
Idempotent Learned Image Compression with
Right-Inverse

Yanghao Li, Tongda Xu, Yan Wang∗, Jingjing Liu, Ya-Qin Zhang∗
Institute for AI Industry Research (AIR), Tsinghua University

liyangha18@mails.tsinghua.edu.cn, wangyan@air.tsinghua.edu.cn

Abstract

We consider the problem of idempotent learned image compression (LIC). The
idempotence of codec refers to the stability of codec to re-compression. To achieve
idempotence, previous codecs adopt invertible transforms such as DCT [Wallace,
1991] and normalizing flow [Papamakarios et al., 2021]. In this paper, we first
identify that invertibility of transform is sufficient but not necessary for idem-
potence. Instead, it can be relaxed into right-invertibility. And such relaxation
allows wider family of transforms. Based on this identification, we then implement
an idempotent codec using our proposed blocked convolution and null-space en-
hancement. Empirical results show that we achieve state-of-the-art rate-distortion
performance among idempotent codecs. Furthermore, our idempotent codec can
be extended into near-idempotent codec by relaxing the right-invertibility. And
this near-idempotent codec has significantly less quality decay after 50 rounds of
re-compression compared with other near-idempotent codecs.

1 Introduction

Learned Image Compression (LIC) has been widely studied in recent years [Ballé et al., 2017, 2018,
Minnen et al., 2018, Cheng et al., 2020, Minnen et al., 2020, He et al., 2021, 2022] and has shown
promising rate-distortion (RD) performance. However, the loss caused by re-compression is much
more severe in LIC compared with traditional codec, which seriously limits the practical application
of LIC [Kim et al., 2020]. In this paper, we study the idempotence of LIC, which refers to the stability
of codec to re-compression. More specifically, denote the original image as x, the encode-then-decode
procedure as f(·), and the reconstructed image as f(x), we say a codec is idempotent if:

f(x) = f(f(x)). (1)

For traditional codecs such as JPEG [Wallace, 1991] and JPEG2000 [Taubman et al., 2002], idempo-
tence is easily achieved. This is because those codecs adopt invertible transforms such as Discrete
Cosine transform (DCT) and Discrete Wavelet transform (DWT). And the only non-invertible oper-
ation is the scalar quantization. As scalar quantization using rounding is naturally idempotent, the
idempotence of the whole codec can be easily assured. For LIC, however, neural-network-based
transform is introduced for expressiveness. And as most neural networks are non-invertible, the
idempotence of LIC is not trivial.

A natural solution to this problem is replacing the non-invertible encoding transform with invertible
ones. [Helminger et al., 2021] construct the encoding transform with only invertible normalizing flow
[Papamakarios et al., 2021]. However, due to the limited expressiveness of invertible operations, a
dramatic RD performance drop is observed. Another line of works are targeted at near-idempotence,
which means that they achieve a small |f(x) − f(f(x))|, but not f(x) = f(f(x)). These works

∗Corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

adopt partially invertible encoding transform [Cai et al., 2022] or use additional regularization loss
[Kim et al., 2020] to constrain re-compression loss, but none of them is able to achieve idempotence
like JPEG and JPEG2000.

In this work, we first identify that invertibility is sufficient but not necessary for idempotent codecs.
Instead, it can be relaxed into right-invertibility, and such relaxation allows for more flexible and
expressive encoding transforms. Based on this observation, we investigate practical implementation
of right-inverse, and propose a highly efficient blocked convolution to overcome the forbidding
time complexity of right-inverse. Additionally, we leverage the null space decomposition [Schwab
et al., 2019, Wang et al., 2022a,b] to further boost the expressiveness of the right-invertible encoding
transform. Empirically, we achieve state-of-the-art RD performance among existing idempotent
codecs. Further, our idempotent codec can be easily extended into a near-idempotent codec, which
also achieves state-of-the-art re-compression performance among near-idempotent codecs.

2 Sufficiency of Right-Invertibility for Idempotence

Most modern LIC [Ballé et al., 2017, 2018, Cheng et al., 2020, He et al., 2022] are composed of
four components: the encoding transform E, the decoding transform D, the quantization Q, and the
entropy model. On the encoder side, the encoding transform E transform the input image x to some
latent representation, which is then quantized by Q to give the code y. The entropy model models the
entropy of code y, and is then used losslessly compress y to a bitstream, On the decoder side, the
received bitstream is losslessly decompressed to code y with the help of the entropy model. After
that, the decoding transform D transforms the y to the decompressed x̂. This compress-decompress
procedure can be represented as

y = Q ◦ E(x), x̂ = D(y). (2)

Note that the code y is losslessly encoded and decoded, regardless of how good the entropy model is.
Therefore entropy model does not influence the distortion, and is thus omitted for simplicity.

Using similar notations, the re-compression cycle can be represented as

yn = Q ◦ E(xn−1), xn = D(yn) = D ◦Q ◦ E(xn−1), (3)

where x0 is the original image, yn is the code after n times’ re-compression, and xn is the corre-
sponding decompressed image. We say a codec is idempotent if and only if

xn = x1 = D ◦Q ◦ E(x0),∀n ≥ 1. (4)

An obvious sufficient condition for idempotence (or for Eq. 4) is

D = E−1. (5)

In other words, D and E are inverse of each other. Then, the only difference between x1 and xn is
the number of applications of quantization operation Q:

xn = D ◦Q ◦���E ◦D ◦Q ◦ E(xn−2) = ... = D ◦Qn ◦ E(x0). (6)

This re-compression procedure is idempotent as long as Q is idempotent. Usually Q is a scalar
quantization implemented by rounding, then this procedure is naturally idempotent. The invertibility
of encoding transform is satisfied in traditional image codecs like JPEG and JPEG2000, and can
also be achieved using normalizing flow [Helminger et al., 2021], thus these codecs are idempotent.
However, invertibility of E (Eq. 5) is sufficient but not necessary. We notice that for E ◦D in Eq. 6
to be canceled out, it is sufficient to have

E ◦D(yi) = yi, (7)

which is exactly the definition of right-invertibility.

Relaxing the requirement for E from invertibility to right-invertibility brings two advantages. On the
one hand, the family of right-invertible functions is much less constrained than the family of invertible
functions, which means we have wider choices for E and its easier to improve the expressiveness of
E. On the other hand, the sufficient condition for E to be invertible is that E is bijective, and the
sufficient condition for E to be right-invertible is that E is surjective [Mac Lane, 2013]. A surjective
E can transform different input images x into the same code to save the bits for distinguishing them,
while bijective E always transforms different input images into different codes. As later shown in the
experiment section 4.3, this bit saving property benefits the RD performance of lossy compression.

2

coupling
enhancement

null-space
enhancement

(a) convolution as matrix multiplication:
naive (upper) and blocked (lower)

(c) right-invertible convolution(b) blocked receptive field

𝐾𝐾

𝐼𝐼 − 𝐾𝐾𝐾𝐾+

𝑥𝑥

𝑦𝑦 𝑦𝑦

𝐾𝐾+

𝑓𝑓

+

𝑥𝑥

CE CE-1

𝑌𝑌 = 𝑋𝑋 𝐾𝐾

Figure 1: Right-Invertible Convolution. (a) Naïve convolution matrix (upper) and blocked convolu-
tion matrix (lower). (b) Receptive field pattern for the proposed blocked convolution. (c) Null-space
enhancement (NE) and coupling enhancement (CE) to improve expressiveness.

3 Practical Design of Right-Invertible Codec

In the previous section, we have shown that if an encoding transform E and quantization Q are
right-invertible, we only need the decoding transform D to be the right-inverse of E to formulate
an idempotent codec. Since the success of LIC is, to a large extent, owing to the expressive power
of the learned encoding and decoding transforms, our task becomes how to design an expressive
yet right-invertible encoding transform. As composition of surjections is still surjective [Mac Lane,
2013], this task can be further decomposed into designing small components of right-invertible
transforms and combining them altogether. Specifically, we construct the encoding transform E in a
composition form as E = En ◦ En−1 ◦ ... ◦ E1, and make each Ei a right-invertible sub-transform.

This section is organised as follows: In Sec. 3.1-Sec.. 3.3, we discuss how to design expressive yet
right-invertible atom transforms used in LIC, such as convolution, normalization and quantization. In
Sec. 3.4, we discuss how to organize those atom transforms into an idempotent codec. And In Sec.
3.5, we discuss how to relax this idempotent codec into near-idempotent codec.

3.1 Efficient & Expressive Right-Invertible Convolution

Convolution is of great importance to LIC and makes up the majority of computation cost. Here,
we discuss how to implement right-invertible convolution with efficiency and expressiveness. The
overall design of right-invertible convolution is illustrated in Fig.1(c).

3.1.1 Blocked Convolution for Efficiency

The right-inverse of a convolution can be calculated in serial (if it exists), but the time complexity is
forbiddingly high. To see why, consider a 1-d convolution with kernel size 5, padding 2, stride 2, and
channel 1. The input and output are x = (x1, x2, ..., x12) and y = (y1, y2, ..., y6) respectively.

The serial solution of right-inverse goes as follows: first solve (x1, x2, x3) given y1, then solve
(x4, x5) given y2 and already solved (x1, x2, x3), and so on till the whole x is solved. This serial
solution cannot be made parallel because solving (x4, x5) needs (x1, x2, x3) to be already solved,
and is thus extremely time-consuming. The fundamental reason for the dependency in solving x is
that, some same xi is involved in the forward calculation of different yi, i.e., the overlapping receptive
field. Therefore, if we make the receptive field non-overlapping, then parallel solution of right-inverse
becomes possible.

Inspired by the non-overlapping 1 × 1 convolution for inverse [Kingma and Dhariwal, 2018], we
propose blocked convolution for right-inverse. Blocked convolution is also non-overlapping, but
extends invertibility to right-invertibility. As shown in Sec. 4.3, this extension boots the the R-D
performance of idempotent LIC by a large margin.

3

With this non-overlapping blocked convolution, we can make solution of right-inverse parallel.
Following the previous example, using the same input and output with a 4× 2 blocked-convolution
kernel, for now, solving (x1, ..., x4) only needs to know (y1, y2), and solving (x5, ..., x8) only needs
to know (y3, y4), and these procedures can be made parallel. Matrix multiplication equivalents of
normal convolution and blocked convolution are depicted in the upper and lower parts of Fig.1(a)
respectively, using the well-known GEMM [GEM] formation. And an analysis of time complexity of
2D convolution can be found in appendix A.1.

3.1.2 Null-Space Enhancement and Coupling Enhancement for Expressiveness

Null-Space Enhancement

To solve the right-inverse of the proposed blocked convolution in parallel, we adopt the widely-used
Moore–Penrose pseudo-inverse [Moo] as

X = Y K+, (8)

where Y ∈ Rb×d is the output of blocked convolution, X ∈ Rb×D is the solved right-inverse, and
K+ ∈ Rd×D is the Moore-Penrose pseudo-inverse of the kernel K ∈ RD×d. b is the batch size, D
and d are the input and output dimension of convolution in GEMM formation [GEM].

However, simple Moore-Penrose pseudo-inverse does not have enough expressiveness. This is
because right-inverse of a surjection might not be unique [Mac Lane, 2013], and the Moore-Penrose
pseudo-inverse might not be the optimal choice to calculate the right-inverse for blocked convolution.
Therefore, we leverage the null-space decomposition [Schwab et al., 2019, Wang et al., 2022a,b] to
identify a right-inverse that is most suitable. More specifically, Eq. 8 can be extended to

X = Y K+ + F (I −KK+). (9)

Here F ∈ Rb×D can be an arbitrarily chosen variable. Utilizing this property, we propose to learn a
function f(Y) to identify an F that is the most suitable as:

X = Y K+ + f(Y)(I −KK+). (10)

We call this approach null-space enhancement (NE). In this way, right-inverse X can be made more
than just linear transformation of Y and thus become more expressive. Ablation study of the proposed
null-space enhancement can be found in Sec.4.3. Derivation of Eq.9 and parameterization of kernel
K can be found in appendix A.2.

Coupling Enhancement

The proposed blocked convolution makes the calculation of right-inverse parallel-friendly, but it also
restricts the receptive field to a blocked pattern (Fig. 1(b)). This restriction limits the exchange of
information across different spatial locations. To overcome this drawback, we propose to introduce a
coupling enhancement (CE) after the blocked convolution.

Specifically, we implement a coupling structure [Dinh et al., 2016], and utilize normal convolutions
without blocked limitation as its scale and translation functions. This structure is formulated as

x = [x1 x2] , y1 = x1, y2 = x2 ⊙ exp (s(x1)) + t(x1), y = [y1 y2] (11)

Here, x and y are the input and output, respectively. [·] is the split/concatenate operation along
the channel dimension, and ⊙ is the element-wise multiplication. s(·) and t(·) are the scale and
translation functions, respectively. This structure is fully invertible as

y = [y1 y2] , x1 = y1, x2 = (y2 − t(x1))/ exp (s(x1)) , x = [x1 x2] (12)

Note that the invertibility of this coupling structure does not require the invertibility of the scale and
translation functions s(·) and t(·), thus s(·) and t(·) can be arbitrary learned transforms. Since the
proposed coupling enhancement utilize normal convolutions as its s(·) and t(·), its receptive field is
not restricted to be blocked, and can thus serve as an enhancement of expressiveness.

3.2 Right-Invertible Generalized Divisive Normalization

The widely-used generalized normalization (GDN)[Ballé et al., 2015] in LIC is invertible in theory,
and is thus qualified as a surjection. However, the inverse of GDN has to be solved for every input

4

𝑦𝑦1

=

×

+

𝑦𝑦2

conv

split

concat 𝑦𝑦1 𝑦𝑦2

=

conv −

÷

concat

split

hy
pe

r

Q

AE
AD

× 3

co
nv

G
D

N

co
nv

× 3 de
co

nv

iG
D

N

de
co

nv

(a) baseline framework (b) proposed framework

hy
pe

r

Qi

AE
AD

× 3 ric
on

v

ric
on

v

c-
G

D
N

× 3

c-
G

D
N

-1

ric
on

vR
N

E

ric
on

vR
N

E

right-inverse of right-invertible
convolution (no weights)

inverse of c-GDN
(no weights)

riconvR

c-GDN-1

Figure 2: Comparison between (a) baseline framework [Ballé et al., 2018] and (b) proposed
framework. To make the framework idempotent, we replace conv/deconv with right-invertible
convolution (described in Sec. 3.1), GDN/iGDN with c-GDN (described in Sec. 3.2), and quantization
Q with idempotent quantization Qi (described in Sec. 3.3) Both frameworks use the same mean-scale
Gaussian entropy model [Minnen et al., 2018]. AE/AD are arithmetic encoder/decoder, respectively.

image in an iterative manner, and is even not guaranteed to converge in finite steps. Therefore, the
original GDN is not suitable for idempotent compression.

We propose a coupling GDN layer (c-GDN) that combines the coupling structure [Dinh et al.,
2016] and GDN. The inverse of c-GDN layer can be solved in a much simpler analytical manner.
Specifically, we implement a coupling structure [Dinh et al., 2016] with normal GDN as its scale
and translation functions (s(·) and t(·)). And just like the aforementioned coupling enhancement,
the forward and inverse of this c-GDN layer can be calculated according to Eq. 11 and Eq. 12,
respectively. We demonstrate empirically in Sec. 4.3 that the proposed c-GDN layer can achieve
comparable RD performance with the original GDN.

3.3 Right-Invertible Quantization

As previously discussed, the vanilla scalar quantization using rounding is naturally idempotent.
However, the widely adopted mean-shift trick quantization for mean-scale Gaussian entropy model
[Minnen et al., 2018] is not guaranteed to be idempotent. As proposed by [Minnen et al., 2020], the
mean-shifted quantization can be formulated as

Q(y) = ⌊y − µ⌉+ µ, (13)

where ⌊·⌉ is scalar quantization and µ is the predicted mean of y. Let y1 denote the result after the
first application of Q, then idempotence requires that Q(y1) = y1, which in turn requires y1 − µ
to be integer. However, no existing method can meet this requirement, thus Q is not ensured to be
idempotent.

We propose two types of circumvention to solve this issue. For the first-type circumvention, we
change the quantization into

Qi(y) = ⌊y − ⌊µ⌉⌉+ ⌊µ⌉ (14)

By adding ⌊·⌉ around the predicted mean µ, we force the quantization result to be integer, thus
y − ⌊µ⌉ is guaranteed to be integer from the second application of Qi, and then Qi is idempotent.

For the second-type circumvention, we resort to the original definition of mean-scale Gaussian
entropy model [Minnen et al., 2018], and calculate the quantized CDF (cumulative distribution
function) regarding Qi(y) = ⌊y⌉ on the fly during inference.

3.4 Overall Framework of Right-Invertible Codec

The overall framework is depicted in Fig. 2. Following prior works [Ballé et al., 2017, 2018,
Cheng et al., 2020, He et al., 2022] in LIC, We use the mainstream four-stage framework in our
work. Specifically, the encoding transform is divided into four stages, and each stage decreases the
resolution by a factor of 2. For the first 3 stages, each stage starts with a right-invertible convolution
layer (described in Sec. 3.1) and ends with a c-GDN normalization layer (described in Sec. 3.2). The
last stage only consists of one right-invertible convolution layer.

5

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
bpp

26

28

30

32

34

36

38

40

ps
nr

[idemp] JPEG2000
[idemp] proposed
[idemp] Helminger2021
[near id] proposed
[near id] proposed (50)
[near id] Kim2020
[near id] Kim2020 (50)
[non id] He2022
[non id] He2022 (50)

(a)

0 10 20 30 40 50
iterations

0

1

2

3

4

5

6

7

ps
nr

 d
ro

p

[idemp] proposed (34.77)
[idemp] Helminger2021 (32.04)
[near id] proposed (35.79)
[near id] Cai2022 (36.41)
[near id] Kim2020 (34.78)
[non id] Cheng2020 (36.62)
[non id] VTM444 (36.63)

(b)

Figure 3: Performance of different codecs on Kodak. Idempotent codecs are marked as idemp,
near-idempotent codec are marked as near id and non-idempotent codecs are marked as non id.
(a) First-time and re-compression (upto 50 times) RD performance of different codecs. Idempotent
codecs only report first-time RD performance (re-compression RD performance is the same). (b)
PSNR drop during re-compression (upto 50 re-compression) of different codecs. Note that idempotent
codecs are straight lines and cover each other in the figure.

The decoding transform is built to be a right-inverse of the encoding transform. Note that not all layer
in the decoding transform has its own weights. Specifically, for c-GDN normalization layers, there is
no additional weights since they are the inverse of their counterparts in the encoding transform. For
right-invertible convolution layers, the only additional weights appear in the null-space enhancement
(Sec. 3.1).

Entropy model does not influence idempotence in the proposed framework, thus we use the off-the-
shelf mean-scale Gaussian entropy model [Minnen et al., 2018] for its availability and efficiency.
Additionally, we use the right-invertible quantization (described in Sec. 3.3) for quantizing the code.

3.5 Extension to Near-Idempotent Learned Image Codec

Idempotent codec can make sure that the RD performance keeps unchanged during any times of
re-compression. However, this strict idempotence comes with a price that the decoding transform
must be the right-inverse of encoding transform. This limitation reduces the expressiveness of
transforms and is empirically harmful to the first-time RD performance.

To adapt to the cases where first-time RD performance also matters, we propose to extend our
idempotent codec near-idempotent codec by relaxing the right-invertibility. The relaxation of right-
invertibility is simple yet effective: we change the first right-invertible convolution layer (described
in Sec.1) to be non-surjective, and keep all the rest layers surjective. This is done by allowing D
to be smaller than d for the kernel K in the first right-invertible convolution layer. By keeping the
right-invertibility of most layers, our near-idempotent codec is more stable to re-compression than
existing near-idempotent codecs [Kim et al., 2020, Cai et al., 2022], while achieving comparable or
better first-time RD performance.

4 Experiments

4.1 Experiment Setup

All the models are trained on the training split of open-images dataset [Kuznetsova et al., 2020], and
all the evaluations are conducted on the Kodak dataset [Franzen, 1999].

We sketch the training schedule accordingly from existing literature [Ballé et al., 2017, 2018, Minnen
et al., 2018, 2020, Cheng et al., 2020]. Images are randomly cropped to 256× 256 for training, and a
batch size of 16 is used. All the models are trained using an Adam optimizer. The learning rate is
initially set to 10−1, and decays by a factor of 10 when plateaued.

6

We choose four bitrate level accoding to the benchmark setting in [Kim et al., 2020]. Specifically, we
set λ = {18, 67, 250, 932} × 10−4, and models trained with these λ reaches average bitrates from
0.2-1.5 on Kodak dataset. Following prior works [Ballé et al., 2017, 2018], we use a smaller code
channels (192) for lower-bpp points, and use a bigger code channels (320) for higher-bpp points. The
learned function f(·) in Eq.10 is implemented with a residual block.

All the experiments are conducted on a computer with AMD EPYC 7742 64-Core Processor and
8 Nivida A30 GPU. All the code is implemented based Python 3.9, Pytorch 1.12 and CompressAI
[Bégaint et al., 2020].

4.2 Overall Performance

4.2.1 Results of Idempotent Codec

We compare with [Helminger et al., 2021], which is the only prior LIC that achieves idempotent lossy
compression to the best of our knowledge. We also compare with traditional idempotent codecs such
as JPEG2000.

We report first-time compression RD performance of the above idempotent codecs in Fig. 3(a), and
detailed BD-BR and BD-PSNR are listed in Tab. 1. Multi-time re-compression RD performance does
not change for idempotent codecs. From the result we see that, our proposed framework exceeds prior
art [Helminger et al., 2021] by a large margin, which clearly validates the superiority of right-inverse
over strict inverse on the idempotent lossy compression task.

We also compare the FLOPs and encode-decode time in Tab. 1. The results clearly shows that the
proposed idempotent framework is also more efficient than [Helminger et al., 2021].

Table 1: The BD-BR, BD-PSNR, FLOPs and encode-decode time of different methods on Kodak
dataset. FLOPs and enc-dec time are calcualted on an input of shape 256× 256× 3.

Methods BD-BR (%) ↓ BD-PSNR (dB) ↑ GFLOPs ↓ time (ms) ↓
Idempotent Codec
JPEG2000 0.00 0.00 - -
[Helminger et al., 2021] 4.83 -0.21 15.89 185
Proposed Idempotent -28.75 1.63 8.40 110

4.2.2 Results of Near-Idempotent Codec

For near-idempotent codecs, we compare against prior work [Kim et al., 2020], as well as [Cai
et al., 2022] which utilizes a partially invertible structure. To demonstrate the advantages over
non-idempotent codecs, we also compare with non-idempotent learned codecs [Ballé et al., 2018,
Cheng et al., 2020, He et al., 2022] as well as traditional codecs BPG and VTM.

Following the benchmark protocol in [Kim et al., 2020], we report the PSNR drop of the above
codecs upto 50 re-compression. RD trade-off points whose first-time bpp is closest to but not greater
than 0.8 bpp are chosen for each codec. The results is shown in Fig. 3(b) and listed in detail in
Tab. 2. From the result we see that, in the near-idempotent setting, the PSNR drop of proposed
framework is 0.87dB, whereas [Kim et al., 2020] and [Cai et al., 2022] has more than 2dB PSNR drop.
Additionally, the PSNR drop of the proposed framework almost converges within 10 re-compression,
while other near-idempotent frameworks still experience evident PSNR drop after 30 or even 50
re-compression. Codecs that do not consider idempotence suffers a much more severe drop of PSNR
during re-compression.

We also provide the RD performance of the proposed idempotent and near-idempotent frameworks, as
is shown in Fig.3(a). It is clear that near-idempotent framework has much better first-time compression
RD performance than idempotent framework. In terms of re-compression RD performance, however,
near-idempotent can only reach similar RD performance with much higher computation cost (8.40
GFLOPs v.s. 48.78 GFLOPs in Tab.1 and Tab.2).

These results clearly demonstrate that, even if we break the right-invertibility of the first layer in
order to get higher first-time RD performance, the performance drop during re-compression is still
acceptable and highly controllable, as opposed to prior works [Kim et al., 2020, Cai et al., 2022].

7

Table 2: PSNR drop during 50 re-compression of different non-idempotent and near idempotent
codecs. FLOPs and encode-decode time tested under the same condition as Tab. 1

PSNR Drop (dB) ↓ GFLOPs ↓ time (ms) ↓
round = 5 10 25 50

Non-Idempotent Codec
BPG 1.16 1.93 2.10 2.19 - -
VTM 1.19 2.09 4.50 7.18 - -
[Ballé et al., 2018] 2.18 3.17 5.65 8.46 6.23 80
[Cheng et al., 2020] 2.44 4.76 8.59 12.40 51.99 >1000

Near-Idempotent Codec
[Kim et al., 2020] 0.18 0.61 3.18 8.26 6.23 80
[Cai et al., 2022] 1.36 2.01 2.75 - 131.46 240
Proposed Near-Idempotent 0.74 0.83 0.87 0.87 48.78 115

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
bpp

28

30

32

34

36

38

40

ps
nr

proposed
w. GDN
w. int mean
w.o. c-en
w.o. NE
inv.
w. conv1x1

(a) RD performance of different architectures on Kodak (b) Influence of coupling enhancement (better
viewed zoomed-in)

Figure 4: Ablation studies for different architectures. (a) Re-compression RD performance of
different idempotent architectures on Kodak dataset (except for w.GDN, for which we report first-time
compression as it is non-idempotent). (b) qualitative results for w. (right) or w.o. (left) coupling
enhancement.

4.3 Ablation Studies

Inverse v.s. Right-Inverse The importance of right-inverse for idempotent lossy compression can
already be seen from the difference between the proposed framework and [Helminger et al., 2021]
in Fig. 3(a) and Tab. 1. To further demonstrate this importance, we test what happens if the
proposed framework is changed from right-invertible to invertible. Specifically, we increase the
output dimension of the proposed blocked convolution (Sec. 3.1) to its input dimension, so that it
becomes fully invertible. We also test what happens if the proposed blocked convolution is replaced
with invertible 1 × 1 convolution [Kingma and Dhariwal, 2018]. For both cases, the encoding
transform is fully invertible.

Fig. 4 (a) shows that both invertible blocked convolution (inv.) and invertible 1 × 1 convo-
lution (w.conv1x1) suffer dramatic RD performance degradation compared with the proposed
right-invertible framework (proposed). This result further demonstrated that it is important for
idempotent LIC to have right-inverse rather than inverse.

Impact of Null-Space Enhancement Null-space enhancement is introduced in our framework to
enable an adaptive right-inverse for linear layers rather than a fixed Moore-Penrose psudo-inverse.
As is shown in Fig. 4, for the two lower-bpp points, the framework with null-space enhancement

8

(proposed) has a 1 dB advantage over the framework without null-space enhancement (w.o.NE),
whereas for the two higher-bpp points this advantage shrinks to be smaller than 0.5 dB. The reason
is that the two lower-bpp points have a smaller code channels (192) than the two higher-bpp points
(320). A smaller code channel means a larger null space, and thus null-space enhancement can make
larger improvement.

Impact of Coupling Enhancement Coupling enhancement improves the receptive field of convo-
lution. The proposed blocked convolution is parallel friendly, but also restricts the receptive field.
Qualitatively, this constraint results in obvious deterioration in the flat area, such as the wall, the sky
and the face, as is shown in the left column of Fig. 4(b). By introducing coupling enhancement after
blocked convolution, the restriction is lifted and the block artifact on the reconstructed images are
removed, as is shown in the right column of Fig. 4(b). Quantitatively, the RD performance is also
improved by coupling enhancement, which is shown by comparing proposed and w.o.c-en in Fig.
4(a).

Impact of Right-Invertible Quantization As is pointed out in Sec. 3.3, the mean-shifted quantization
is not guaranteed to be idempotent, and we propose two alternatives to circumvent this issue. In the
proposed framework, we use the second-type circumvention. Here we compare these two choices.
As is shown in Fig. 4(a), first-type circumvention (w.int mean) performs slightly worse than
second-type circumvention (proposed). This is because first-type circumvention forces the mean to
be integer, whereas second-type does not has this constraint. However, the second-type circumvention
requires calculating the quantized CDF on the fly during inference.

Impact of Right-Invertible GDN To make the inverse of GDN layer actually computable in the
proposed framework, we combine the coupling structure [Papamakarios et al., 2021] with GDN, as is
described in Sec. 3.2. Here we demonstrate that such workaround does not affect the RD performance.
Specifically, we change the c-GDN and c-GDN−1 layer in our framework (Fig. 2(b)) back to GDN
and iGDN layer [Ballé et al., 2015]. Note that this change makes the framework non-idempotent, and
is only used to test the RD performance. From the results in Fig. 4(a) we see that, Whether to use
coupling GDN (proposed) or original GDN (w.GDN) has negligible influence on RD performance.
Thus coupling GDN is an efficient and effective replacement for GDN in idempotent compression
framework.

5 Related Work

The idempotence has been a crucial consideration for lossy image codecs. For image codecs without
prediction encoding like JPEG [Wallace, 1991] and JPEG2000 [Taubman et al., 2002], idempotence
is naturally assured as invertible encoding transforms like DCT or DWT is adopted. As long as
the quantization is idempotent (which is true for scalar quantization), the whole codec becomes
idempotent [Joshi et al., 2000, Richter et al., 2017].

The idempotence of learned image compression is firstly studied by [Kim et al., 2020], which proposes
a near-idempotence solution that alleviates re-compression loss but does not eliminate it. [Cai et al.,
2022] further improves over [Kim et al., 2020] while it is not able to achieve strict idempotence.
[Helminger et al., 2021] is the first LIC that achieves idempotence, using fully invertible normalizing
flow as encoding transform. However, it’s RD performance dramatically falls behind modern LIC.

Our work is also related to SurVAE flow [Nielsen et al., 2020]. On the one hand, the idempotence of
LIC requires the encoding transform to be surjective, which is similar to the goal of SurVAE flow.
The difference is, we consider deterministic right inverse, whereas SurVAE flow considers stochastic
right inverse. On the other hand, the techniques proposed in this paper, such as blocked convolution
and null-space enhancement, can be used to improve SurVAE flow.

6 Discussion & Conclusion

To conclude, we first identify that invertibility is sufficient but not necessary for idempotent codec, and
it can be instead relaxed to right-invertibility. Based on this identification, we investigate the practical
implementation of right-inverse with efficiency and expressiveness. Empirically, We show that the
proposed method achieves state-of-the-art RD performance among idempotent codecs. Furthermore,

9

our codec can be easily relaxed into a near-idempotent codec, which also achieves state-of-the-art
re-compression performance among near-idempotent codecs.

For future work, one possible direction is constructing right-invertible transform without function
composition. Currently, the right-invertible transform is constructed using composition of surjections.
Such construction strictly restricts the latent dimension to be non-increasing throughout the transform.
This restriction is conflict with the prevalent design logic of neural network and is detrimental to
expressiveness. It would be interesting to see if this restriction could be removed and how much the
performance could be improved.

Acknowledgements

Funded by Baidu Inc. through Apollo-AIR Joint Research Center.

References
Matrix multiplication background user’s guide. URL https://docs.nvidia.com/
deeplearning/performance/dl-performance-matrix-multiplication/index.html.

Moore-penrose inverse. URL https://en.wikipedia.org/wiki/Moore-Penrose_inverse.

J. Ballé, V. Laparra, and E. P. Simoncelli. Density modeling of images using a generalized normaliza-
tion transformation. arXiv preprint arXiv:1511.06281, 2015.

J. Ballé, V. Laparra, and E. P. Simoncelli. End-to-end optimized image compression. In 5th
International Conference on Learning Representations, ICLR 2017, 2017.

J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston. Variational image compression with a
scale hyperprior. In International Conference on Learning Representations, 2018.

J. Bégaint, F. Racapé, S. Feltman, and A. Pushparaja. Compressai: a pytorch library and evaluation
platform for end-to-end compression research. arXiv preprint arXiv:2011.03029, 2020.

B. Bross, Y.-K. Wang, Y. Ye, S. Liu, J. Chen, G. J. Sullivan, and J.-R. Ohm. Overview of the versatile
video coding (vvc) standard and its applications. IEEE Transactions on Circuits and Systems for
Video Technology, 31(10):3736–3764, 2021.

S. Cai, Z. Zhang, L. Chen, L. Yan, S. Zhong, and X. Zou. High-fidelity variable-rate image
compression via invertible activation transformation. In Proceedings of the 30th ACM International
Conference on Multimedia, pages 2021–2031, 2022.

Z. Cheng, H. Sun, M. Takeuchi, and J. Katto. Learned image compression with discretized gaussian
mixture likelihoods and attention modules. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 7939–7948, 2020.

L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using real nvp. arXiv preprint
arXiv:1605.08803, 2016.

R. Franzen. Kodak lossless true color image suite. source: http://r0k. us/graphics/kodak, 4(2), 1999.

D. He, Y. Zheng, B. Sun, Y. Wang, and H. Qin. Checkerboard context model for efficient learned
image compression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14771–14780, 2021.

D. He, Z. Yang, W. Peng, R. Ma, H. Qin, and Y. Wang. Elic: Efficient learned image compression
with unevenly grouped space-channel contextual adaptive coding. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 5718–5727, 2022.

L. Helminger, A. Djelouah, M. Gross, and C. Schroers. Lossy image compression with normalizing
flows. In Neural Compression: From Information Theory to Applications–Workshop@ ICLR 2021,
2021.

10

https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://en.wikipedia.org/wiki/Moore-Penrose_inverse

R. L. Joshi, M. Rabbani, and M. A. Lepley. Comparison of multiple compression cycle performance
for jpeg and jpeg 2000. In Applications of Digital Image Processing XXIII, volume 4115, pages
492–501. SPIE, 2000.

J.-H. Kim, S. Jang, J.-H. Choi, and J.-S. Lee. Instability of successive deep image compression. In
Proceedings of the 28th ACM International Conference on Multimedia, pages 247–255, 2020.

D. P. Kingma and P. Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. Advances in
neural information processing systems, 31, 2018.

A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset, S. Kamali, S. Popov,
M. Malloci, A. Kolesnikov, et al. The open images dataset v4: Unified image classification, object
detection, and visual relationship detection at scale. International Journal of Computer Vision, 128
(7):1956–1981, 2020.

M. Lezcano-Casado. Trivializations for gradient-based optimization on manifolds. In Advances in
Neural Information Processing Systems, NeurIPS, pages 9154–9164, 2019.

S. Mac Lane. Categories for the working mathematician, volume 5. Springer Science & Business
Media, 2013.

D. Minnen, J. Ballé, and G. D. Toderici. Joint autoregressive and hierarchical priors for learned
image compression. Advances in neural information processing systems, 31, 2018.

D. Minnen, S. Singh, and J. Ballé. Channel-wise autoregressive entropy models for learned image
compression. In 2020 IEEE International Conference on Image Processing (ICIP), pages 3339–
3343. IEEE, 2020.

D. Nielsen, P. Jaini, E. Hoogeboom, O. Winther, and M. Welling. Survae flows: Surjections to
bridge the gap between vaes and flows. Advances in Neural Information Processing Systems, 33:
12685–12696, 2020.

G. Papamakarios, E. Nalisnick, D. J. Rezende, S. Mohamed, and B. Lakshminarayanan. Normalizing
flows for probabilistic modeling and inference. The Journal of Machine Learning Research, 22(1):
2617–2680, 2021.

K. H. Randall. Cilk: Efficient multithreaded computing. PhD thesis, Massachusetts Institute of
Technology, 1998.

T. Richter, J. Keinert, A. Descampe, G. Rouvroy, and A. Willeme. Multi-generation-robust coding
with jpeg xs. In 2017 IEEE International Symposium on Multimedia (ISM), pages 6–13. IEEE,
2017.

J. Schwab, S. Antholzer, and M. Haltmeier. Deep null space learning for inverse problems: conver-
gence analysis and rates. Inverse Problems, 35(2):025008, 2019.

G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand. Overview of the high efficiency video
coding (hevc) standard. IEEE Transactions on circuits and systems for video technology, 22(12):
1649–1668, 2012.

D. S. Taubman, M. W. Marcellin, and M. Rabbani. Jpeg2000: Image compression fundamentals,
standards and practice. Journal of Electronic Imaging, 11(2):286–287, 2002.

G. K. Wallace. The jpeg still picture compression standard. Communications of the ACM, 34(4):
30–44, 1991.

Y. Wang, Y. Hu, J. Yu, and J. Zhang. Gan prior based null-space learning for consistent super-
resolution. arXiv preprint arXiv:2211.13524, 2022a.

Y. Wang, J. Yu, and J. Zhang. Zero-shot image restoration using denoising diffusion null-space model.
arXiv preprint arXiv:2212.00490, 2022b.

11

Appendices

A Additional Explanation for the Methods

A.1 Complexity Analysis of Block Convolution

To discuss this problem, consider a 2-dimension convolution with kernel size K ×K, stride S × S,
input spatial size H ×W , input channel Ci and output channel Co. Assuming the in-place parallel
matrix multiplication[Randall, 1998] is used.

For serial method, as is described in Line 104-109, we first subtract the influence of the already-solved
pixels, which takes O(CiK

2) time. Then we solve for the rest pixels, which takes O(Co) time. The
point is, this subtract-then-solve procedure needs to be done O(HW/S2) times, in serial, so the
overall complexity is O(HW

S2 (CiK
2 + Co)).

For parallel method implemented with the proposed blocked convolution, we can solve for all pixels
with O(Co) time complexity.

We can see that, compared with the parallel method, time complexity of serial method is forbiddingly
higher and not viable for practical usages. In terms of re-compression performance, both serial
method and parallel method are right-inverse, so idempotence can be achieved for both.

A.2 More on Null-space Enhancement

Parameterization of Surjective Linear Transform

For a linear transform with kernel K ∈ RD×d to be surjective, K must have full column rank, i.e.,
d must be less or equal to D and the rank of K is d. The vanilla parameterization of K as a matrix
cannot ensure this property. Thus, we use singular value decomposition (SVD) parameterization to
ensure that K is surjective. Specifically, K is decomposed as K = USV T , where U is a D × d
orthonormal matrix, S is a d× d diagonal matrix with non-zero diagonal elements, and V is a d× d
orthonormal matrix. With this decomposition, K is guaranteed to have full column rank, and is thus
surjective. Accordingly, Eq. 10 is parameterized as

X = Y V S−1UT + f(Y)(I − UUT) (15)

where S−1 is the inverse of non-zero diagonal matrix S. For orthonormal matrix U and V , we adopt
the parameterization in [Lezcano-Casado, 2019]. The matrix S is diagonal and trivial to parameterize.
To avoid arithmetic overflow, we restrict the diagonal elements of S to be within [0.1, 10].

Derivation of Null-space equality

∀F ∈ Rb×D, X = Y K+K + F (I −KK+) is a solution to Y = XK.

Proof. From the property of Moore-Penrose pseudo-inverse [Moo] we know that

KK+K = K. (16)

Additionally, for a orthonormal K (with linearly independent columns), we have

K+K = I. (17)

Then, right-multiply X(Y ;K) by K, we get

XK = Y K+K + F (I −KK+)K (18)
= Y + FK − FK = Y.

B More Experimental Results

B.1 More Experiment Setup

The detailed encoding and decoding transform is illustrated in Fig. 5. To extend the idempotent
framework to near-idempotent framework, we change the first blocked convolution in the encoding

12

decodingencodingdecodingencoding

(a) Details of the proposed imdempotent framework (b) Details of the proposed near-imdempotent framework

blocked(3, 128)

blocked(128, 128)

c-enhance(3x3)

c-GDN

c-enhance(3x3)

c-GDN

blocked(128, 128)

c-enhance(3x3)

c-GDN

blocked(128, 192)

c-enhance(3x3)

NE =RBD

NE =RBU

NE =RBU

NE =RBU

blocked(3, 10)

blocked(10, 38)

c-enhance(5x5)

c-GDN

c-enhance(5x5)

c-GDN

blocked(38, 150)

c-enhance(5x5)

c-GDN

blocked(150, 192)

c-enhance(5x5)

NE =RBU

NE =RBU

NE =RBU

NE =RBU

Figure 5: Detailed encoding and decoding transform for the proposed idempotent and near-
idempotent framework. blocked refers to the proposed blocked convolution. The (input, output)
channels are annotated in the brackets, and stride is annotated using down-arrow. NE refers to the
proposed null-space enhancement, and f is learned parametric function. Here RBU/RBD are the
residual block used for upsampling/downsampling (Fig. 6(b)), respectively. c-enhance refers to
the proposed coupling enhancement using coupling structure (Fig. 6(a)). The kernel size of the
convolution is annotated in the brackets. c-GDN refers to the proposed right-invertible normalization
using coupling structure (Fig. 6(a)). Blanked rectangular refer to the right-inverse/inverse of the
corresponding layer, and has no additional weights.

forward inverse

=
+

=

(a) Couping structure used in c-enhence and c-GDN

RBD

conv3x3
leakyReLU

conv3x3
leakyReLU

conv3x3

+

deconv3x3
leakyReLU

conv3x3
leakyReLU

+

deconv3x3

RBU

(b) Residual block used in null-space enhancement

Figure 6: Submodules used in the proposed framework: (a) coupling structure used in c-enhance and
c-GDN; (b) residual block downsampling (RBD) and residual block upsampling (RBU) used in the
f(·) of null-space enhancement.

13

0.2 0.4 0.6 0.8 1.0
bpp

28

30

32

34

36

ps
nr

[idemp] proposed + GDN
[idemp] proposed + RB x 1
[idemp] proposed + RB x 3

(a)

0 10 20 30 40 50
iterations

0

1

2

3

4

5

6

7

ps
nr

 d
ro

p

[near id] proposed (35.79)
[near id] proposed w. gdn (35.72)
[near id] proposed w. conv (35.91)
[non id] Balle2018 (34.53)

(b)

Figure 7: Additional experiments on: (a) extendability of the proposed idempotent framework (b)
functionality of different components of the proposed near-idempotent framework.

transform to non-surjective by increasing its output channel number from 10 to 128. Since this blocked
convolution is no longer surjective, it is no longer right-invertible. However, its corresponding layer in
the decoding transform can be make surjective and right-invertible. Thus, we make its corresponding
layer in the decoding transform surjective, and use the null-space enhancement on the encoding side.

Coupling structure [Dinh et al., 2016] used in coupling enhancement (c-enhance) and coupling GDN
(c-GDN) is illustrated in Fig. 6(a). For c-enhance, the scale s(·) and translation t(·) are convolution.
For c-GDN, the scale s(·) and translation t(·) are GDN [Ballé et al., 2015]. Following the usage
guideline in [Dinh et al., 2016], we concatenate two coupling structure with the opposite way of
splitting in one c-enhance/c-GDN.

We provide additional experiments on (a) extendability of the proposed idempotent framework (b)
functionality of different components of the proposed near-idempotent framework. Specifically, to
demonstrate the extendability of the proposed idempotent framework, we replace GDN with residual
blocks as suggested by [He et al., 2022] (RB×1 for one residual block, or RB×3 for three residual
blocks), and report the RD performance in Fig.7(a). It is clear that, replacing GDN with the more
recent residual blocks would also improve our framework to a similar degree. Thus our proposed
framework is compatible with the recent advances in LIC and has good extendability.

To analysis the functionality of different components of the proposed near-idempotent framework,
we test what happens if the modification to each component is not applied, and report the PSNR
drop during re-compression in Fig.7(b). Specifically, we test keeping the GDN layers unchanged
(w. gdn) or keeping the convolution layers unchanged (w. conv). Keeping both the GDN layers
and the convolution layers would reduce to baseline Balle2018. The results shows that keeping
more layers unchanged may slightly improve first-time compression performance, but is evidently
harmful to re-compression performance. The proposed near-idempotent framework has the best
re-compression performance among these settings.

We include the implement of other codecs as follows. For codecs that have open-source implementa-
tions, we use that implementation. For codecs that do not have open-source implementations, we
either use the data provided in the paper, or re-implement by ourselves if the detailed architecture is
provided.

• Implementations from CompressAI [Bégaint et al., 2020]: Balle2017[Ballé et al., 2017],
Balle2018[Ballé et al., 2018], Cheng2020[Cheng et al., 2020], JPEG2000[Taubman et al.,
2002], BPG444[Sullivan et al., 2012], VTM444[Bross et al., 2021]

• Data from the original papers: Helminger2021[Helminger et al., 2021], Cai2022[Cai et al.,
2022]

• Our re-implementation: Kim2020[Kim et al., 2020]. Specifically, we re-implement the FI
loss proposed in this work on Balle2018 [Ballé et al., 2018].

14

B.2 More Quantitative & Qualitative Results

See Fig. 8-11 for more quantitative results.
See Fig. 12-15 for more qualitative results.

C More Discussion

C.1 Limitation

In this work, the surjective encoding transform is constructed using function composition of simple
surjections. This construction strategy limits the latent dimension to be non-increasing throughout
the encoding transform. This limitation contradicts the mainstream design logic of neural network,
and is harmful to expressiveness.

A function composition of surjections is always a surjection, but a surjection needs not to be a
function composition of surjections [Mac Lane, 2013]. Thus this restriction could be lifted by more
advanced construction strategy of surjection.

C.2 Broader Impact

Improve the rate-distortion of re-compression has positive social impact. Re-compression constantly
happens in the transmission and redistribution of image data. Reducing the bitrate can save the
resources, energy and the carbon emission during these processes.

C.3 Reproducibility Statement

All theoretical results are proven in Appendix. A. For experimental results, all the datasets used are
publicly available, and the implementation details are provided in Appendix. B. Furthermore, the
source code for reproducing experimental results are provided in supplementary materials.

15

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
bpp

26

28

30

32

34

36

38

40
ps

nr [idemp] JPEG2000
[idemp] proposed
[idemp] Helminger2021
[near id] proposed
[near id] proposed (50)
[near id] Kim2020
[near id] Kim2020 (50)
[near id] Cai2022
[near id] Cai2022 (32)
[non id] He2022
[non id] He2022 (50)
[non id] BPG444
[non id] BPG444 (50)
[non id] VTM444
[non id] VTM444 (50)

Figure 8: PSNR-BPP curve on Kodak. Idempotent codecs are marked as idemp, near-idempotent
codec are marked as near id and non-idempotent codecs are marked as non id. First-time com-
pression performance is plotted in dotted line, and re-compression performance (upto 50 times) is
plotted in solid line.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
bpp

12

14

16

18

20

22

ss
im

[idemp] JPEG2000
[idemp] proposed
[near id] proposed
[near id] proposed (50)
[near id] Kim2020
[near id] Kim2020 (50)
[near id] Cai2022
[near id] Cai2022 (32)
[non id] He2022
[non id] He2022 (50)
[non id] BPG444
[non id] BPG444 (50)
[non id] VTM444
[non id] VTM444 (50)

Figure 9: MSSSIM-BPP curve on Kodak. Idempotent codecs are marked as idemp, near-idempotent
codec are marked as near id and non-idempotent codecs are marked as non id. First-time com-
pression performance is plotted in dotted line, and re-compression performance (upto 50 times) is
plotted in solid line. All models are optimized for minimizing MSE.

16

0 10 20 30 40 50
iterations

0

1

2

3

4

5

6

7

ps
nr

 d
ro

p

[idemp] proposed (34.77)
[idemp] Helminger2021 (32.04)
[near id] proposed (35.79)
[near id] Cai2022 (36.41)
[near id] Kim2020 (34.78)
[non id] Cheng2020 (36.62)
[non id] Balle2018 (34.53)
[non id] VTM444 (36.63)
[non id] BPG444 (35.57)

Figure 10: PSNR drop upto 50 re-compression on Kodak. Idempotent codecs are marked as idemp,
near-idempotent codec are marked as near id and non-idempotent codecs are marked as non id.
First-time PSNR is annotated in (·).

0 10 20 30 40 50
iterations

0

1

2

3

4

5

ss
im

 d
ro

p

[idemp] proposed (17.83)
[near id] proposed near-idemp (18.52)
[near id] Cai2022 (19.40)
[near id] Kim2020 (18.15)
[non id] Cheng2020 (19.58)
[non id] Balle2018 (18.01)
[non id] VTM444 (18.86)
[non id] BPG444 (17.96)

Figure 11: MS-SSIM drop upto 50 re-compression on Kodak. Idempotent codecs are marked as
idemp, near-idempotent codec are marked as near id and non-idempotent codecs are marked as
non id. First-time MS-SSIM is annotated in (·). All models are optimized for minimizing MSE.

17

Ground-truth JPEG2000(50-th). BPP=0.798, PNSR=31.98

Balle2018(50-th). BPP=0.784, PNSR=18.25 Ours idempotent(50-th). BPP=0.953, PNSR=35.01

Figure 12: Qualitative comparison on reconstructed kodim06 image after 50 times re-compression.

Ground-truth JPEG2000(50-th). BPP=0.800, PNSR=32.86

Balle2018(50-th). BPP=0.590, PNSR=17.75 Ours idempotent(50-th). BPP=0.856, PNSR=35.12

Figure 13: Qualitative comparison on reconstructed kodim11 image after 50 times re-compression.

18

Ground-truth JPEG2000(50-th). BPP=0.800, PNSR=26.12

Balle2018(50-th). BPP=1.949, PNSR=8.87 Ours idempotent(50-th). BPP=1.806, PNSR=32.91

Figure 14: Qualitative comparison on reconstructed kodim13 image after 50 times re-compression.

Ground-truth JPEG2000(50-th). BPP=0.798, PNSR=30.08

Balle2018(50-th). BPP=0.844, PNSR=17.40 Ours idempotent(50-th). BPP=1.129, PNSR=34.11

Figure 15: Qualitative comparison on reconstructed kodim24 image after 50 times re-compression.

19

	Introduction
	Sufficiency of Right-Invertibility for Idempotence
	Practical Design of Right-Invertible Codec
	Efficient & Expressive Right-Invertible Convolution
	Blocked Convolution for Efficiency
	Null-Space Enhancement and Coupling Enhancement for Expressiveness

	Right-Invertible Generalized Divisive Normalization
	Right-Invertible Quantization
	Overall Framework of Right-Invertible Codec
	Extension to Near-Idempotent Learned Image Codec

	Experiments
	Experiment Setup
	Overall Performance
	Results of Idempotent Codec
	Results of Near-Idempotent Codec

	Ablation Studies

	Related Work
	Discussion & Conclusion
	Additional Explanation for the Methods
	Complexity Analysis of Block Convolution
	More on Null-space Enhancement

	More Experimental Results
	More Experiment Setup
	More Quantitative & Qualitative Results

	More Discussion
	Limitation
	Broader Impact
	Reproducibility Statement

