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Abstract

Many successful methods to learn dynamical systems from data have recently
been introduced. However, ensuring that the inferred dynamics preserve known
constraints, such as conservation laws or restrictions on the allowed system states,
remains challenging. We propose stabilized neural differential equations (SNDEs),
a method to enforce arbitrary manifold constraints for neural differential equations.
Our approach is based on a stabilization term that, when added to the original
dynamics, renders the constraint manifold provably asymptotically stable. Due
to its simplicity, our method is compatible with all common neural differential
equation (NDE) models and broadly applicable. In extensive empirical evaluations,
we demonstrate that SNDEs outperform existing methods while broadening the
types of constraints that can be incorporated into NDE training.

1 Introduction

Advances in machine learning have recently spurred hopes of displacing or at least enhancing the
process of scientific discovery by inferring natural laws directly from observational data. In particular,
there has been a surge of interest in data-driven methods for learning dynamical laws in the form of
differential equations directly from data [18, 67, 16, 23, 3, 11]. Assuming there is a ground truth
system with dynamics governed by an ordinary differential equation

du(t)

dt
= f(u(t), t) (with initial condition u(0) = u0) (1)

with u : R → Rn and f : Rn × R → Rn, the question is whether we can learn f from (potentially
noisy and irregularly sampled) observations (ti, u(ti))Ni=1.

Neural ordinary differential equations (NODEs) provide a prominent and successful method for this
task, which leverages machine learning by directly parameterizing the vector field f of the ODE as a

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



(a) (b) (c)

NDE

Constraint Manifold

Stabilization

SNDE

SNDE Trajectory

Figure 1: Sketch of the basic idea behind stabilized neural differential equations (SNDEs). (a) An
idealized, unstabilized NDE vector field (blue arrows). (b) A constraint manifold (black circle) and
the corresponding stabilization of the vector field (pink arrows). (c) The overall, stabilized vector
field of the SNDE (orange arrows) and a stabilized trajectory (green). The stabilization pushes any
trajectory starting away from (but near) the manifold to converge to it at a rate γ (see Section 4).

neural network [18] (see also Kidger [49] for an overview). A related approach, termed universal
differential equations (UDEs) [67], combines mechanistic or process-based model components with
universal function approximators, typically also neural networks. In this paper, we will refer to
these methods collectively as neural differential equations (NDEs), meaning any ordinary differential
equation model in explicit form, where the right-hand side is either partially or entirely parameterized
by a neural network. Due to the use of flexible neural networks, NDEs have certain universal
approximation properties [72, 75], which are often interpreted as “in principle an NDE can learn
any vector field f” [30]. While this can be a desirable property in terms of applicability, in typical
settings one often has prior knowledge about the dynamical system that should be incorporated.

As in other areas of machine learning – particularly deep learning – inductive biases can substantially
aid generalization, learning speed, and stability, especially in the low data regime. Learning dynamics
from data is no exception [4]. In scientific applications, physical priors are often not only a natural
source of inductive biases, but can even impose hard constraints on the allowed dynamics. For
instance, when observing mechanical systems, a popular approach is to directly parameterize either
the Lagrangian or Hamiltonian via a neural network [39, 58, 24]. Constraints such as energy
conservation can then be “baked into the model”, in the sense that the parameterization of the vector
field is designed to only represent functions that satisfy the constraints. Finzi et al. [32] build upon
these works and demonstrate how to impose explicit constraints in the Hamiltonian and Lagrangian
settings.

In this work, we propose a stabilization technique to enforce arbitrary, even time-dependent manifold
constraints for any class of NDEs, not limited to second order mechanical systems and not requiring
observations in particular (canonical) coordinates. Our method is compatible with all common
differential equation solvers as well as adjoint sensitivity methods. All code is publicly available at
https://github.com/white-alistair/Stabilized-Neural-Differential-Equations.

2 Background

A first order neural differential equation is typically given as
du(t)

dt
= fθ(u(t), t) u(0) = u0, (2)

where u : R → Rn and the vector field fθ : Rn × R → Rn is at least partially parameterized by
a neural network with parameters θ ∈ Rd. We restrict our attention to ground truth dynamics f
in Equation (1) that are continuous in t and Lipschitz continuous in u such that the existence of a
unique (local) solution to the initial value problem is guaranteed by the Picard-Lindelöf theorem. As
universal function approximators [44, 25], neural networks fθ can in principle approximate any such
f to arbitrary precision, that is to say, the problem of learning f is realizable.

In practice, the parameters θ are typically optimized via stochastic gradient descent by integrating
a trajectory û(t) = ODESolve(u0, fθ, t) and taking gradients of the loss L(u, û) with respect to θ.
Gradients of trajectories can be computed using adjoint sensitivity analysis (optimize-then-discretize)
or automatic differentiation of the solver operations (discretize-then-optimize) [18, 49]. While these
approaches have different (dis)advantages [59, 49], we use the adjoint sensitivity method due to
reportedly improved stability [18]. We use the standard squared error loss L(u, û) = ∥u − û∥22
throughout.
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We focus on NODEs as they can handle arbitrary nonlinear vector fields f and outperform traditional
ODE parameter estimation techniques. In particular, they do not require a pre-specified parameteriza-
tion of f in terms of a small set of semantically meaningful parameters. The original NODE model
[18] has quickly been extended to augmented neural ODEs (ANODEs), with improved universal
approximation properties [30] and performance on second order systems [62]. Further extensions of
NODEs include support for irregularly-sampled observations [70] and partial differential equations
[35], Bayesian NODEs [26], universal differential equations [67], and more–see, e.g., Kidger [49]
for an overview. All such variants fall under our definition of neural differential equations and can
in principle be stabilized using our method. We demonstrate this empirically by stabilizing both
standard NODEs as well as ANODEs and UDEs in this paper. Finally, we note that all experiments
with second order structure are implemented as second order neural ODEs due to reportedly improved
generalization compared to first order NODEs [62, 40].

NODEs were originally introduced as the infinite depth limit of residual neural networks (typically for
classification), where there is no single true underlying dynamic law, but rather “some” vector field f
is learned that allows subsequent (linear) separation of the inputs into different classes. A number of
techniques have been introduced to restrict the number of function evaluations needed during training
in order to improve efficiency, which also typically results in relatively simple learned dynamics
[31, 38, 47, 63, 50]. These are orthogonal to our method and are mentioned here for completeness, as
they could also be viewed as “regularized” or “stabilized” NODEs from a different perspective.

3 Related Work

Hamiltonian and Lagrangian Neural Networks. A large body of related work has focused on
learning Hamiltonian or Lagrangian dynamics via architectural constraints. By directly parameteriz-
ing and learning the underlying Hamiltonian or Lagrangian, rather than the equations of motion, first
integrals corresponding to symmetries of the Hamiltonian or Lagrangian may be (approximately)
conserved automatically.

Hamiltonian Neural Networks (HNNs) [39] assume second order Hamiltonian dynamics u(t), where
u(t) = (q(t), p(t)) is measured in canonical coordinates, and directly parameterize the Hamiltonian H
(instead of f ) from which the vector field can then be derived via f(q, p) = (∂H∂p ,−

∂H
∂q ). Symplectic

ODE-Net (SymODEN) [76] takes a similar approach but makes the learned dynamics symplectic
by construction, as well as allowing more general coordinate systems such as angles or velocities
(instead of conjugate momenta). HNNs have also been made agnostic to the coordinate system
altogether by modeling the underlying coordinate-free symplectic two-form directly [19], studied
extensively with respect to the importance of symplectic integrators [77], and adapted specifically
to robotic systems measured in terms of their SE(3) pose and generalized velocity [29]. Recently,
Gruver et al. [40] showed that what makes HNNs effective in practice is not so much their built-in
energy conservation or symplectic structure, but rather that they inherently assume that the system
is governed by a single second order differential equation (“second order bias”). Chen et al. [20]
provide a recent overview of learning Hamiltonian dynamics using neural architectures.

A related line of work is Lagrangian Neural Networks (LNNs), which instead assume second order
Lagrangian dynamics and parameterize the inertia matrix and divergence of the potential [58], or
indeed any generic Lagrangian function [24], with the dynamics f then uniquely determined via the
Euler-Lagrange equations. While our own work is related to HNNs and LNNs in purpose, it is more
general, being applicable to any system governed by a differential equation. In addition, where we
consider fundamental conservation laws as constraints, e.g. conservation of energy, we assume the
conservation law is known in closed-form.

The work most closely related to ours is by Finzi et al. [32], who demonstrate how to impose explicit
constraints on HNNs and LNNs. The present work differs in a number of ways with the key advances
of our approach being that SNDEs (a) are applicable to any type of ODE, allowing us to go beyond
second order systems with primarily Hamiltonian or Lagrangian type constraints, (b) are compatible
with hybrid models, i.e., the UDE approach where part of the dynamics is assumed to be known and
only the remaining unknown part is learned while still constraining the overall dynamics, and (c)
can incorporate any type of manifold constraint. Regarding (c), we can for instance also enforce
time-dependent first integrals, which do not correspond to constants of motion or conserved quantities
arising directly from symmetries in the Lagrangian.
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Continuous Normalizing Flows on Riemannian Manifolds. Another large body of related work
aims to learn continuous normalizing flows (CNFs) on Riemannian manifolds. Since CNFs transform
probability densities via a NODE, many of these methods work in practice by constraining NODE
trajectories to a pre-specified Riemannian manifold. For example, Lou et al. [57] propose “Neural
Manifold ODE”, a method that directly adjusts the forward mode integration and backward mode
adjoint gradient computation to ensure that the trajectory is confined to a given manifold. This
approach requires a new training procedure and relies on an explicit chart representation of the
manifold. The authors limit their attention to the hyperbolic space H2 and the sphere S2, both of
which are prototypical Riemannian manifolds with easily derived closed-form expressions for the
chart. Many similar works have been proposed [37, 14, 68, 60], but all are typically limited in scope to
model Riemannian manifolds such as spheres, hyperbola, and tori. Extending these approaches to the
manifolds studied by us, which can possess nontrivial geometries arising from arbitrary constraints,
is not straightforward. Nonetheless, we consider this an interesting opportunity for further work.

Riemannian Optimization. A vast literature exists for optimization on Riemannian manifolds
[2, 53, 61]. In deep learning, in particular, orthogonality constraints have been used to avoid the
vanishing and exploding gradients problem in recurrent neural networks [5, 54, 1, 48] and as a form
of regularization for convolutional neural networks [9]. Where these methods differ crucially from
this paper is that they seek to constrain neural network weights to a given matrix manifold, while
our aim is to constrain trajectories of an NDE, the weights of which are not themselves directly
constrained.

Constraints via Regularization. Instead of adapting the neural network architecture to satisfy cer-
tain properties by design, Lim and Kasim [55] instead manually craft different types of regularization
terms that, when added to the loss function, aim to enforce different constraints or conservation laws.
While similar to our approach, in that no special architecture is required for different constraints,
the key difference is that their approach requires crafting specific loss terms for different types of
dynamics. Moreover, tuning the regularization parameter can be rather difficult in practice.

In this work, we vastly broaden the scope of learning constrained dynamics by demonstrating the
effectiveness of our approach on both first and second order systems, including chaotic and non-
chaotic as well as autonomous and non-autonomous examples. We cover constraints arising from
holonomic restrictions on system states, conservation laws, and constraints imposed by controls.

4 Stabilized Neural Differential Equations

General approach. Given m < n explicit constraints, we require that solution trajectories of the
NDE in Equation (2) are confined to an (n−m)-dimensional submanifold of Rn defined by

M = {(u, t) ∈ Rn × R ; g(u, t) = 0}, (3)

where g : Rn × R → Rm is a smooth function with 0 ∈ Rm being a regular value of g.1 In other
words, we have an NDE on a manifold

u̇ = fθ(u, t) with g(u, t) = 0. (4)

Any non-autonomous system can equivalently be represented as an autonomous system by adding
time as an additional coordinate with constant derivative 1 and initial condition t0 = 0. For ease of
notation, and without loss of generality, we will only consider autonomous systems in the rest of this
section. However, we stress that our method applies equally to autonomous and non-autonomous
systems.

While methods exist for constraining neural network outputs to lie on a pre-specified manifold, the
added difficulty in our setting is that we learn the vector field f but constrain the solution trajectory u
that solves a given initial value problem for the ODE defined by f . Inspired by Chin [21], we propose
the following stabilization of the vector field in Equation (4)

u̇ = fθ(u)− γF (u)g(u), [general SNDE] (5)

where γ ≥ 0 is a scalar parameter of our method and F : Rn → Rn×m is a so-called stabilization
matrix. We call Equation (5) a stabilized neural differential equation (SNDE) and say that it is

1The preimage theorem ensures that M is indeed an (n−m)-dimensional submanifold of Rn.
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stabilized with respect to the invariant manifold M. We illustrate the main idea in Figure 1; while
even small deviations in the unstabilized vector field (left) can lead to (potentially accumulating)
constraint violations, our stabilization (right) adjusts the vector field near the invariant manifold to
render it asymptotically stable, all the while leaving the vector field on M unaffected.

Our stabilization approach is related to the practice of index reduction of differential algebraic
equations (DAEs). We refer the interested reader to Appendix A for a brief overview of these
connections.

Theoretical guarantees. First, note that ultimately we still want fθ to approximate the assumed
ground truth dynamics f . However, Equation (5) explicitly modifies the right-hand side of the NDE.
The following theorem provides necessary and sufficient conditions under which fθ can still learn the
correct dynamics when using a different right-hand side.
Theorem 1 (adapted from Chin [21]). Consider an NDE

u̇ = fθ(u) (6)

on an invariant manifold M = {u ∈ Rn ; g(u) = 0}. A vector field u̇ = hθ(u) admits all solutions
of Equation (6) on M if and only if hθ|M = fθ|M.

Since g(u) = 0 on M, the second term on the right-hand side of Equation (5) vanishes on M.
Therefore the SNDE Equation (5) admits all solutions of the constrained NDE Equation (4). Next,
we will show that, under mild conditions, the additional stabilization term in Equation (5) “nudges”
the solution trajectory to lie on the constraint manifold such that M is asymptotically stable.
Theorem 2 (adapted from Chin [21]2). Suppose the stabilization matrix F (u) is chosen such that the
matrix G(u)F (u), where G(u) = gu is the Jacobian of g at u, is symmetric positive definite with the
smallest eigenvalue λ(u) satisfying λ(u) > λ0 > 0 for all u. Assume further that there is a positive
number γ0 such that

∥G(u)fθ(u)∥ ≤ γ0∥g(u)∥ (7)
for all u near M. Then the invariant manifold M is asymptotically stable in the SNDE Equation (5)
if γ ≥ γ0/λ0.

Proof. Consider the Lyapunov function V (u) = 1
2g

T (u)g(u). Then (omitting arguments)

d

dt
V (t) =

1

2

d

dt
∥g(u(t))∥2 = gT

dg

dt
= gT

dg

du
u̇ = gTG(fθ − γFg), (8)

where we substitute Equation (5) for u̇. With Equation (7), we have gTGfθ ≤ γ0g
T g, and since the

eigenvalues of GF are assumed to be at least λ0 > 0, we have gTGFg ≥ λ0g
T g. Hence

d

dt
V ≤ (γ0 − γλ0)∥g∥2, (9)

so the manifold M is asymptotically stable whenever γ0 − γλ0 ≤ 0.

When fθ(u) and g(u) are given, M is asymptotically stable in the SNDE Equation (5) as long as

γ ≥ ∥G(u)fθ(u)∥
λ0∥g(u)∥

. (10)

To summarize, the general form of the SNDE in Equation (5) has the following important properties:

1. The SNDE admits all solutions of the constrained NDE Equation (4) on M.
2. M is asymptotically stable in the SNDE for sufficiently large values of γ.

The stabilization parameter γ, with units of inverse time, determines the rate of relaxation to the
invariant manifold; intuitively, it is the strength of the “nudge towards M” experienced by a trajectory.
Here, γ is neither a Lagrangian parameter (corresponding to a constraint on θ), nor a regularization
parameter (to overcome an ill-posedness by regularization). Therefore, there is no “correct” value for
γ. In particular, Theorem 1 holds for all γ, while Theorem 2 only requires γ to be “sufficiently large”.

In the limit γ → ∞, the SNDE in Equation (5) is equivalent to a Hessenberg index-2 DAE (see
Appendix A for more details).

2We note that there is a minor error in the proof of Theorem 2 in Chin [21], which we correct here.

5



Practical implementation. This leaves us to find a concrete instantiation of the stabilization
matrix F (u) that should (a) satisfy that F (u)G(u) is symmetric positive definite with the smallest
eigenvalue bounded away from zero near M, (b) be efficiently computable, and (c) be compatible with
gradient-based optimization of θ as part of an NDE. In our experiments, we use the Moore-Penrose
pseudoinverse of the Jacobian of g at u as the stabilization matrix,

F (u) = G+(u) = GT (u)
(
G(u)GT (u)

)−1 ∈ Rn×m. (11)

Let us analyze the properties of this choice. Regarding the requirements (b) and (c), the pseudoinverse
can be computed efficiently via a singular value decomposition with highly optimized implementations
in all common numerical linear algebra libraries (including deep learning frameworks) and does not
interfere with gradient-based optimization. In particular, the computational cost for the pseudoinverse
is O(m2n), i.e., it scales well with the problem size. The quadratic scaling in the number of constraints
is often tolerable in practice, since the number of constraints is typically small (in Appendix B, we
discuss faster alternatives to the pseudoinverse that can be used, for example, when there are many
constraints). Moreover, the Jacobian G(u) of g can be obtained via automatic differentiation in the
respective frameworks.

Regarding requirement (a), the pseudoinverse G+(u) is an orthogonal projection onto the tangent
space TuM of the manifold at u. Hence, locally in a neighborhood of u ∈ M, we consider the
stabilization matrix as a projection back onto the invariant manifold M (see Figure 1). In particular,
G(u) has full rank for u ∈ M and G+G = GT (GGT )−1G is symmetric and positive definite near
M. From here on, we thus consider the following specific form for the SNDE in Equation (5),

u̇ = fθ(u)− γG+(u)g(u). [practical SNDE] (12)

5 Results

We now demonstrate the effectiveness of SNDEs on examples that cover autonomous first and
second order systems with either a conserved first integral of motion or holonomic constraints, a
non-autonomous first order system with a conserved quantity, a non-autonomous controlled first
order system with a time-dependent constraint stemming from the control, and a chaotic second order
system with a conservation law. To demonstrate the flexibility of our approach with respect to the
variant of underlying NDE model, for the first three experiments we include both vanilla NODEs and
augmented NODEs as baselines and apply stabilization to both (with the stabilized variants labeled
SNODE and SANODE, respectively).

As a metric for the predicted state û(t) versus ground truth u(t), we use the relative error ∥u(t)−
û(t)∥2/∥u(t)∥2, averaged over many trajectories with independent initial conditions. As a metric for
the constraints, we compute analogous relative errors for g(u).

In Appendix C, we further demonstrate empirically that SNDEs are insensitive to the specific choice
of γ over a large range (beyond a minimum value, consistent with Theorem 2). We also provide more
intuition about choosing γ and the computational implications of this choice. In practice, we find that
SNDEs are easy to use across a wide variety of settings with minimal tuning and incur only moderate
training overhead compared to vanilla NDEs. In some cases, SNDEs are even computationally
cheaper than vanilla NDEs at inference time despite the cost of computing the pseudoinverse. Finally,
Appendix D provides results of additional experiments not included here due to space constraints.

5.1 Two-Body Problem [second order, autonomous, non-chaotic, conservation law]

The motion of two bodies attracting each other with a force inversely proportional to their squared
distance (e.g., gravitational interaction in the non-relativistic limit) can be written as

ẍ = − x

(x2 + y2)3/2
, ÿ = − y

(x2 + y2)3/2
, (13)

where one body is fixed at the origin and x, y are the (normalized) Cartesian coordinates of the other
body in the plane of its orbit [43]. We stabilize the dynamics with respect to the conserved angular
momentum L, yielding

M = {(x, y) ∈ R2 ; xẏ + yẋ− L0 = 0}, (14)
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Figure 2: Top row: Results for the two-body problem experiment, showing a single test trajectory in
(a) and averages over 100 test trajectories in (b-c). Middle row: Results for the rigid body rotation
experiment, showing a single test trajectory in (d) and averages over 100 test trajectories in (e-f).
Bottom row: Results for the DC-to-DC converter experiment, showing the voltage v1 across the
first capacitor during a single test trajectory in (g), and averages over 100 test trajectories in (h-i).
The vanilla NODE (blue) is unstable in all settings, quickly drifting from the constraint manifold
and subsequently diverging exponentially, while the vanilla ANODE (green) is unstable for the rigid
body and DC-to-DC converter experiments. In contrast, the SNODE (red) and SANODE (purple) are
constrained to the manifold with accurate predictions over a long horizon in all settings. Confidence
intervals are not shown as they diverge along with the unstabilized trajectories.

where L0 is the initial value of L. We train on 40 trajectories with initial conditions (x, y, ẋ, ẏ) =
(1 − e, 0, 0,

√
1−e/1+e), where the eccentricity e is sampled uniformly via e ∼ U(0.5, 0.7). Each

trajectory consists of a single period of the orbit sampled with a timestep of ∆t = 0.1.

The top row of Figure 2 shows that SNODEs, ANODEs and SANODEs all achieve stable long-term
prediction over multiple orbits, while unstabilized NODEs diverge exponentially from the correct
orbit.
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5.2 Motion of a Rigid Body [first order, autonomous, non-chaotic, holonomic constraint]

The angular momentum vector y = (y1, y2, y3)
T of a rigid body with arbitrary shape and mass

distribution satisfies Euler’s equations of motion,(
ẏ1
ẏ2
ẏ3

)
=

(
0 −y3 y2
y3 0 −y1
−y2 y1 0

)(
y1/I1
y2/I2
y3/I3

)
, (15)

where the coordinate axes are the principal axes of the body, I1, I2, I3 are the principal moments of
inertia, and the origin of the coordinate system is fixed at the body’s centre of mass [43]. The motion
of y conserves the Casimir function C(y) = 1

2

(
y21 + y22 + y23

)
, which is equivalent to conservation

of angular momentum in the orthogonal body frame and constitutes a holonomic constraint on the
allowed states of the system. We therefore have the manifold

M = {(y1, y2, y3) ∈ R3 ; y21 + y23 + y23 − C0 = 0}. (16)

We train on 40 trajectories with initial conditions (y1, y2, y3) = (cos(ϕ), 0, sin(ϕ)), where ϕ is drawn
from a uniform distribution ϕ ∼ U(0.5, 1.5). Each trajectory consists of a 15 second sample with a
timestep of ∆t = 0.1 seconds.

The middle row of Figure 2 demonstrates that, unlike vanilla NODEs and ANODEs, SNODEs and
SANODEs are constrained to the sphere and stabilize the predicted dynamics over a long time horizon
in this first order system.

5.3 DC-to-DC Converter [first order, non-autonomous, non-chaotic, conservation law]

u

L3

1

C2

0

C1

Figure 3: Idealized
schematic of a DC-to-
DC converter.

We now consider an idealized DC-to-DC converter [52, 33], illustrated
in Figure 3, with dynamics

C1v̇1 = (1− u)i3, C2v̇2 = ui3, L3i̇3 = −(1− u)v1 − uv2, (17)

where v1, v2 are the state voltages across capacitors C1, C2, respectively,
i3 is the state current across an inductor L3, and u ∈ {0, 1} is a control
input (a switch) that can be used to transfer energy between the two
capacitors via the inductor. The total energy in the circuit, E = 1

2 (C1v
2
1 +

C2v
2
2 + L3i

2
3), is conserved, yielding the manifold

M = {(v1, v2, i3) ∈ R3 ; C1v
2
1 + C2v

2
2 + L3i

2
3 − E0 = 0}. (18)

We train on 40 trajectories integrated over 10 seconds with a timestep of ∆t = 0.1 seconds, where
C1 = 0.1, C2 = 0.2, L3 = 0.5, and a switching period of 3 seconds, i.e., the switch is toggled every
1.5 seconds. The initial conditions for (v1, v2, i3) are each drawn independently from a uniform
distribution U(0, 1).

The bottom row of Figure 2 shows the voltage across C1 over multiple switching events (g), with the
NODE and ANODE quickly accumulating errors every time the switch is applied, while the SNODE
and SANODE remain accurate for longer. Panels (h,i) show the familiar exponentially accumulating
errors for vanilla NODE and ANODE, versus stable relative errors for SNODE and SANODE.

5.4 Controlled Robot Arm [first order, non-autonomous, non-chaotic, time-dependent control]

Next, we apply SNDEs to solve a data-driven inverse kinematics problem [64], that is, learning the
dynamics of a robot arm that satisfy a prescribed path p(t). We consider an articulated robot arm
consisting of three connected segments of fixed length 1, illustrated in Figure 4(a). Assuming one
end of the first segment is fixed at the origin and the robot arm is restricted to move in a plane, the
endpoint e(θ) of the last segment is given by

e(θ) =

(
cos(θ1) + cos(θ2) + cos(θ3)
sin(θ1) + sin(θ2) + sin(θ3)

)
, (19)

where θj is the angle of the j-th segment with respect to the horizontal and θ = (θ1, θ2, θ3). The
problem consists of finding the motion of the three segments θ(t) such that the endpoint e(θ) follows
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Figure 4: Controlled robot arm. (a) Schematic of the robot arm. (b) Snapshot of a single test
trajectory. After 100 seconds the NODE (blue) has drifted significantly from the prescribed control
while the SNODE (red) accurately captures the ground truth dynamics (black). (c) Relative error in
the endpoint e(θ) averaged over 100 test trajectories. The NODE (blue) accumulates errors and leaves
the prescribed path, while the SNODE (red) remains accurate. Shadings in (c) are 95% confidence
intervals.

a prescribed path p(t) in the plane, i.e., e(θ) = p(t). Minimizing ||θ̇(t)||, it can be shown [42] that
the optimal path satisfies

θ̇ = e′(θ)T
(
e′(θ)e′(θ)T

)−1
ṗ(t), (20)

where e′ is the Jacobian of e. These will be our ground truth equations of motion.

We stabilize the SNODE with respect to the (time-dependent) manifold

M = {(θ, t) ∈ S× R ; e(θ)− p(t) = 0}. (21)

In particular, we prescribe the path

p(t) = e0 −
(

sin(2πt)/2π
0

)
, (22)

where e0 is the initial position of the endpoint, such that e(θ) traces a line back and forth on the x-axis.
We train on 40 trajectories of duration 5 seconds, with timestep ∆t = 0.1 and initial conditions
(θ1, θ2, θ3) = (θ0,−θ0, θ0), where θ0 is drawn from a uniform distribution θ0 ∼ U(π/4, 3π/8).
Additionally, we provide the network with ṗ, the time derivative of the prescribed control.

Figure 4 shows that the unconstrained NODE drifts substantially from the prescribed path during a
long integration, while the SNODE implements the control to a high degree of accuracy and without
drift.

5.5 Double Pendulum [second order, autonomous, chaotic, conservation law]

Finally, we apply stabilization to the chaotic dynamics of the frictionless double pendulum system.
The total energy E of the system is conserved [7], yielding the manifold,

M = {(θ1, θ2, ω1, ω2) ∈ S2 × R2 ; E(θ1, θ2, ω1, ω2)− E0 = 0}, (23)

where θi is the angle of the i-th arm with the vertical and ωi = θ̇i. We refer the reader to Arnold
[7] (or the excellent Wikipedia entry) for the lengthy equations of motion and an expression for the
total energy. For simplicity we take m1 = m2 = 1kg, l1 = l2 = 1m, and g = 9.81ms−2. We train
on 40 trajectories, each consisting of 10 seconds equally sampled with ∆t = 0.05, and with initial
conditions (θ1, θ2, ω1, ω2) = (ϕ, ϕ, 0, 0), where ϕ is drawn randomly from a uniform distribution
ϕ ∼ U(π/4, 3π/4). We emphasize that this is a highly limited amount of data when it comes to
describing the chaotic motion of the double pendulum system, intended to highlight the effect of
stabilization in the low-data regime.

Figure 5(a-b) shows that, while initially the SNODE only marginally outperforms the vanilla NODE
in terms of the relative error of the state, the longer term relative error in energy is substantially
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Figure 5: Results for the double pendulum. (a) Relative error in the state over 300 short test trials,
shown with 95% confidence intervals (shaded). Compared to the SNODE, the NODE diverges rapidly
as it begins to accumulate errors in the energy. (b) Relative error in the energy averaged over 5 long
test trials. (c) Comparison of the double pendulum’s invariant measure estimated by the (hybrid)
UDE, with and without stabilization, versus ground truth, with 95% confidence intervals.

larger for NODE than for SNODE. A certain relative error in state is indeed unavoidable for chaotic
systems.

In addition to predicting individual trajectories of the double pendulum, we also consider an additional
important task: learning the invariant measure of this chaotic system. This can be motivated by
analogy with climate predictions, where one also focuses on long-term prediction of the invariant
measure of the system, as opposed to predicting individual trajectories in the sense of weather
forecasting, which must break down after a short time due to the highly chaotic underlying dynamics.
Motivated by hybrid models of the Earth’s climate [36, 71], we choose a slightly different training
strategy than before, namely a hybrid setup in line with the UDE approach mentioned above. In
particular, the dynamics of the first arm θ̈1 are assumed known, while the dynamics of the second
arm θ̈2 are learned from data. We train on a single trajectory of duration 60 seconds with ∆t = 0.05.
For each trained model, we then integrate ten trajectories of duration one hour – far longer than the
observed data. An invariant measure is estimated from each long trajectory (see Appendix E) and
compared with the ground truth using the Hellinger distance.

Figure 5(c) shows that, as γ is increased, our ability to accurately learn the double pendulum’s
invariant measure increases dramatically due to stabilization, demonstrating that the “climate” of this
system is captured much more accurately by the SNDE than by the NDE baseline.

6 Conclusion

We have introduced stabilized neural differential equations (SNDEs), a method for learning dynamical
systems from observational data subject to arbitrary explicit constraints. Our approach is based on a
stabilization term that is cheap to compute and provably renders the invariant manifold asymptotically
stable while still admitting all solutions of the vanilla NDE on the invariant manifold. Key benefits of
our method are its simplicity and generality, making it compatible with all common NDE methods
without requiring further architectural changes. Crucially, SNDEs allow entirely new types of
constraints, such as those arising from known conservation laws and controls, to be incorporated into
neural differential equation models. We demonstrate their effectiveness across a range of settings,
including first and second order systems, autonomous and non-autonomous systems, with constraints
stemming from holonomic constraints, conserved first integrals of motion, as well as time-dependent
restrictions on the system state. SNDEs are robust with respect to the only tuneable parameter and
incur only moderate computational overhead compared to vanilla NDEs.

The current key limitations and simultaneously interesting directions for future work include adapting
existing methods for NODEs on Riemannian manifolds to our setting, generalizations to partial dif-
ferential equations, allowing observations and constraints to be provided in different coordinates, and
scaling the method to high-dimensional settings such as learning dynamics from pixel observations,
for example in fluid dynamics or climate modeling. Finally, we emphasize that high-dimensional, non-
linear dynamics may not be identifiable from just a small number of solution trajectories. Hence, care
must be taken when using learned dynamics in high-stakes scenarios (e.g., human robot interactions),
especially when going beyond the training distribution.
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A Differential Algebraic Equations

A differential algebraic equation (DAE) in its most general, implicit form is

F (t, x, ẋ) = 0, (24)

where x ∈ Rn and F : R × Rn × Rn → Rn. When ∂F/∂ẋ is nonsingular, Equation (24) is an
implicit ODE and by the implicit function theorem may be written as an explicit ODE in the form
ẋ = f(x, t) [34]. In the more interesting case of singular ∂F/∂ẋ, an important special case of
Equation (24) is given by semi-explicit DAEs in Hessenberg form, for example,

ẏ = f(t, y, z) (25a)
0 = g(t, y, z), (25b)

where x = (y, z). We call y the differential variables, since their derivatives appear in the equations,
and z the algebraic variables, since their derivatives do not. The semi-explicit form of Equation (25)
highlights the connection between certain classes of DAEs and ODEs subject to constraints.

It is generally possible to differentiate the constraints in Equation (25b) a number of times and
substitute the result into Equation (25a) to obtain a mathematically equivalent ODE. The number
of differentiations required to do so is the differential index of the DAE, and corresponds loosely to
the “distance” of the DAE from an equivalent ODE. The differential index – and related measures of
index not directly based on differentiation – is used extensively to classify DAEs, especially in the
context of numerical methods for their solution [15]. Each differentiation of the constraints reduces
the index of the system by one (ODEs have index 0).

Of particular interest in the context of this paper are constrained ODEs of the form

u̇ = f(t, u) (26a)
0 = g(t, u), (26b)

where u ∈ Rn, f : R× Rn → Rn, and g : R× Rn → Rm. Equation (26) can be written as a semi-
explicit Hessenberg index-2 DAE, with u as the differential variables and m Lagrange multipliers as
the algebraic variables, for example,

u̇ = f(t, u)−D(u)λ (27a)
0 = g(t, u), (27b)

where λ ∈ Rm and D(u) is any bounded matrix function such that GD, where G = gu is the
Jacobian of g, is boundedly invertible for all t [8]. We can therefore approach the task of solving
the constrained ODE Equation (26) from the perspective of solving the Hessenberg index-2 DAE
Equation (27).

DAEs are not ODEs, however, and a number of additional complications arise when we seek
numerical solutions [65]. Generally, the higher the index, the harder it is to solve a given DAE.
For this reason, it is common to first perform an index reduction (i.e. differentiate the constraints)
before applying numerical methods. However, the numerical solution of the resulting index-reduced
system may exhibit drift off from the invariant manifold defined by the original constraints. For this
reason, Baumgarte [10] proposed a stabilization procedure for index-reduced DAEs that renders the
invariant manifold asymptotically stable. Baumgarte’s stabilization is, in turn, a special case of the
stabilization procedure later proposed by Chin [21] and adopted by us in this paper. We emphasize,
however, that our stabilization procedure addresses a different application and problem than these
related methods; while Baumgarte and Chin sought to stabilize drift off from the invariant manifold
due to discretization error in the numerical solution of an index-reduced DAE, we seek to constrain
some learned dynamics imperfectly approximated by a neural network.

Finally, one may ask why a neural network could not be incorporated directly into Equation (27)
and the resulting index-2 DAE solved directly. While possible in principle, DAEs require implicit
numerical methods, with the result that the computational complexity of computing gradients of
solutions – whether via automatic differentiation or adjoint sensitivity analysis – scales with the cube
of the system size [51]. In contrast, backpropagating through explicit solvers has linear complexity.
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Figure 6: Comparison of the alternative, faster SNDE formulation in Equation (29) with the standard
SNDE formulation in Equation (12), applied to the controlled robot arm experiment. (a) After 100
seconds, both the fast SNODE (green) and the standard SNODE (orange, not visible behind green)
continue to implement the prescribed path exactly, while the NODE (blue) has drifted significantly.
(b) Relative errors in the position of the endpoint, averaged over 10 test trajectories. The fast SNODE
(green) admits slightly larger errors than the standard SNODE (orange), although the difference is
negligible in this setting.

B Faster Alternatives to the Pseudoinverse

The computational cost of the pseudoinverse is O(m2n), where m is the number of constraints
and n is the dimension of the problem. While cheap to compute for the systems studied in this
paper, the pseudoinverse may become prohibitively expensive for applications with a large number of
constraints. As an alternative choice for the stabilization matrix F (u) in Equation (5), we recommend
using the transpose of the Jacobian G(u) = gu, i.e.,

F (u) = GT (u), (28)

which is instead O(1). Since GT (u)G(u) is symmetric positive definite, the theoretical guarantees
of Theorem 1 and Theorem 2 still apply, such that

u̇ = fθ(u)− γGT (u)g(u) [alternative SNDE] (29)

is a valid SNDE.

We apply an SNDE in the form of Equation (29) to the controlled robot arm experiment, in which the
Jacobian has dimensions 2× 3. In this instance, a single evaluation of GT (u) is approximately 10
times faster than the pseudoinverse G+(u), which translates to a 10% speedup when evaluating the
entire right-hand side of the SNDE (the cost of evaluating of the neural network still dominates in
this setting).

Figure 6 shows that the alternative SNDE formulation implements the control effectively and il-
lustrates the tradeoff when choosing the stabilization matrix F (u). The pseudoinverse G+ can be
expensive to compute but, as an orthogonal projection, yields the most “direct” stabilization to the
constraint manifold and therefore the most accurate implementation of the constraint. The transpose
GT , on the other hand, is always cheap to compute and yields a valid stabilization, at the cost of only
slightly larger errors in the constraint.

C The Stabilization Parameter γ

C.1 Runtime Implications

We assess the computational cost of SNODEs compared to vanilla NODEs. SNODEs require the
computation of (and backpropagation through) the pseudoinverse of the Jacobian of the constraint
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Table 1: Training time of NODEs vs SNODEs. All experiments are trained for 1,000 epochs on an
Intel(R) Xeon(R) CPU E5-2667 v3 @ 3.20GHz. Statistics are calculated over 5 random seeds.

Training Time (seconds)

Two-Body Problem Rigid Body DC-to-DC Converter

Model γ Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

NODE - 10,580 271 9,730 71 14,000 316

0.1 12,060 206 12,000 283 18,060 524
1 12,180 194 12,500 126 18,020 549
2 12,160 102 12,340 301 18,280 240

SNODE 4 12,980 147 14,160 280 18,020 354
8 14,000 268 15,320 376 18,200 482

16 14,260 162 15,680 519 - -
32 15,300 167 17,140 680 - -

function g. Additionally, as γ is increased, SNODEs may require more solver steps at a given error
tolerance, with the SNODE eventually becoming stiff for sufficiently large γ. Naively, one may thus
expect a noticeable increase in runtime. However, as described in Section 2, the computational cost of
training NODEs also depends on the “complexity” of the learned dynamics, which in turn determines
how many function evaluations are required by the solver. This leads to nontrivial interactions
between the added computation of enforcing constraints and the thereby potentially regularized
“simpler” dynamics, which may require fewer function evaluations by the solver.

In Table 1, we report comparisons of training times between SNODEs and NODEs for different
values of γ for three settings. SNODEs take roughly 1.2 to 1.8 times longer to train, with smaller
values of γ incurring less overhead. Overall, this is a manageable increase for most relevant scenarios.

We also show inference times in Table 2. Here, the trend reverses and larger values of γ lead to
lower inference times. This is because the solver requires fewer steps (has higher acceptance rates
of proposed step sizes) for stronger stabilization. Hence, while predictive performance is largely
unaffected, one can use the specific choice of γ as a tuning knob that trades off training time versus
inference time.

C.2 Constraint Implications

To complement these results, Figure 7 shows that the relative error remains almost unchanged for a
large range of γ values, that is, beyond a certain minimum value, SNODEs are not sensitive to the
specific choice of γ. Even a value of γ = 1 works well in the settings we have considered, indicating
that we can typically get away with runtime increases of a factor of 1.2. However, larger values of γ
only lead to slightly increased training times, while generally enforcing the constraints to a higher
degree of accuracy.

C.3 A Practical Guide to Choosing γ

As described in the previous sections, choosing the optimal value of γ requires a tradeoff between
accuracy and training time; larger values of γ will enforce the constraints more accurately, at the cost
of (mildly) additional training time. Our experience with the systems in this paper is that stabilization
begins to work around γ ∼ 1 and remains effective as γ is increased, until the system becomes stiff
around γ ∼ 100. Within those limits, we suggest experimenting with a range of values, for example,
powers of two.

Finally, we note that the stabilization term can be switched “on and off” at any time during training.
For example, if computing the pseudoinverse is expensive, it may be beneficial to start training
without stabilization, before switching the stabilization on once fθ is close to f .

18



0 50 100

R
el

at
iv

e 
E

rr
or

 (
S

ta
te

)

10-3

10-2

10-1

100

0 50 100

R
el

at
iv

e
E

rr
or

 (
A

ng
. M

om
.)

10-4

10-3

10-2

0 400 800

R
el

at
iv

e 
E

rr
or

 (
S

ta
te

)

10-4

10-2

100

0 400 800

R
el

at
iv

e 
E

rr
or

 (
C

as
im

ir)

10-5

10-4

10-3

10-2

Time (seconds)

0 40 80

R
el

at
iv

e 
E

rr
or

 (
S

ta
te

)

10-3

10-2

10-1

100

Time (seconds)

0 40 80

R
el

at
iv

e 
E

rr
or

 (
E

ne
r g

y)

10-4

10-3

10-2

10-1

100

101

102

(a) (b)

(c) (d)

(e) (f)

𝛾

0.1
1
2
4
8
16
32

Figure 7: Effect of γ on relative errors. Top row: Two-body problem (a-b). Middle row: Rigid
body (c-d). Bottom row: DC-to-DC converter (e-f). Beyond a certain value, SNDEs are not highly
sensitive to the choice of γ, although larger values may enforce the constraints more accurately.

Table 2: Inference time and (adaptive) solver statistics of SNODEs vs NODEs for the two-body
problem experiment. Inference time statistics are calculated using 100 test initial conditions, each of
which is integrated for 20 seconds (short enough so that the NODE solution does not diverge). Solver
step statistics are reported for a single test trial, intended to illustrate the observed trends in inference
time. SNODEs are cheaper at inference time due to significantly fewer rejected solver steps.

Model Inference Time (seconds) Solver Steps

Type γ Median Mean Accepted Rejected RHS Evaluations

NODE - 2.44 2.51 ± 0.04 2,379 3,343 34,335

0.1 2.14 2.17 ± 0.03 2,040 2,874 29,487
1 2.19 2.19 ± 0.03 2,054 2,704 28,551
2 2.22 2.27 ± 0.04 2,061 2,541 27,615

SNODE 4 2.07 2.15 ± 0.05 2,180 2,382 27,375
8 2.05 2.07 ± 0.04 2,355 1,877 25,395
16 1.98 2.03 ± 0.05 2,677 1,437 24,687
32 1.96 1.99 ± 0.04 3,219 1,029 25,491
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Table 3: Stable time of NODEs for the same 100 test trials as shown in Figure 2. SNODE models
(not shown) did not not diverge during any trial.

NODE Stable Time (seconds)

Experiment Trial Length (seconds) Min. Max. Median Mean Std. Dev.

Two-Body Problem 200.0 52.0 182.8 121.7 117.3 30.3
Rigid Body 1600.0 341.7 1600.0 1600.0 1349.9 468.4
DC-to-DC Converter 160.0 19.3 160.0 113.9 110.49 45.6

D Additional Experiments

D.1 Hamiltonian Neural Networks

We train a Hamiltonian neural network (HNN) on the two-body problem, which is a Hamiltonian
system (Figure 8). The HNN initially conserves angular momentum, suggesting that it has learned a
reasonable approximation of the true Hamiltonina. However, it becomes unstable after approximately
50 seconds, highlighting the benefits of stabilization when data is limited and conservation laws are
known.

D.2 Tangent Projection Operator

The invariant manifold of the rigid body experiment is a sphere. To constrain trajectories to the
sphere, we can follow an approach similar to Rozen et al. [69] and Ben-Hamu et al. [12] and define a
tangent projection operator (TPO),

P (u) = I − uuT

||u||2
, (30)

where I is the identity matrix. P (u) projects velocities at u to the tangent space of the sphere TuS2.
Applying the tangent projection operator of Equation (30) to the standard NDE model fθ for rigid
body dynamics, we obtain

u̇ = P (u)fθ(u) ∈ TuS2. (31)
Equation (31) is a manifold ODE. In general, specialized numerical methods must be used when inte-
grating manifold ODEs to guarantee the numerical solution remains on the manifold [43]. However,
for the sake of this comparison, we find regular ODE solvers to be sufficient in practice.

Figure 8(d) shows that the TPO satisfies the constraint exactly, with relative errors of ∼ 10−10,
compared to ∼ 10−4 for the SNODE and SANODE. However, this does not translate to improved
prediction of the system state (Figure 8(c)), suggesting that, in this setting, there is little practical
benefit to the additional accuracy in the constraint.

D.3 Stable Time

The unstabilized, vanilla NODEs of Figure 2 are characterized by an initial drift from the invariant
manifold that gives way to a subsequent rapid divergence. In practice, however, certain test trials
may remain stable for significantly longer than others. In this section, we characterize the stable time
Tstab of an individual test trial as the time elapsed until the relative error E(t) in the predicted system
state û(t) exceeds a given threshold value Estab, i.e.

Tstab = max {t |E(t) < Estab}. (32)

Taking Estab = 103, Table 3 shows Tstab for the the two-body problem, rigid body, and DC-to-DC
converter experiments. Across several thousand test trials in this paper, not one stabilized NDE model
diverged.

E Invariant Measure

Given that the double pendulum is a chaotic system, predictions of individual trajectories will break
down after short times. We therefore also quantify the performance of NODEs and SNDEs in terms
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Figure 8: Top row: Comparison with a Hamiltonian neural network (HNN) for the two-body
problem experiment. Bottom row: Comparison with a tangent projection operator (TPO) for the
rigid body experiment. Relative errors are calculated using the same 100 test initial conditions as in
Figure 2. The HNN (a-b, pink) initially conserves angular momentum but is unstable for some initial
conditions. The TPO (c-d, navy blue) conserves the Casimir function exactly. However, this does not
translate to better prediction of the system state.

of their ability to capture the double pendulum’s invariant measure. We refer to Arnold et al. [6] and
Chekroun et al. [17] for detailed definitions of invariant measures; in short, a measure µ is said to be
invariant under some flow Φ if µ(Φ−1(t)(A)) = µ(A) for all measurable sets A. Invariant measures
are commonly used to characterize the long-term dynamical characteristics of chaotic dynamical
systems (see, for example, Arnold et al. [6] or Chekroun et al. [17] for a discussion of the invariant
measure of the paradigmatic Lorenz-63 system). Since the double pendulum is an ergodic system,
averages over long times approximate ensemble averages. We can therefore obtain a sample of
the invariant measure numerically by integrating the system for a very long time. Concretely, we
estimate the invariant measure from a single long trajectory using an algorithm due to Diego et al.
[28], implemented in ComplexityMeasures.jl [41], based on a numerical estimate of the transfer
operator. We then use the Hellinger distance [22] to compare the resulting probability distribution
with the ground truth value for the double pendulum.
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Table 4: Additional hyperparameters.

Experiment

Two-Body Problem Rigid Body DC-to-DC Converter Robot Arm Double Pendulum

γ 8 32 8 16 16
Hidden Layers 2 2 2 2 2
Hidden Width 128 64 64 128 128
Max LR 10−3 10−4 5× 10−3 10−3 10−2

Min LR 10−5 10−5 10−5 10−5 10−4

Augmented Dimension 2 2 1 - -

F Architecture and Training

Trajectories are generated using the 9(8) explicit Runge-Kutta algorithm due to Verner [74], im-
plemented in DifferentialEquations.jl [66] as Vern9. To ensure that invariants are satisfied exactly
in the training data, we use absolute and relative solver tolerances of 10−24 in conjunction with
Julia’s BigFloat number type. Trajectories for training and validation are independent, that is, a
given trajectory is used exclusively either for training or validation. Each trajectory is split using a
multiple-shooting approach into non-overlapping chunks of 3 timesteps each.

Networks are implemented using Flux.jl [46] and consist of fully-connected dense layers with ReLU
activation functions. All experiments are trained for 1,000 epochs using the AdamW optimizer
[56] with weight decay of 10−6 and an exponentially decaying learning rate schedule. During
training, trajectories are integrated using the 5(4) explicit Runge-Kutta algorithm due to Tsitouras
[73], implemented in DifferentialEquations.jl [66] as Tsit5, with absolute and relative tolerances of
10−6

The stabilization hyperparameter γ as well as network sizes, learning rates, and the number of
additional dimensions for ANODEs are optimized for each experiment and are summarized in
Table 4.
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