− k

n
− n

R(QTΣQ)

)−2
n

R(QTΣQ)
.
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Proof. It is obvious that rank(R) = rank(Q) and by the rank-nullity theorem, it suffices to show the
nullity of Q is k. To this end, we observe that

Qw = 0 ⇐⇒ Σ−1/2

(
I −

k∑
i=1

(Σ1/2w∗
i )(Σ

1/2w∗
i )

T

)
Σ1/2w = 0

⇐⇒

(
I −

k∑
i=1

(Σ1/2w∗
i )(Σ

1/2w∗
i )

T

)
Σ1/2w = 0

⇐⇒ Σ1/2w ∈ span{Σ1/2w∗
1 , ...,Σ

1/2w∗
k}

⇐⇒ w ∈ span{w∗
1 , ..., w

∗
k}.

It is also straightforward to verify that Q2 = Q and QTΣw∗
i = 0 for i = 1, ..., k. For any v ∈ Rd,

Rv lies in the image of Q and so there exists w such that Rv = Qw. Then we can check that

vTRΣw∗
i = ⟨Rv,Σw∗

i ⟩
= ⟨Qw,Σw∗

i ⟩ = ⟨w,QTΣw∗
i ⟩ = 0

and

(QR)v = Q(Rv)

= Q(Qw) = Q2w

= Qw = Rv.

Since the choice of v is arbitrary, it must be the case that RΣw∗
i = 0 and QR = R. For any v ∈ Rd,

we can check
(RQ)v = R(Qv) = Qv

by the definition of orthogonal projection. Therefore, it must be the case that RQ = Q. Finally, we
use R = QR = RQT to show that

Tr(RΣR) = Tr(RQTΣQR) = Tr(QTΣQR)

= Tr(QTΣQ)− Tr(QTΣQ(I −R))

≥ Tr(QTΣQ)−
√
Tr((QTΣQ)2) Tr((I −R)2)

= Tr(QTΣQ)

(
1−

√
k

R(QTΣQ)

)

= Tr(QTΣQ)

(
1− k

n
− n

R(QTΣQ)

)
and

Tr((RΣR)2) = Tr(ΣRΣR)

= Tr(ΣQRQTΣQRQT )

= Tr((RQTΣQ)R(QTΣQR))

≤ Tr((RQTΣQ)(QTΣQR)) = Tr((QTΣQ)2R)

≤ Tr((QTΣQ)2).

Rearranging concludes the proof.

D.1 Phase Retrieval

Theorem 2. Under assumptions (A) and (B), let f : R× Y → R be given by f(ŷ, y) := (|ŷ| − y)2

with Y = R≥0. Let Q be the same as in Theorem 1 and Σ⊥ = QTΣQ. Fix any w♯ ∈ Rd such that
Qw♯ = 0 and for some ρ ∈ (0, 1), it holds that

L̂f (w
♯) ≤ (1 + ρ)Lf (w

♯). (9)

27



Then with probability at least 1− δ, for some ϵ ≲ ρ+ log
(
1
δ

)(
1√
n
+ 1√

R(Σ⊥)
+ k

n + n
R(Σ⊥)

)
, it

holds that

min
w∈Rd:

∀i∈[n],⟨w,xi⟩2=y2
i

∥w∥2 ≤ ∥w♯∥2 + (1 + ϵ)

√
nLf (w♯)

Tr(Σ⊥)
. (10)

Proof. Without loss of generality, we assume that µ lies in the span of {Σw∗
1 , ...,Σw

∗
k} because

otherwise we can simply increase k by one. Moreover, we can assume that {Σ1/2w∗
1 , ...,Σ

1/2w∗
k}

are orthonormal because otherwise we let W̃ =W (WTΣW )−1 and conditioning on WT (x− µ) is
the same as conditioning on W̃T (x− µ). By Lemma 5, conditioned onηT1...

ηTk

 = [WT (x1 − µ), ...,WT (xn − µ)]

the distribution of X is the same as

X = 1µT +
k∑

i=1

ηi(Σw
∗
i )

T + ZΣ1/2Q

where Z has i.i.d. standard normal entries. Furthermore, conditioned on WT (x− µ) and the noise
of variable in y (which is independent of x), by the multi-index assumption (B), the label y is
non-random. Since Qw♯ = 0, we have w♯ =

∑k
i=1⟨w∗

i ,Σw
♯⟩w∗

i and so

⟨w♯, x⟩ = ⟨w♯, µ⟩+
k∑

i=1

⟨w∗
i ,Σw

♯⟩⟨w∗
i , x− µ⟩.

Therefore, ⟨w♯, x⟩ also becomes non-random after conditioning. We can let I = {i ∈ [n] : ⟨w♯, xi⟩ ≥
0} and define ξ ∈ Rn by

ξi =

{
yi − |⟨w♯, xi⟩| if i ∈ I

|⟨w♯, xi⟩| − yi if i /∈ I

and ξ is non-random after conditioning. Following the construction discussed in the main text, for
any w♯ ∈ Rd, the predictor w = w♯ + w⊥ satisfies |⟨w, xi⟩| = yi where

w⊥ = argmin
w∈Rd:
Xw=ξ

∥w∥2

by the definition of ξ. Hence, we have

min
w∈Rd:∀i∈[n],⟨w,xi⟩2=y2

i

∥w∥2 ≤ ∥w♯∥2 + ∥w⊥∥2

and it suffices to control ∥w⊥∥2.

Let R be the orthogonal projection matrix onto the image of Q and we consider w of the form Rw to
upper bound ∥w⊥∥2. By Lemma 13, we know QR = R and RΣw∗

i = 0. By the assumption that µ
lies in the span of {Σw∗

1 , ...,Σw
∗
k}, we have(

1µT +

k∑
i=1

ηi(Σw
∗
i )

T + ZΣ1/2Q

)
Rw = ZΣ1/2Rw.

Since R is an orthogonal projection, it holds that ∥Rw∥2 ≤ ∥w∥2. Finally, we observe that the
distribution of ZΣ1/2R is the same as Z(RΣR)1/2 and so

∥w⊥∥2 ≤ min
w∈Rd:

Z(RΣR)1/2w=ξ

∥w∥2.

We are now ready to apply Lemma 12 to the covariance RΣR. We are allowed to replace the
dependence onRΣR by the dependence on Σ⊥ by the last two inequalities of Lemma 13. The desired
conclusion follows by the observation that ∥ξ∥22 = nL̂f (w

♯) and the assumption that L̂f (w
♯) ≤

(1 + ρ)Lf (w
♯).
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D.2 ReLU Regression

The proof of Theorem 3 will closely follow the proof of Theorem 2.

Theorem 3. Under assumptions (A) and (B), let f : R × Y → R be the loss defined in (13) with
Y = R≥0. Let Q be the same as in Theorem 1 and Σ⊥ = QTΣQ. Fix any (w♯, b♯) ∈ Rd+1 such that
Qw♯ = 0 and for some ρ ∈ (0, 1), it holds that

L̂f (w
♯, b♯) ≤ (1 + ρ)Lf (w

♯, b♯). (14)

Then with probability at least 1− δ, for some ϵ ≲ ρ+ log
(
1
δ

)(
1√
n
+ 1√

R(Σ⊥)
+ k

n + n
R(Σ⊥)

)
, it

holds that

min
(w,b)∈Rd+1:

∀i∈[n],σ(⟨w,xi⟩+b)=yi

∥w∥2 ≤ ∥w♯∥2 + (1 + ϵ)

√
nLf (w♯, b♯)

Tr(Σ⊥)
. (15)

Proof. We let I = {i ∈ [n] : yi > 0} and for any (w♯, b♯) ∈ Rd+1, we define ξ ∈ Rn by

ξi =

{
yi − ⟨w♯, xi⟩ − b♯ if i ∈ I

−σ(⟨w♯, xi⟩+ b♯) if i /∈ I.

By the definition of ξ, the predictor (w, b) = (w♯ + w⊥, b♯) satisfies σ(⟨w, xi⟩+ b) = yi where

w⊥ = argmin
w∈Rd:
Xw=ξ

∥w∥2.

Hence, we have
min

(w,b)∈Rd+1:
∀i∈[n],σ(⟨w,xi⟩+b)=yi

∥w∥2 ≤ ∥w♯∥2 + ∥w⊥∥2

and it suffices to control ∥w⊥∥2.

Similar to the proof of Theorem 2, we make the simplifying assumption that µ lies in the span
of {Σw∗

1 , ...,Σw
∗
k} and {Σ1/2w∗

1 , ...,Σ
1/2w∗

k} are orthonormal. Conditioned on WT (xi − µ) and
the noise variable in yi, both yi and ⟨w♯, xi⟩ are non-random, and so ξ is also non-random. The
distribution of X is the same as

X = 1µT +

k∑
i=1

ηi(Σw
∗
i )

T + ZΣ1/2Q.

If we consider w of the form Rw, then we have

∥w⊥∥2 ≤ min
w∈Rd:

Z(RΣR)1/2w=ξ

∥w∥2.

We are now ready to apply Lemma 12 to the covariance RΣR. We are allowed to replace the
dependence on RΣR by the dependence on Σ⊥ by the last two inequalities of Lemma 13. The
desired conclusion follows by the observation that ∥ξ∥22 = nL̂f (w

♯, b♯) due to the definition (13) and
the assumption that L̂f (w

♯) ≤ (1 + ρ)Lf (w
♯, b♯).

D.3 Low-rank Matrix Sensing

Theorem 4. Suppose that d1d2 > n, then there exists some ϵ ≲
√

log(32/δ)
n + n

d1d2
such that with

probability at least 1− δ, it holds that

min
∀i∈[n],⟨Ai,X⟩=yi

∥X∥∗ ≤
√
r∥X∗∥F + (1 + ϵ)

√
nσ2

d1 ∨ d2
. (17)
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Proof. Without loss of generality, we will assume that d1 ≤ d2. We will vectorize the measurement
matrices and estimator A1, ..., An, X ∈ Rd1×d2 as a1, ..., an, x ∈ Rd1d2 and define ∥x∥∗ = ∥X∥∗.
Denote A = [a1, ..., an]

T ∈ Rn×d1d2 . We define the primary problem Φ by

Φ := min
∀i∈[n],⟨Ai,X⟩=ξ

∥X∥∗ = min
Ax=ξ

∥x∥∗.

By Lemma 11, it suffices to consider the auxiliary problem

Ψ := min
∥G∥x∥2−ξ∥2≤−⟨H,x⟩

∥x∥∗.

We will pick x of the form x = −αH for some α ≥ 0, which needs to satisfy α∥H∥22 ≥ ∥αG∥H∥2−
ξ∥2. By a union bound, the following events occur simultaneously with probability at least 1− δ/2:

1. by Lemma 3, it holds that

∥G∥2 ≤
√
n+ 2

√
log(32/δ)

∥ξ∥2
σ

≤
√
n+ 2

√
log(32/δ)

∥H∥2 ≤
√
d1d2 + 2

√
log(32/δ)

2. Condition on ξ, we have 1
∥ξ∥ ⟨G, ξ⟩ ∼ N (0, 1) and so by standard Gaussian tail bound

Pr(|Z| > t) ≤ 2e−t2/2

|⟨G, ξ⟩|
∥ξ∥

≤
√

2 log(16/δ)

Then we can use AM-GM inequality to show for sufficiently large n

∥αG∥H∥2 − ξ∥22
=α2∥G∥22∥H∥22 + ∥ξ∥2 − 2α∥H∥2⟨G, ξ⟩

≤nα2∥H∥22

(
1 + 2

√
log(32/δ)

n

)2

+ ∥ξ∥2 + 2
√
nα∥H∥2∥ξ∥2

√
2 log(16/δ)

n

≤nα2∥H∥22

(
1 + 10

√
log(32/δ)

n

)
+

(
1 +

√
2 log(16/δ)

n

)
∥ξ∥22

and it suffices to let

α2∥H∥42 ≥ nα2∥H∥22

(
1 + 10

√
log(32/δ)

n

)
+

(
1 +

√
2 log(16/δ)

n

)
∥ξ∥22.

Rearranging the above inequality, we can choose

α =

 1 + 10
√

log(32/δ)
n

1− n
d1d2

(
1 + 10

√
log(32/δ)

n

)(
1 + 2

√
log(32/δ)

d1d2

)2


1/2

√
nσ2

∥H∥22

and since H as a matrix can have at most rank d1, by Cauchy-Schwarz inequality on the singular
values of H , we have ∥H∥∗ ≤

√
d1∥H∥2 and

∥x∥∗ = α∥H∥∗ ≤ α
√
d1∥H∥2 ≤ (1 + ϵ)

√
d1(nσ2)

d1d2
= (1 + ϵ)

√
nσ2

d2

for some ϵ ≲
√

log(32/δ)
n + n

d1d2
. The desired conclusion follows by the observation that ∥X∗∥∗ ≤

√
r∥X∗∥F because X∗ has rank r.
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Theorem 5. Fix any δ ∈ (0, 1). There exist constants c1, c2, c3 > 0 such that if d1d2 > c1n,
d2 > c2d1, n > c3r(d1 + d2), then with probability at least 1− δ that

∥X̂ −X∗∥2F
∥X∗∥2F

≲
r(d1 + d2)

n
+

√
r(d1 + d2)

n

σ

∥X∗∥F
+

(√
d1
d2

+
n

d1d2

)
σ2

∥X∗∥2F
. (18)

Proof. Note that ⟨A,X∗⟩ ∼ N (0, ∥X∗∥2F ) and so by the standard Gaussian tail bound Pr(|Z| ≥
t) ≤ 2e−t2/2, Theorem 9 and a union bound, it holds with probability at least 1− δ/8 that

|⟨A,X∗⟩| ≤
√
2 log(32/δ)∥X∗∥F

∥A∥op ≤
√
d1 +

√
d2 +

√
2 log(32/δ).

Then it holds that∥∥∥∥A− ⟨A,X∗⟩
∥X∗∥2F

X∗
∥∥∥∥
op

≤ ∥A∥op +
|⟨A,X∗⟩|
∥X∗∥2F

∥X∗∥op

≤
√
d1 +

√
d2 +

√
2 log(32/δ) +

∥X∗∥op
∥X∗∥F

√
2 log(32/δ)

≤
√
d1 +

√
d2 +

√
8 log(32/δ).

Therefore, we can choose Cδ in Theorem 1 by

Cδ(X) :=
(√

d1 +
√
d2 +

√
8 log(32/δ)

)
∥X∥∗

and applying Theorem 1 and Theorem 4, we have

(1− ϵ)L(X̂) ≤ Cδ(X)2

n

≤

(√
d1 +

√
d2 +

√
8 log(32/δ)

)2
n

√
r∥X∗∥F + (1 + ϵ)

√
nσ2

d1 ∨ d2

2

=

√ d1
d1 ∨ d2

+

√
d2

d1 ∨ d2
+

√
8 log(32/δ)

d1 ∨ d2

2(√
r(d1 ∨ d2)

n
+ (1 + ϵ)

σ

∥X∗∥F

)2

∥X∗∥2F

where ϵ is the maximum of the two ϵ in Theorem 1 and Theorem 4. Finally, recall that

L(X̂) = σ2 + ∥X̂ −X∗∥2F .
Assuming that d1 ≤ d2, then the above implies that

∥X̂ −X∗∥2F
∥X∗∥2F

≤ (1− ϵ)−1(1 + ϵ)2

1 +

√
d1
d2

+

√
8 log(32/δ)

d2

2(√
r(d1 + d2)

n
+

σ

∥X∗∥F

)2

− σ2

∥X∗∥2F

≲
r(d1 + d2)

n
+

√
r(d1 + d2)

n

σ

∥X∗∥F
+

(√
d1
d2

+
n

d1d2

)
σ2

∥X∗∥2F
and we are done.

E Counterexample to Gaussian Universality

By assumption (G), we can write xi|d−k = h(xi|k) ·Σ
1/2
|d−kzi where zi ∼ N (0, Id−k). We will denote

the matrix Z = [z1, ..., zn]
T ∈ Rn×(d−k). Following the notation in section 7, we will also write

X = [X|k, X|d−k] where X|k ∈ Rn×k and X|d−k ∈ Rn×(d−k). The proofs in this section closely
follows the proof of Theorem 6.
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Theorem 15. Consider dataset (X,Y ) drawn i.i.d. from the data distribution D according to (G)
and (H), and fix any f : R× Y → R≥0 such that

√
f is 1-Lipschitz for any y ∈ Y . Fix any δ > 0

and suppose there exists ϵδ < 1 and Cδ : Rd−k → [0,∞] such that

(i) with probability at least 1− δ/2 over (X,Y ) and G ∼ N (0, In), it holds uniformly over
all w|k ∈ Rk and ∥w|d−k∥Σ|d−k

∈ R≥0 that

1

n

n∑
i=1

f(⟨w|k, xi|k⟩+ h(xi|k)∥w|d−k∥Σ|d−k
Gi, yi)

h(xi|k)2
≥ (1− ϵδ)ED

[
f(⟨w, x⟩, y)
h(x|k)2

]

(ii) with probability at least 1 − δ/2 over z|d−k ∼ N (0,Σ|d−k), it holds uniformly over all
w|d−k ∈ Rd−k that

⟨w|d−k, z|d−k⟩ ≤ Cδ(w|d−k) (75)

then with probability at least 1− δ, it holds uniformly over all w ∈ Rd that

(1− ϵδ)E
[
f(⟨w, x⟩, y)
h(x|k)2

]
≤

(
1

n

n∑
i=1

f(⟨w, xi⟩, yi)
h(xi|k)2

+
Cδ(w|d−k)√

n

)2

. (76)

Proof. Note that
⟨w|d−k, xi|d−k⟩ = h(xi|k) · ⟨w|d−k,Σ

1/2
|d−kzi⟩

and so for any f : R× Y × Rk → R, we can write

Φ := sup
w∈Rd

F (w)− 1

n

n∑
i=1

f(⟨w, xi⟩, yi, xi|k)

= sup
w∈Rd,u∈Rn

u=ZΣ
1/2

|d−k
w|d−k

F (w)− 1

n

n∑
i=1

f(⟨w|k, xi|k⟩+ h(xi|k)ui, yi, xi|k)

= sup
w∈Rd,u∈Rn

inf
λ∈Rn

⟨λ, ZΣ1/2
|d−kw|d−k − u⟩+ F (w)− 1

n

n∑
i=1

f(⟨w|k, xi|k⟩+ h(xi|k)ui, yi, xi|k).

By the same truncation argument used in Lemma 7, it suffices to consider the auxiliary problem:

Ψ := sup
w∈Rd,u∈Rn

inf
λ∈Rn

∥λ∥2⟨H,Σ1/2
|d−kw|d−k⟩+ ⟨G∥Σ1/2

|d−kw|d−k∥2 − u, λ⟩

+ F (w)− 1

n

n∑
i=1

f(⟨w|k, xi|k⟩+ h(xi|k)ui, yi, xi|k)

= sup
w∈Rd,u∈Rn

inf
λ≥0

λ
(
⟨H,Σ1/2

|d−kw|d−k⟩ −
∥∥∥G∥Σ1/2

|d−kw|d−k∥2 − u
∥∥∥
2

)
+ F (w)− 1

n

n∑
i=1

f(⟨w|k, xi|k⟩+ h(xi|k)ui, yi, xi|k)

Therefore, it holds that

Ψ = sup
w∈Rd,u∈Rn

⟨H,Σ
1/2

|d−k
w|d−k⟩≥

∥∥∥G∥Σ1/2

|d−k
w|d−k∥2−u

∥∥∥
2

F (w)− 1

n

n∑
i=1

f(⟨w|k, xi|k⟩+ h(xi|k)ui, yi, xi|k)

= sup
w∈Rd

F (w)− 1

n
inf

u∈Rn

⟨H,Σ
1/2

|d−k
w|d−k⟩≥

∥∥∥G∥Σ1/2

|d−k
w|d−k∥2−u

∥∥∥
2

n∑
i=1

f(⟨w|k, xi|k⟩+ h(xi|k)ui, yi, xi|k).
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Next, we analyze the infimum term:

inf
u∈Rn

⟨H,Σ
1/2

|d−k
w|d−k⟩≥

∥∥∥G∥Σ1/2

|d−k
w|d−k∥2−u

∥∥∥
2

n∑
i=1

f(⟨w|k, xi|k⟩+ h(xi|k)ui, yi, xi|k)

= inf
u∈Rn

∥u∥2≤⟨H,Σ
1/2

|d−k
w|d−k⟩

n∑
i=1

f(⟨w|k, xi|k⟩+ h(xi|k)
(
ui + ∥Σ1/2

|d−kw|d−k∥2Gi

)
, yi, xi|k)

= inf
u∈Rn

sup
λ≥0

λ(∥u∥2 − ⟨H,Σ1/2
|d−kw|d−k⟩2)

+

n∑
i=1

f(⟨w|k, xi|k⟩+ h(xi|k)
(
ui + ∥Σ1/2

|d−kw|d−k∥2Gi

)
, yi, xi|k)

≥ sup
λ≥0

inf
u∈Rn

λ(∥u∥2 − ⟨H,Σ1/2
|d−kw|d−k⟩2)

+

n∑
i=1

f(⟨w|k, xi|k⟩+ h(xi|k)
(
ui + ∥Σ1/2

|d−kw|d−k∥2Gi

)
, yi, xi|k)

= sup
λ≥0

−λ⟨H,Σ1/2
|d−kw|d−k⟩2

+

n∑
i=1

inf
ui∈R

f(⟨w|k, xi|k⟩+ ui + ∥Σ1/2
|d−kw|d−k∥2h(xi|k)Gi, yi, xi|k) +

λ

h(xi|k)2
u2i .

Now suppose that f takes the form f(ŷ, y, x|k) =
1

h(x|k)2
f̃(ŷ, y) for some 1 square-root Lipschitz f̃

and by a union bound, it holds with probability at least 1− δ that

⟨Σ1/2
|d−kH,w|d−k⟩2 ≤ Cδ(w|d−k)

2

1

n

n∑
i=1

1

h(xi|k)2
f̃(⟨w|k, xi|k⟩+ ∥Σ1/2

|d−kw|d−k∥2h(xi|k)Gi, yi) ≥ (1− ϵδ)E
[

1

h(x|k)2
f̃(⟨w, x⟩, y)

]
,

then the above becomes

sup
λ≥0

−λ⟨Σ1/2
|d−kH,w|d−k⟩2 +

n∑
i=1

1

h(xi|k)2
f̃λ(⟨w|k, xi|k⟩+ ∥Σ1/2

|d−kw|d−k∥2h(xi|k)Gi, yi)

≥ sup
λ≥0

−λ⟨Σ1/2
|d−kH,w|d−k⟩2 +

λ

λ+ 1

n∑
i=1

1

h(xi|k)2
f̃(⟨w|k, xi|k⟩+ ∥Σ1/2

|d−kw|d−k∥2h(xi|k)Gi, yi)

≥ sup
λ≥0

−λCδ(w|d−k)
2 +

λ

λ+ 1
(1− ϵ)nE

[
1

h(x|k)2
f̃(⟨w, x⟩, y)

]

≥n

(√
(1− ϵδ)E

[
1

h(x|k)2
f̃(⟨w, x⟩, y)

]
−
Cδ(w|d−k)√

n

)2

+

where we apply Lemma 8 in the last step. Then if we take

F (w) =

(√
(1− ϵδ)E

[
1

h(x|k)2
f̃(⟨w, x⟩, y)

]
−
Cδ(w|d−k)√

n

)2

+

then we have Ψ ≤ 0. To summarize, we have shown(√
(1− ϵδ)E

[
1

h(x|k)2
f̃(⟨w, x⟩, y)

]
−
Cδ(w|d−k)√

n

)2

+

− 1

n

n∑
i=1

1

h(xi|k)2
f̃(⟨w, xi⟩, yi) ≤ 0

which implies

E
[

1

h(x|k)2
f̃(⟨w, x⟩, y)

]
≤ (1− ϵδ)

−1

(
1

n

n∑
i=1

1

h(xi|k)2
f̃(⟨w, xi⟩, yi) +

Cδ(w|d−k)√
n

)2

.
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Theorem 16. Under assumptions (G) and (H), fix any w∗
|k ∈ Rk and suppose for some ρ ∈ (0, 1), it

holds with probability at least 1− δ/8

1

n

n∑
i=1

(
yi − ⟨w∗

|k, xi|k⟩
h(xi|k)

)2

≤ (1 + ρ) · E

(y − ⟨w∗
|k, x|k⟩

h(x|k)

)2
 . (77)

Then with probability at least 1− δ, for some ϵ ≲ ρ+ log
(
1
δ

)(
1√
n
+ 1√

R(Σ|d−k)
+ n

R(Σ|d−k)

)
, it

holds that

min
w∈Rd:∀i,⟨w,xi⟩=yi

∥w∥22 ≤ ∥w∗
|k∥

2
2 + (1 + ϵ)

nE
[(

y−⟨w∗
|k,x|k⟩

h(x|k)

)2]
Tr(Σ|d−k)

(78)

Proof. Fix any w∗
|k ∈ Rk, we observe that

min
w∈Rd:∀i,⟨w,xi⟩=yi

∥w∥22 = min
w∈Rd:∀i,⟨w|k,xi|k⟩+⟨w|d−k,xi|d−k⟩=yi

∥w|k∥22 + ∥w|d−k∥22

≤ ∥w∗
|k∥

2
2 + min

w|d−k∈Rd−k:

∀i,⟨w|d−k,xi|d−k⟩=yi−⟨w∗
|k,xi|k⟩

∥w|d−k∥22.

Therefore, it is enough analyze

Φ := min
w|d−k∈Rd−k:

∀i,⟨w|d−k,xi|d−k⟩=yi−⟨w∗
|k,xi|k⟩

∥w|d−k∥2 = min
w|d−k∈Rd−k:

∀i,⟨w|d−k,Σ
1/2

|d−k
zi⟩=

yi−⟨w∗
|k,xi|k⟩

h(xi|k)

∥w|d−k∥2.

By introducing the Lagrangian, we have

Φ = min
w|d−k∈Rd−k

max
λ∈Rn

n∑
i=1

λi

(
⟨Σ1/2

|d−kw|d−k, zi⟩ −
yi − ⟨w∗

|k, xi|k⟩
h(xi|k)

)
+ ∥w|d−k∥2

= min
w|d−k∈Rd−k

max
λ∈Rn

⟨λ, ZΣ1/2
|d−kw|d−k⟩ −

n∑
i=1

λi

(
yi − ⟨w∗

|k, xi|k⟩
h(xi|k)

)
+ ∥w|d−k∥2.

Similarly, the above is only random in Z after conditioning on X|kw
∗
|k and ξ and the distribution

of Z remains unchanged after conditioning because of the independence. By the same truncation
argument as before and CGMT, it suffices to consider the auxiliary problem:

min
w|d−k∈Rd−k

max
λ∈Rn

∥λ∥2⟨H,Σ1/2
|d−kw|d−k⟩+

n∑
i=1

λi

(
∥Σ1/2

|d−kw|d−k∥2Gi −
yi − ⟨w∗

|k, xi|k⟩
h(xi|k)

)
+ ∥w|d−k∥2

= min
w|d−k∈Rd−k

max
λ∈Rn

∥λ∥2

⟨H,Σ1/2
|d−kw|d−k⟩+

√√√√ n∑
i=1

(
∥Σ1/2

|d−kw|d−k∥2Gi −
yi − ⟨w∗

|k, xi|k⟩
h(xi|k)

)2


+ ∥w|d−k∥2
and so we can define

Ψ := min
w|d−k∈Rd−k:√∑n

i=1

(
∥Σ1/2

|d−k
w|d−k∥2Gi−

yi−⟨w∗
|k,xi|k⟩

h(xi|k)

)2

≤⟨−Σ
1/2

|d−k
H,w|d−k⟩

∥w|d−k∥2.

To upper bound Ψ, we consider w|d−k of the form −α
Σ

1/2

|d−k
H

∥Σ1/2

|d−k
H∥2

, then we just need

n∑
i=1

α∥Σ|d−kH∥2
∥Σ1/2

|d−kH∥2
Gi −

yi − ⟨w∗
|k, xi|k⟩

h(xi|k)

2

≤ α2∥Σ1/2
|d−kH∥22.
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By a union bound, the following occur together with probability at least 1− δ/2 for some absolute
constant C > 0:

1. Using the first part of Lemma 4, we have

∥Σ1/2
|d−kH∥22 ≥ Tr(Σ|d−k)

(
1− C

log(32/δ)√
R(Σ|d−k)

)

2. Using the last part of Lemma 4, requiring R(Σ|d−k) ≳ log(32/δ)2

∥Σ|d−kH∥22
∥Σ1/2

|d−kH∥22
≤ C log(32/δ)

Tr(Σ2
|d−k)

Tr(Σ|d−k)

3. Using subexponential Bernstein’s inequality (Theorem 2.8.1 of Vershynin (2018)), requiring
n = Ω(log(1/δ)),

1

n

n∑
i=1

G2
i ≤ 2

4. Using standard Gaussian tail bound Pr(|Z| ≥ t) ≤ 2e−t2/2, we have∣∣∣∣∣ 1n
n∑

i=1

Gi(yi − ⟨w∗
|k, xi|k⟩)

h(xi|k)

∣∣∣∣∣ ≤
√√√√ 1

n

n∑
i=1

(
yi − ⟨w∗

|k, xi|k⟩
h(xi|k)

)2√
2 log(32/δ)

n

5. By assumption, it holds that

1

n

n∑
i=1

(
yi − ⟨w∗

|k, xi|k⟩
h(xi|k)

)2

≤ (1 + ρ) · E

(y − ⟨w∗
|k, x|k⟩

h(x|k)

)2
 .

Then we use the above and the AM-GM inequality to show that

1

n

n∑
i=1

α∥Σ|d−kH∥2
∥Σ1/2

|d−kH∥2
Gi −

yi − ⟨w∗
|k, xi|k⟩

h(xi|k)

2

≤ 2α2 ∥Σ|d−kH∥22
∥Σ1/2

|d−kH∥22
+ (1 + ρ) · E

(y − ⟨w∗
|k, x|k⟩

h(x|k)

)2


+ 2
α∥Σ|d−kH∥2
∥Σ1/2

|d−kH∥2

√√√√√(1 + ρ) · E

(y − ⟨w∗
|k, x|k⟩

h(x|k)

)2
√2 log(32/δ)

n

≤C log(32/δ)

(
2 +

√
2 log(32/δ)

n

)
α2

Tr(Σ2
|d−k)

Tr(Σ|d−k)

+

(
1 +

√
2 log(32/δ)

n

)
(1 + ρ) · E

(y − ⟨w∗
|k, x|k⟩

h(x|k)

)2
 .

After some rearrangements, it is easy to see that we can choose

α2 =

(
1 +

√
2 log(32/δ)

n

)
(1 + ρ)

1− C log(32/δ)√
R(Σ|d−k)

− C log(32/δ)

(
2 +

√
2 log(32/δ)

n

)
n

R(Σ|d−k)

nE
[(

y−⟨w∗
|k,x|k⟩

h(x|k)

)2]
Tr(Σ|d−k)

.

and the proof is complete.
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