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A iDP-SignRP Under Individual Differential Privacy (iDP)563

A.1 Relaxation: Individual Differential Privacy (iDP)564

Many extensions or relaxation of DP have been proposed to improve the utility of DP mechanisms.565

Examples include Concentrated Differential Privacy [4], Rényi Differential Privacy [10], and Gaus-566

sian Differential Privacy [3]. These alternatives provide better composition properties than the com-567

position theorems of DP, thus reducing the noise needed [6]. Another possible direction to elevate568

the empirical performance of DP is to relax the DP definition by constraining the scope of neighbor-569

ing datasets depending on the specific use case of DP [12; 2]. In this paper, we consider the concept570

called “individual differential privacy” (iDP), also known as “data-centric DP”, as follows.571

Definition A.1 (Individual DP [12]). Given a dataset U , an algorithm M satisfies (ǫ, δ)-iDP for U572

if for any dataset U ′ that is adjacent to U , it holds that573

Pr[M(U) ∈ O] ≤ eǫPr[M(U ′) ∈ O] + δ,

Pr[M(U ′) ∈ O] ≤ eǫPr[M(U) ∈ O] + δ.

We should emphasize that, individual DP does not satisfy the rigorous DP definition, as iDP only574

focuses on the “point-wise” guarantee of privacy. It protects the neighborhood of a specific dataset of575

interest, instead of fulfilling DP requirements for all possible adjacent databases. While iDP does not576

provide the same level of privacy protection as the “worst-case” standard DP, it might be sufficient577

in certain application scenarios, e.g., data publishing/release, when the procedure is non-interactive578

and the released dataset is indeed the target that one is interested in privatizing. We discuss it in our579

work as iDP may provide another direction/option for balancing the trade-off between privacy and580

utility in practice, based on specific applications.581

The intuition of iDP is that, while the standard DP (Definition 2.1) requires indistinguishability582

between any pair of neighboring databases, in some practical scenarios, the data custodian only holds583

one “ground truth” database U that needs to be protected. Limiting the scope of the neighborhood584

could be reasonable in certain practical scenarios. The “indistinguihability” requirement is only cast585

on U and its neighbors specifically, instead of on any possible dataset. iDP has achieved excellent586

utility for computing robust statistics at small ǫ [12].587

For the DP algorithms that have been discussed previously in this paper, we first note that, for DP-RP588

and DP-OPORP, the local sensitivity at any u ∈ U equals the global sensitivity. In other words, iDP589

does not help improve DP-RP and DP-OPORP. Also, we will soon discuss the reason why SignRP590

can be much better than SignOPORP under iDP. Therefore, we will mainly investigate the SignRP591

algorithms under iDP. Because the “indistinguihability” requirement of DP is only for U and its592

neighbors locally, operationally, for SignRP, iDP essentially follows the local flipping probability593

(Section 4.2 and Figure 1) when computing the perturbation level, which can be much smaller than594

that required by the standard DP.595

We propose two iDP-SignRP methods, based on noise addition and sign flipping, respectively. Both596

approaches share the same key idea of iDP, that is, many signs of the projected values do not need597

perturbations. This can be seen from Figure 1, where the “local flipping probability” is non-zero598

only in the regime when the projected data is near 0 (i.e., L = 1 in Algorithm 4). Since in other599

cases the local flip probability is zero, perturbation is not needed. As a result, out of k projections,600

only a fraction of the projected values needs to be perturbed. This significantly reduces the noise601

injected to SignRP and boosts the utility by a very large margin.602

A.2 iDP-SignRP-G by Gaussian Noise Addition603

In Algorithm 6, we present the iDP-SignRP-G method for one data vector u. We use the “local604

flipping probability” (e.g., in Figure 1) to choose which projections are perturbed before taking605

signs. After applying random projection to get k projected values, we do the following steps:606

1. We compute noise-indicators (I1, ..., Ik) for each projected value in x = 1√
k
WTu using607

Algorithm 7. Denote A = {Ij : Ij = 1, j = 1, ..., k} and N+ = |A|. This is the maximal608

number of different signs of x and x′ = WTu′, ∀u′ ∈ Nb(u).609
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Algorithm 6: iDP-SignRP-G (DP-SignRP with Gaussian noise)

1 Input: Data u ∈ [−1, 1]p; Privacy parameters ǫ > 0, δ ∈ (0, 1); Number of projections k

2 Output: Differentially private sign random projections

3 Apply RP by x = 1√
k
WTu, where W ∈ R

p×k is a random Rademacher matrix

4 For every projected value in x, compute (I1, ..., Ik) by Algorithm 7
5 Let A = {Ij : Ij = 1, j = 1, ..., k} and Ñ+ = |A|
6 Compute sensitivity △2 = β

√

Ñ+

k

7 Compute σ by Theorem 3.2 with △2 and privacy budget ǫ and δ

8 Compute s̃j =

{

sign(xj), j /∈ A
sign(xj +G), j ∈ A , where G ∼ N(0, σ2) is iid Gaussian noise

9 Return s̃ = [s̃1, ..., s̃k]

Algorithm 7: Compute noise-indicator of iDP-SignRP-G for one projection

1 Input: Data u ∈ [−1, 1]p; one projected value z; adjacency parameter β
2 Output: Indicator I w.r.t. projection w for data vector u

3 I = 0

4 If β/
√
k ≥ |z|

5 I = 1
6 End If

2. We compute the sensitivity △2 = βmaxi=1,...,p ‖W[i,A]‖, where W[i,A] denotes the i-th610

row of W indexed at A, which is an N+-dimensional vector.611

3. We use the optimal Gaussian mechanism (Theorem 3.2) to compute σ, with △2 computed612

above and privacy parameters (ǫ, δ).613

4. For j = 1, .., k, if j /∈ A, we take s̃j = sign(xj); if j ∈ A, we take s̃j = sign(xj + G)614

where G ∼ N(0, σ2) is a Gaussian noise. Finally we output s̃ = [s̃1, ..., s̃k].615

Let’s explain the intuition behind DP-SignRP-G. Since a neighboring data vector u′ only differs616

from u in one dimension by at most β, for each single projection w, when βmaxi=1,...,p |wi| ≤617

|wTu|, there is no neighbor u′ of u that may change the sign of the projected value of u, i.e.,618

sign(wTu′) 6= sign(wTu). In other words, when βmaxi=1,...,p |wi| ≤ |wTu|, no noise is needed619

for this projected value to attain iDP. This is the reason why we call the output of Algorithm 7 a620

“noise-indicator”. Consequently, in step 4 of iDP-SignRP-G it suffices to add Gaussian noise only621

to those projected values xj with j ∈ A, instead of to all k projections as in DP-RP-G-OPT.622

Theorem A.1 (iDP-SignRP-G). Algorithm 6 is (ǫ, δ)-iDP for data u.623

Proof. For a data vector u, let Nb(u) be its neighbor set with vector that differs from u by at most β624

in one dimension. Denote x = 1√
k
WTu and x′ = 1√

k
WTu′. Let (I1, ..., Ik) be the noise-indicators625

from Algorithm 7 and A = {i : Ij = 1}, Ñ+ = |A|. Consider the two sets separately:626

• For j ∈ [k] \ A, by the condition β/
√
k ≤ |z|, we know that ∀u′ ∈ Nb(u), it holds that627

sign(xi) = sign(x′
i).628

• For j ∈ A, consider the sub-vector xA. Adding iid Gaussian noise to xA according to629

Theorem 3.2 with △2 = β

√

Ñ+

k ensures the (ǫ, δ)-DP of xA. By the post processing630

property of DP, we know that sign(xA) is also (ǫ, δ)-DP. Thus, for any Q ∈ {−1, 1}N+ ,631

we have Pr(sign(xA) = Q)− eǫPr(sign(x′
A) = Q) ≤ δ, ∀u′ ∈ Nb(u).632
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Combining two parts, we have for any Q ∈ {−1, 1}k,633

Pr(sign(x) = Q)− eǫPr(sign(x′) = Q) = Pr(sign(xA) = Q)− eǫPr(sign(x′
A) = Q) ≤ δ,

for all u′ ∈ Nb(u). By the symmetry of DP (on the sub-vector xA), we also know that634

Pr(sign(x′) = Q)− eǫPr(sign(x) = Q) ≤ δ. This proves the (ǫ, δ)-iDP by Definition A.1.635

A.3 iDP-SignRP-RR by Randomized Response636

Algorithm 8: iDP-SignRP-RR

1 Input: Data u ∈ [−1, 1]p, privacy parameters ǫ > 0, 0 < δ < 1, number of projections k

2 Output: Differentially private sign random projections

3 Apply RP by x = 1√
k
WTu, where W ∈ R

p×k is a random Rademacher matrix

4 For every column in W , compute (I1, ..., Ik) by Algorithm 7
5 Let A = {Ij : Ij = 1, j = 1, ..., k} and Ñ+ = |A|

6 Compute s̃j =











sign(xj), j /∈ A
sign(xj), j ∈ A with prob. eǫ

′

eǫ′+1

−sign(xj), j ∈ A with prob. 1
eǫ′+1

for j = 1, ..., k, with ǫ′ = ǫ/Ñ+

7 Return s̃ as the DP-SignRP of u

Similar to Section 4, we also have an iDP-SignRP-RR method with pure ǫ-DP guarantee by ran-637

domly flipping the signs after SignRP, as summarized in Algorithm 3. After we apply random638

projection x = 1√
k
WTu, we call the same procedure as in iDP-SignRP-G to determine set A639

representing the projected values that needs perturbation for iDP. For j /∈ A, we use the original640

s̃j = sign(xj). For j ∈ A, we keep sign(xj) with probability eǫ
′

eǫ′+1
and flip the sign otherwise,641

where eǫ
′

= ǫ/Ñ+ with Ñ+ = |A|.642

Theorem A.2. Algorithm 3 achieves ǫ-iDP for data u.643

Proof. The high-level proof idea is similar to that of Theorem A.1. For u ∈ [−1, 1]p let u′ be an644

β-neighboring data. Let s = sign(WTu) ∈ {−1,+1}k, s′ = sign(WTu′) ∈ {−1,+1}k, and645

denote s̃ and s̃′ as the randomized output of s and s′ by Algorithm 3, respectively. Consider A646

in Algorithm 3. By Algorithm 7, we know that for j /∈ A, Pr(s̃j = s̃′j) = Pr(sj = s′j) = 1,647

∀u′ ∈ Nb(u). For projections in A, denote S = {j ∈ A : sj 6= s′j} and Sc = A \ S. For any648

vector y ∈ {−1,+1}k, we further define S0 = {j ∈ S : sj = yj}, S1 = {j ∈ S : sj 6= yj},649

Sc
0 = {j ∈ Sc : sj = yj} and Sc

1 = {j ∈ Sc : sj 6= yj}. Since the k projections are independent,650

by composition we have651

log
Pr(s̃ = y)

Pr(s̃′ = y)
= log

∏

j /∈A Pr(s̃j = yj)
∏

j∈Sc
0

eǫ
′

eǫ′+1

∏

j∈Sc
1

1
eǫ′+1

∏

j∈S0

eǫ
′

eǫ′+1

∏

j∈S1

1
eǫ′+1

∏

j /∈A Pr(s̃′j = yj)
∏

j∈Sc
0

eǫ′

eǫ′+1

∏

j∈Sc
1

1
eǫ′+1

∏

j∈S0

1
eǫ′+1

∏

j∈S1

eǫ′

eǫ′+1

≤ log

∏

j∈S
eǫ

′

eǫ′+1
∏

j∈S
1

eǫ′+1

= |S|ǫ′ ≤ Ñ+ǫ
′ = ǫ,

which proves the ǫ-iDP according to Definition A.1.652

The number of projections that requires noise addition Ñ+ is also tightly related to the P+(‖u‖, p)653

(Proposition 4.4 and (5)). Particularly, Ñ+ would be small when the data has relatively large norm654

compared with the change in neighboring data β. Therefore, both iDP-SignRP methods would have655

better utility when the data norm is large.656

The reduction from k to Ñ+ in iDP not only waives the need to add noise to many projected values,657

but also requires smaller Gaussian noise or smaller flipping probability for the values that need to be658
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perturbed. Specifically, note that in Algorithm 6, the optimal Gaussian mechanism is deployed with659

sensitivity △2 = β

√

Ñ+

k , instead of △2 = β as in (3) for DP-RP-G-OPT.660

iDP-SignOPORP. Similarly, we can also apply iDP to the SignOPORP method. Basically, we only661

need to replace x in Line 3 in both Algorithm 6 and Algorithm 8 by the OPORP of u. However, we662

note that this iDP-SignOPORP procedure is considerably worse than iDP-SignRP in performance.663

This is because, by the binning step in OPORP, the average scale of each projected value becomes664

much smaller. This implies that in Algorithm 7, the magnitude of z would be much smaller, so a665

lot more projected values will require perturbation, which leads to a utility loss. This illustrates the666

superiority of SignRP under iDP: since each RP aggregates the whole data vector, SignRP is more667

robust to a small change in the data. Hence, less noise is needed.668

A.4 Empirical Results on iDP669
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Figure 5: Retrieval on MNIST with iDP-SignRP, β = 1, δ = 10−6.

To demonstrate the empirical gain in utility of iDP-SignRP, we conduct the same set of experiments670

as in Section 5. Figure 5 reports the precision and recall on MNIST, and Figure 6 presents the671

SVM test accuracy on WEBSPAM. As we can see, iDP-SignRP achieves very high utility even672

when ǫ < 0.1. We see that the curves of iDP-SignRP are almost flat. This is because only a small673

fraction of projected values are perturbed, so the untouched projected values already provides rich674

information for search and classification. In other words, the experimental results illustrate that the675

SignRP itself is already very strong in protecting the individual differential privacy. In other words,676

SignRP itself is already a strong method to protect the privacy of each specific dataset with respect677

to the individual DP, e.g., in non-interactive data publishing tasks.678
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Figure 6: SVM on WEBSPAM with iDP-SignRP, β = 1, δ = 10−6.
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B Comparison of Different Projection Matrices and the Benefits of679

Rademacher RP680

Besides Gaussian random projection, we can also adopt other types of projection matrices which681

might even work better for DP. The following distributions of wij are popular:682

• The uniform distribution,
√
3×unif [−1, 1]. The

√
3 factor is placed here to have E(w2

ij) =683

1 by following the convention in the practice of random projections.684

• The “very sparse” distribution, as used in [8]:685

wij =
√
s×

{ −1 with prob. 1/(2s)
0 with prob. 1− 1/s,

+1 with prob. 1/(2s)
(8)

which generalizes [1] (for s = 1 and s = 3). Note that when s = 1, it is also called the686

“symmetric Bernoulli” distribution or the “Rademacher” distribution.687

Next, we compare these various types of projection matrices and show that Rademacher (symmetric688

Bernoulli) random projection is superior to Gaussian random projection for both DP-RP and DP-689

SignRP in that less perturbation is required to achieve the same privacy level.690

B.1 Rademacher Projection for DP-RP691

From Theorem 3.1 and Theorem 3.2, it is clear that the noise magnitude of Gaussian noise in DP-RP692

directly depends on the l2-sensitivity △2, which, according to (3), equals the largest row norm of the693

projection matrix W . Among the above mentioned distributions, the dense Rademacher projection694

(s = 1 in (8)) has △2 = 1√
k
β ×

√
k = β which is independent of p. This could be much smaller695

than the dense Gaussian projection (i.e., DP-RP-G-OPT).696
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Figure 7: The l2-sensitivity △2 (3) for different types of random projection matrices against the data
dimensionality p, at k = 256 and k = 512, respectively. β = 1.

In Figure 7, we numerically simulate the △2 of different projection matrices, which shows that697

the Rademacher projection produces the smallest sensitivity. This, when plugged into the optimal698

Gaussian mechanism (Theorem 3.2), leads to smaller Gaussian noise variance needed.699

B.2 Rademacher Projection for DP-SignRP700

From our analysis, it is clear that the flipping probability of DP-SignRP (both DP-SignRP-RR and701

DP-SignRP-RR-smooth) essentially depends on how concentrated the projected data is around zero.702

Particularly, N+ in Algorithm 3, as given in Proposition 4.4, is a high probability upper bound703

on a Binomial random variable with success probability Pr(βmaxi=1,...,p |wi| ≥ |wTu|) with704

w ∼ N(0, 1). In Algorithm 4, Lj = ⌈ |wT
j u|

βmaxi=1,...,p |Wij |⌉. For both quantities, a smaller value leads705

to a smaller sign flipping probability and thus better utility.706
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N+ in DP-SignRP-RR. We first consider the N+ in Algorithm 3, which determines the flipping707

probability 1

eǫ/N++1
. Particularly, N+ in Algorithm 3, as given in Proposition 4.4, is a high proba-708

bility upper bound on a Binomial random variable with success probability709

P+ = Pr

(

β max
i=1,...,p

|wi| ≥ |wTu|
)

, (9)

where w is the p-dimensional projection vector. When wi is sampled from the Rademacher distribu-710

tion, i.e., wi ∈ {−1,+1} with equal probabilities, the probability calculation can be simplified:711

P+,b = Pr

(

β max
i=1,...,p

|wi| ≥ |
p
∑

i=1

wiui|
)

= Pr

(

β ≥ |
p
∑

i=1

wiui|
)

≈ 2Φ

(

β

‖u‖

)

− 1. (10)

Based on the central limit theorem, the normal approximation (10) is accurate unless p is very small.712

Recall that, when wi’s are sampled from the Gaussian distribution, we can calculate an upper bound713

in (21), which is re-written as below:714

P+,g = Pr

(

β max
i=1,...,p

|wi| ≥ |
p
∑

i=1

wiui|
)

≤
∫ ∞

0

2p[2Φ(t)− 1]p−1[2Φ(βt/‖u‖)− 1]φ(t)dt.

(11)

Next, we provide a simulation study to justify the approximation and compare different distributions715

in terms of their impact on the probability (9), for β = 1 as well as β = 0.1. For simplicity, we716

simulate the data as a p-dimensional vector of uniform random numbers sampled from unif [−1, 1].717

We experiment with five different choices of w: the standard Gaussian, the uniform, the “very sparse”718

distribution (8) with s = 1, s = 3, and s = 10. We vary p from 10 to 1000. For each case, we repeat719

the simulations 107 times to ensure sufficient accuracy. Figure 8 verifies that the two approximations720

(10) and (11) are accurate. In Figure 9, we provide the curves for more types of projection matrices.721

From both figures, we clearly see that using the Rademacher projection can considerably reduce722

(9) compared with Gaussian (and other) projections, leading to smaller N+ value. This typically723

implies better utility.724
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Figure 8: Simulations for evaluating (10) and (11), using two choices for w: the Gaussian distri-
bution and the Rademacher distribution (i.e., (8) with s = 1). We plot the two upper bounds (10)
and (11) as black dashed curves, which both overlap with their corresponding simulations.

Lj in DP-SignRP-RR-smooth. Similarly, we numerically evaluate the Lj in Algorithm 4. We run725

Algorithm 4 with k = 512, which gives 512 Lj values. In Figure 10, we plot the proportion (or726

the approximated distribution) of the values of Lj among k projections. As we see, Rademacher727

projection produces least number of small Lj values, and largest number of higher Lj values. As728

the smooth flipping probability equals 1

exp(
Lj
k ǫ)+1

, larger Lj leads to smaller probability of sign729

flipping. Hence, Rademacher is again the best choice for the projection matrix.730
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Figure 9: Simulations (same as in Figure 9) for evaluating (9), using five different choices for w:
the Gaussian, the uniform, the “very sparse” distribution (8) with s = 1, 3 and 10. s = 1 is the
Rademacher distribution. The data vector is simulated by sampling each entry from unif [−1, 1].
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Figure 10: Simulations for evaluating Lj in Algorithm 4, using different choices for w. s = 1 is the
Rademacher distribution. Left: p = 100, right: p = 1000. The y-axis is the proportion (normalized
histogram) of the values of all the Lj , j = 1, ..., k computed using k = 512 projected samples.

C Comparison of DP-RP and DP-OPORP on Inner Product Estimation731

In this section, we theoretically compare DP-RP and DP-OPORP. In Section B, we have shown732

that Rademacher projection requires lowest noise magnitude. Thus, we consider DP-RP with733

Rademacher projections here. For clarity, we summarize the algorithm in Algorithm 9. We name it734

“DP-RP-G-OPT-B”, where “G” stands for the Gaussian noise mechanism and “B” stands for “sym-735

metric Bernoulli” projections.736

Algorithm 9: DP-RP-G-OPT-B

1 Input: Data u ∈ [−1, 1]p, privacy parameters ǫ > 0, δ ∈ (0, 1), number of projections k
2 Output: (ǫ, δ)-differentially private random projections x̃ ∈ R

k

3 Apply RP x = 1√
k
WTu, where W ∈ R

p×k is a random Rademacher matrix

4 Generate iid random noise vector G ∈ R
k following N(0, σ2) where σ is obtained by

Theorem 3.2 with △2 = β
5 Return x̃ = x+G

In our analysis, for simplicity we assume the data are normalized, i.e., the data vector has l2 norm737

equal to 1. In this case, the inner product is also the cosine. The baseline method is the most738

straightforward: we add optimal Gaussian noise to each dimension of the original data (Raw-data-739

G-OPT). For this strategy, the sensitivity is also △2 = β. This means, when we compare all three740

methods: Raw-data-G-OPT, DP-RP-G-OPT-B, and DP-OPORP, the noise level σ is the same. This741

makes it convenience to conduct the comparisons, from which we can gain valuable insights.742
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Theorem C.1 (Raw-data-G-OPT, i.e., adding optimal Gaussian noise on raw data). Let σ be the743

solution to (4) with △2 = β. For any u, v ∈ U , let ũi = ui + ai and ṽi = vi + bi be the DP noisy744

vectors, with ai, bi ∼ N(0, σ2) i.i.d. Then, denote ĝorg =
∑p

i=1 ũiṽi. we have745

E[ĝorg] =

p
∑

i=1

uivi, V ar (ĝorg) = σ2

p
∑

i=1

(

u2
i + v2i

)

+ pσ4. (12)

Proof. To add Gaussian noise to the original data, it suffices to find the sensitivity, which, by Defini-746

tion 2.2, is △2 = β. Thus, the approach is (ǫ, δ)-DP according to the optimal Gaussian mechanism747

(Theorem 3.2). To compute the mean and variance, consider some i ∈ [p]. We have748

E [(ui + ai) (vi + bi)] = E[uivi + aivi + biui + aibi] = uivi.

Thus, taking the sum implies E[ĝorg] =
∑p

i=1 uivi. For the variance,749

E [(ui + ai) (vi + bi)]
2
= E[uivi + aivi + biui + aibi]

2 = u2
i v

2
i + σ2

(

u2
i + v2i

)

+ σ4,

which leads to750

V ar ((ui + ai) (vi + bi)) = σ2
(

u2
i + v2i

)

+ σ4.

Therefore, by independence,751

V ar (ĝorg) = V ar

(

p
∑

i=1

(ui + ai) (vi + bi)

)

= σ2

p
∑

i=1

(

u2
i + v2i

)

+ pσ4,

which proves the claim.752

For DP-RP-G-OPT-B and DP-OPORP, we have the following results.753

Theorem C.2 (DP-RP-G-OPT-B inner product estimation). Let σ be the solution to (4) with △2 = β.754

In Algorithm 9, let W ∈ {−1, 1}p×k be a Rademacher random matrix. Denote x = 1√
k
WTu,755

y = 1√
k
WT v, and a, b are two random Gaussian noise vectors following N(0, σ2). Let ĝrp =756

∑k
j=1(xj + aj)(yj + bj). Then, E[ĝrp] =

∑p
i=1 uivi, and757

V ar (ĝrp) = σ2

p
∑

i=1

(

u2
i + v2i

)

+ kσ4 +
1

k





p
∑

i=1

u2
i

p
∑

i=1

v2i +

(

p
∑

i=1

uivi

)2

− 2

p
∑

i=1

u2
i v

2
i



 . (13)

Proof. The conditional mean and variance can be computed as758

E





k
∑

j=1

(xj + aj) (yj + bj) |xj , yj , j = 1, ..., k



 =
k
∑

j=1

xjyj ,

759

V ar





k
∑

j=1

(xj + aj) (yj + bj) |xj , yj , j = 1, ..., k



 = σ2
k
∑

j=1

(x2
j + y2j ) + kσ4,

where the variance calculation follows from Theorem C.1. Hence, we have760

E





k
∑

j=1

(xj + aj) (yj + bj)



 = E





k
∑

j=1

xjyj



 =

p
∑

i=1

uivi,

761

V ar (ĝrp) =E



σ2
k
∑

j=1

(x2
j + y2j ) + kσ4



+ V ar





k
∑

j=1

xjyj





=σ2

p
∑

i=1

(

u2
i + v2i

)

+ kσ4 +
1

k





p
∑

i=1

u2
i

p
∑

i=1

v2i +

(

p
∑

i=1

uivi

)2

− 2

p
∑

i=1

u2
i v

2
i



 . (14)

In the above calculation, the formula of V ar
(

∑k
j=1 xjyj

)

is from the result in [8] with s = 1 for762

Rademacher distribution.763
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Algorithm 10: DP-OPORP

1 Input: Data u ∈ [−1, 1]p, privacy parameters ǫ > 0, δ ∈ (0, 1), number of projections k
2 Output: Differentially private OPORP
3 Apply Algorithm 2 with a random Rademacher projection vector to obtain the OPORP x
4 Set sensitivity ∆2 = β

5 Generate iid random vector G ∈ R
k following N(0, σ2) where σ is computed by Theorem 3.2

6 Return x̃ = x+G

Theorem C.3 (DP-OPORP inner product estimation). Let σ be the solution to (4) with △2 = β.764

Let w ∈ {−1, 1}p be a Rademacher random vector. In Algorithm 10, let x and y be the OPORP765

of u and v, and a, b be two random Gaussian noise vectors following N(0, σ2). Denote ĝoporp =766

∑k
j=1(xj + aj)(yj + bj). Then, E[ĝoporp] =

∑p
i=1 uivi, and767

V ar (ĝoporp) = σ2

p
∑

i=1

(

u2
i + v2i

)

+ kσ4 +
1

k





p
∑

i=1

u2
i

p
∑

i=1

v2i +

(

p
∑

i=1

uivi

)2

− 2

p
∑

i=1

u2
i v

2
i





p− k

p− 1
.

(15)

Proof. The proof is similar to that of Theorem C.2, with the help of the result in [9].768

The variance reduction factor p−k
p−1 can be quite beneficial when p is not very large. Also, see [9]769

for the normalized estimators for both OPORP and VSRP (very sparse random projections). The770

normalization steps can substantially reduce the estimation variance.771

Comparison. For the convenience of comparison, let us assume that the data are row-normalized,772

i.e., ‖u‖2 = 1 for all u ∈ U . Let ρ =
∑p

i=1 uivi. We have773

V ar (ĝorg) = 2σ2 + pσ4,

V ar (ĝrp) = 2σ2 + kσ4 +
1

k

(

1 + ρ2 − 2

p
∑

i=1

u2
i v

2
i

)

,

V ar (ĝoporp) = 2σ2 + kσ4 +
1

k

(

1 + ρ2 − 2

p
∑

i=1

u2
i v

2
i

)

p− k

p− 1
.

For high-dimensional data (large p), we see that ĝrp and ĝoporp has roughly the same variance,774

approximately 2σ2 + kσ4 + 1
k . We would like to compare this with V ar (ĝorg) = 2σ2 + pσ4 the775

variance for adding noise directly to the original data.776

Let’s define the ratio of the variances:777

R =
2σ2 + pσ4

2σ2 + kσ4 + 1
k

∼ pσ4

kσ4
=

p

k
(if p is large or σ is high) (16)

to illustrate the benefit of RP-type algorithms (DP-RP and DP-OPORP) in protecting the privacy778

of the (high-dimensional) data. If p
k = 100, then it is possible that the ratio of the variances can779

be roughly 100. This would be a huge advantage. Figure 11 plots the ratio R for p = 1000 and780

p = 10000 as well as a series of k/p values, with respect to σ.781

Figure 11 also illustrates when it might be a good strategy to directly add noise to the original data.782

For example, when p = 1000, the ratio can be below 1 if σ < 0.1. One can numerically verify that,783

(in Figure 12) in order for σ < 0.1 at ∆2 = β = 1, we need ǫ > 100. In other words, adding noise784

to the raw data might be plausible when ǫ > 100. In the literature, however, many DP applications785

typically require a much smaller ǫ, such as ǫ ∈ [0.1, 20] (e.g., [5; 7]). Therefore, DP-RP and DP-786

OPORP is much better (i.e., has much smaller inner product estimation variance) than adding noise787

to the raw data in common privacy regimes.788
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Figure 11: We plot the ratio of variances in (16) for p = 1000 and p = 10000. We choose k values
with k/p ∈ {0.01, 0.05, 0.1, 0.5}. Then for any σ value, we are able to compute the ratio R. For
larger σ, we have R ∼ p

k as expected. See Figure 12 for the relationship among σ, ∆, and ǫ (and δ).
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Figure 12: Left panel: the optimal Gaussian noise σ versus ǫ for a series of ∆2 values, by solving
the nonlinear equation (4) in Theorem 3.2, for δ = 10−6. Right panel: the optimal Gaussian noise
σ versus ∆2 for a series of ǫ values.
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D More Experiment Results789

We provide the complete set of plots of our experimental results. In Figure 13 and Figure 14, we790

report the precision@10 and recall@100 curves of DP-RP variants and DP-OPORP on MNIST and791

CIFAR, respectively. In Figure 15, we report the test accuracy on the Webspam dataset of these792

methods. From all plots, we see that DP-RP-G-OPT-B and DP-OPORP perform equally the best on793

all the tasks, significanly better than the strategy of adding Gaussian noise to the raw data.794

In Figure 16, we report the recall@100 metric of DP-SignOPORP methods in addition to the preci-795

sion@10 metric shown in the main paper. For completeness, we also include the SVM test accuracy796

in Figure 17, which is the same as Figure 4 in the main context.797
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Figure 13: Retrieval recall and precision on MNIST, β = 1, δ = 10−6.
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Figure 14: Retrieval recall and precision on CIFAR, β = 1, δ = 10−6.
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Figure 15: SVM classification on WEBSPAM, β = 1, δ = 10−6.
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Figure 16: Retrieval on MNIST with DP-SignOPORP-RR and DP-SignOPORP-RR-smooth (in the
caption, “-s” stands for “-smooth”. For DP-OPORP and Raw-data-G-OPT, we let δ = 10−6.
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Figure 17: SVM classification on Webspam with DP-SignOPORP-RR and DP-SignOPORP-RR-s.
For DP-OPORP and Raw-data-G-OPT, we let δ = 10−6.
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E Deferred Proofs798

The following lemma on Gaussian random variables will be used in our proof for Lemma 4.2, and799

may also be of independent interest.800

Lemma E.1. Let

(

X
Y

)

∼ N

(

σ2
x ρσxσy

ρσxσy σ2
y

)

. Denote r = σx/σy . Then we have:801

1. Pr(|X| > |Y |) = 1
π

[

tan−1

(

r−ρ√
1−ρ2

)

+ tan−1

(

r+ρ√
1−ρ2

)]

. When r ≤ 1, the maximum is802

achieved at ρ = 0, i.e., maxρ Pr(|X| < |Y |) = 2
π tan−1(r).803

2. The conditional expectation:804

E
[

|X|
∣

∣|X| > |Y |
]

= σx

√

π

2
·

r−ρ√
1+r2−2rρ

+ r+ρ√
1+r2+2rρ

tan−1

(

r−ρ√
1−ρ2

)

+ tan−1

(

r+ρ√
1−ρ2

) .

3. The conditional tail probability: for any r > 0, ρ ∈ (−1, 1), for any t > 0,805

Pr(|X| > t
∣

∣|X| > |Y |) ≤ exp

(

− t2

2σ2
x

)

.

Proof. The bivariate normal density function is806

f(x, y) =
1

2πσxσy

√

1− ρ2
exp



−
x2

σ2
x
− 2ρxy

σxσy
+ y2

σ2
y

2(1− ρ2)





=
1

2πσxσy

√

1− ρ2
exp

(

− x2

2σ2
x

)

exp

(

−
( y
σy

− ρ x
σx

)2

2(1− ρ2)

)

.

Therefore, we have E
[

|X|
∣

∣|X| > |Y |
]

= A
P , with807

A =

∫ ∞

−∞

|x|√
2πσx

√

1− ρ2
exp

(

− x2

2σ2
x

)

dx

∫ |x|

−|x|

1√
2πσy

exp

(

−
( y
σy

− ρ x
σx

)2

2(1− ρ2)

)

dy,

P =

∫ ∞

−∞

1√
2πσx

√

1− ρ2
exp

(

− x2

2σ2
x

)

dx

∫ |x|

−|x|

1√
2πσy

exp

(

−
( y
σy

− ρ x
σx

)2

2(1− ρ2)

)

dy.

Note that P = Pr(|X| > |Y |) in the first statement of the theorem. Our calculation will use the808

following two identities involving the Gaussian functions [11]:809

∫ ∞

0

φ(ax)Φ(bx)dx =
1

2π|a|

(

π

2
+ tan−1

(

b

|a|

))

, (17)

∫ ∞

0

xφ(ax)Φ(bx)dx =
1

2
√
2π

(

1 +
b√

1 + b2

)

, (18)

where φ(x) and Φ(x) are the pdf and cdf of the standard Gaussian distribution.810

With a proper change of random variables, we can compute A as811

A =

∫ ∞

−∞

|x|√
2πσx

√

1− ρ2
exp

(

− x2

2σ2
x

)

dx

∫

|x|
σy

−ρ x
σx√

1−ρ2

−|x|
σy

−ρ x
σx√

1−ρ2

√

1− ρ2
1√
2π

e−s2ds

=

∫ ∞

−∞

|x|√
2πσx

exp

(

− x2

2σ2
x

)



Φ





|x|
σy

− ρ x
σx

√

1− ρ2



− Φ





−|x|
σy

− ρ x
σx

√

1− ρ2







 dx

=

∫ ∞

−∞

σx|t|√
2π

exp

(

− t2

2

)

[

Φ

(

σx

σy
|t| − ρt

√

1− ρ2

)

− Φ

(

−
σx

σy
|t| − ρt

√

1− ρ2

)]

dt

:=A1 −A2.
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For the first term we have812

A1 = σx

[

∫ ∞

0

t√
2π

exp

(

− t2

2

)

Φ

(

σx

σy
− ρ

√

1− ρ2
t

)

dt+

∫ 0

−∞

−t√
2π

exp

(

− t2

2

)

Φ

(

−
σx

σy
+ ρ

√

1− ρ2
t

)

dt

]

= σx

[

∫ ∞

0

t√
2π

exp

(

− t2

2

)

Φ

(

σx

σy
− ρ

√

1− ρ2
t

)

dt+

∫ ∞

0

s√
2π

exp

(

−s2

2

)

Φ

(

σx

σy
+ ρ

√

1− ρ2
s

)

ds

]

= σx









1

2
√
2π









1 +

σx
σy

−ρ√
1−ρ2

√

1 +
(σx
σy

−ρ)2

1−ρ2









+
1

2
√
2π









1 +

σx
σy

+ρ√
1−ρ2

√

1 +
(σx
σy

+ρ)2

1−ρ2

















= σx

[

1√
2π

+
1

2
√
2π

(

r − ρ
√

1 + r2 − 2rρ
+

r + ρ
√

1 + r2 + 2rρ

)]

,

where we denote r = σx

σy
and use (18). Similarly, we have that813

A2 = σx

[

∫ ∞

0

t√
2π

exp

(

− t2

2

)

Φ

(

− r + ρ
√

1− ρ2
t

)

dt+

∫ 0

−∞

−t√
2π

exp

(

− t2

2

)

Φ

(

r − ρ
√

1− ρ2
t

)

dt

]

= σx

[

∫ ∞

0

t√
2π

exp

(

− t2

2

)

Φ

(

− r + ρ
√

1− ρ2
t

)

dt+

∫ ∞

0

s√
2π

exp

(

−s2

2

)

Φ

(

− r − ρ
√

1− ρ2
s

)

ds

]

= σx

[

1√
2π

− 1

2
√
2π

(

r − ρ
√

1 + r2 − 2rρ
+

r + ρ
√

1 + r2 + 2rρ

)]

.

Therefore, we obtain814

A(ρ, r) = A1 −A2 =
σx√
2π

(

r − ρ
√

1 + r2 − 2rρ
+

r + ρ
√

1 + r2 + 2rρ

)

. (19)

To compute P , by doing a similar change of variables, we have815

P =

∫ ∞

−∞

1√
2π

exp

(

− t2

2

)

[

Φ

(

r|t| − ρt
√

1− ρ2

)

− Φ

(

− r|t| − ρt
√

1− ρ2

)]

dt

:=P1 − P2.

Using (17), we obtain816

P1 =

∫ ∞

0

1√
2π

exp

(

− t2

2

)

Φ

(

r − ρ
√

1− ρ2
t

)

dt+

∫ 0

−∞

1√
2π

exp

(

− t2

2

)

Φ

(

− r + ρ
√

1− ρ2
t

)

dt

=

∫ ∞

0

1√
2π

exp

(

− t2

2

)

Φ

(

r − ρ
√

1− ρ2
t

)

dt+

∫ ∞

0

1√
2π

exp

(

−s2

2

)

Φ

(

r + ρ
√

1− ρ2
s

)

ds

=
1

2π

(

π

2
+ tan−1

(

r − ρ
√

1− ρ2

))

+
1

2π

(

π

2
+ tan−1

(

r + ρ
√

1− ρ2

))

=
1

2
+

1

2π

[

tan−1

(

r − ρ
√

1− ρ2

)

+ tan−1

(

r + ρ
√

1− ρ2

)]

,

P2 =
1

2
− 1

2π

[

tan−1

(

r − ρ
√

1− ρ2

)

+ tan−1

(

r + ρ
√

1− ρ2

)]

,

which leads to817

P (ρ, r) = P1 − P2 =
1

π

[

tan−1

(

r − ρ
√

1− ρ2

)

+ tan−1

(

r + ρ
√

1− ρ2

)]

(20)
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Therefore, we know that818

E
[

|X|
∣

∣|X| > |Y |
]

=
A(ρ, r)

P (ρ, r)
= σx

√

π

2
·

r−ρ√
1+r2−2rρ

+ r+ρ√
1+r2+2rρ

tan−1

(

r−ρ√
1−ρ2

)

+ tan−1

(

r+ρ√
1−ρ2

) ,

with r = σx/σy . We now investigate the derivative of P . By some algebra, we can show that819

∂P (ρ, r)

∂ρ
=

2rρ(r2 − 1)

(1 + r2 − 2rρ)(1 + r2 + 2rρ)
√

1− ρ2
.

When 0 < r ≤ 1, ∂P (ρ,r)
∂ρ ≥ 0 when ρ ≤ 0 and ∂P (ρ,r)

∂ρ ≤ 0 when ρ > 0. Therefore,820

maxρ P (ρ, r) = P (0, r) = 2
π tan−1(r).821

Tail bound. By our previous calculations, the conditional distribution of X given |X| > |Y | is822

f(x
∣

∣|X| > |Y |) =
1√
2π

exp
(

−x2

2

)

[

Φ

(

r|x|−ρx√
1−ρ2

)

− Φ

(

− r|x|−ρx√
1−ρ2

)]

P
, x ∈ R,

with P = Pr(|X| > |Y |) in (20) the normalizing constant to make the integral equal to 1.823

The conditional tail probability can be computed as follows. For some t > 0, by symmetry,824

Pr(|X| > t, |X| > |Y |)

=2

∫ ∞

t

1√
2πσx

exp

(

− x2

2σ2
x

)

[

Φ

(

r|x| − ρx
√

1− ρ2

)

− Φ

(

−r|x| − ρx
√

1− ρ2

)]

dx

=2

∫ ∞

t
σx

1√
2π

exp

(

−x2

2

)

[

Φ

(

r|x| − ρx
√

1− ρ2

)

− Φ

(

−r|x| − ρx
√

1− ρ2

)]

dx

:=2(P̃1 − P̃2).

For P̃1, using polar coordinates we have825

P̃1 =
1

2π

∫ ∞

t
σx

e−
x2

2 dx

∫
r−ρ√
1−ρ2

x

−∞
e−

y2

2 dy

=
1

2π

∫ tan−1( r−ρ√
1−ρ2

)

−π
2

dθ

∫ ∞

t
σx cos(θ)

e−
r2

2 rdr

=
1

2π

∫ tan−1( r−ρ√
1−ρ2

)

−π
2

exp

(

− t2

2σ2
x cos

2(θ)

)

dθ.

Similarly,826

P̃2 =
1

2π

∫ tan−1(− r+ρ√
1−ρ2

)

−π
2

exp

(

− t2

2σ2
x cos

2(θ)

)

dθ.

Therefore, we obtain827

Pr(|X| > t, |X| > |Y |) = 1

π

∫ tan−1( r−ρ√
1−ρ2

)

tan−1(− r+ρ√
1−ρ2

)

exp

(

− t2

2σ2
x cos

2(θ)

)

dθ

=
1

π

∫ tan−1( r−ρ√
1−ρ2

)

− tan−1( r+ρ√
1−ρ2

)

exp

(

− t2

2σ2
x cos

2(θ)

)

dθ

≤ e
− t2

2σ2
x
1

π

∫ tan−1( r−ρ√
1−ρ2

)

− tan−1( r+ρ√
1−ρ2

)

dθ,
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since cos2(θ) ∈ [0, 1]. Notice that P in (20) can be written as P = 1
π

∫

tan−1( r−ρ√
1−ρ2

)

− tan−1( r+ρ√
1−ρ2

)
dθ. Hence,828

we know that the conditional tail probability is829

Pr(|X| > t
∣

∣|X| > |Y |) = Pr(|X| > t, |X| > |Y |)
Pr(|X| > |Y |) ≤ exp

(

− t2

2σ2
x

)

, ∀r > 0, ρ ∈ (−1, 1).

At the boundaries ρ = 1, ρ = −1, one can verify Pr(|X| > |Y |) = 0. This concludes the proof.830

E.1 Proof of Lemma 4.2831

Proof. Since Xi’s are independent, we know that832

Pr( max
i=1,...,p

|X| < |Y |) =
p
∏

i=1

Pr(|Xi| < |Y |).

By Lemma E.1, among all the possible dependency structures, the above probability reaches its833

minimum when every Xi is independent of Y . Therefore, Pr(maxi=1,...,p |X| > |Y |) = 1 −834

Pr(maxi=1,...,p |X| < |Y |) achieves maximum when ρ(Xi, Y ) = 0, ∀i = 1, ..., p. Since |Xi|835

follows a half-normal distribution with cdf being erf( x√
2σx

), we have836

Pr( max
i=1,...,p

|Xi| ≤ t) = erf

(

t√
2σx

)p

=

[

2Φ

(

x

σx

)

− 1

]p

,

and probability density function g(x) = 2p[Φ( x
σx

)−1]p−1 1√
2πσx

e
− x2

2σ2
x . When Y is independent of837

all Xi’s (which gives the upper bound), we have838

Pr( max
i=1,...,p

|X| > |Y |) =
∫ ∞

0

2p

[

Φ

(

x

σx

)

− 1

]p−1
1√
2πσx

e
− x2

2σ2
x Pr(|Y | < x)dx

=

∫ ∞

0

2p

[

Φ

(

x

σx

)

− 1

]p−1
1√
2πσx

e
− x2

2σ2
x erf

(

x√
2σy

)

dx

=

∫ ∞

0

2p[2Φ(t)− 1]p−1[2Φ(rt)− 1]φ(t)dt,

with a proper change of variables. This gives an upper bound as shown above.839

E.2 Proof of Proposition 4.4840

Proof. Consider a single Gaussian projection vector w with iid N(0, 1) entries. Since wTu =841

∑p
i=1 uiwi and each wi ∼ N(0, 1), we know that

(

βwi

x

)

∼ N

(

β2 ρiβ‖u‖
ρiβ‖u‖ ‖u‖2

)

where ρi =842

ui

‖u‖ is the correlation coefficient. Since |wT (u − u′)| ≤ βmaxi=1,...,p |wi| by Definition 2.2 of843

β-neighboring (and more generally, when ‖u− u′‖1 ≤ β), we have844

Pr( max
u′∈Nb(u)

|wT (u− u′)| ≥ |wTu|) = Pr(β max
i=1,...,p

|wi| ≥ |wTu|).

Note that, βmaxi=1,...,p |wi| ≥ |wTu| is a necessary condition for the event that there exists a neigh-845

bor such that sign(wTu) 6= sign(wTu′). Denote I = 1{βmaxi=1,...,p |wi| ≥ |wTu|}. Applying846

Lemma 4.2 with r = β/‖u‖ ≤ 1 yields847

E[I] = Pr(β max
i=1,...,p

|wi| ≥ |wTu|) ≤ F‖u‖,p =

∫ ∞

0

2p[2Φ(t)− 1]p−1[2Φ(rt)− 1]φ(t)dt (21)

as given by (5). Let Ij be the corresponding indicator function w.r.t. each column in the projection848

matrix W . Denote N+ =
∑k

j=1 Ij , and by the above reasoning, we know that |S| ≤ N+ where S is849

defined in the theorem. Since the columns of W are independent, N+ follows a Binomial(k,E[I])850
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distribution with k trials and success probability E[I] bounded as above. Applying Chernoff’s bound851

on binomial variable (Lemma 4.3), we obtain852

Pr(N+ ≥ (1 + η)F‖u‖,pk) ≤ exp(−η2F‖u‖,pk

η + 2
).

Setting the RHS to δ gives η =
log(1/δ)+

√
(log(1/δ))2+8F‖u‖,pk log(1/δ)

2F‖u‖,pk
. Therefore, with probability853

1− δ,854

N+(‖u‖, δ, k, p) ≤ F‖u‖,pk +
1

2

[

log(1/δ) +
√

(log(1/δ))2 + 8F‖u‖,pk log(1/δ)
]

.

In addition, N+ ≤ k trivially. The proof is complete.855

E.3 Proof of Theorem 4.5856

Proof. Let s = sign(WTu) ∈ {−1,+1}k, s′ = sign(WTu′) ∈ {−1,+1}k. We denote the
collision probability of non-private SignRP as

PSRP = Pr(s1j = s2j) = 1− cos−1(ρ)

π
= 1− θ

π
.

Hence, the collision probability of DP-SignRP-RR can be computed as857

P̃ := Pr(s̃1j = s̃2j) = Pr(s1j = s2j , both change sign or not change sign)

+ Pr(s1j 6= s2j , one sign changes)

= PSRP [(
eǫ

′

eǫ′ + 1
)2 + (

1

eǫ′ + 1
)2] + 2(1− PSRP )

eǫ
′

(eǫ′ + 1)2

= PSRP
(eǫ

′ − 1)2

(eǫ′ + 1)2
+

2eǫ
′

(eǫ′ + 1)2
,

which increases linearly in PSRP . Thus, it holds that858

E[P̂RR] =
(eǫ

′

+ 1)2

(eǫ′ − 1)2
P̃ − 2eǫ

′

(eǫ′ − 1)2
= PSRP = 1− θ

π
,

which implies E[θ̂RR] = π
(

1− (1− θ
π )
)

= θ. To compute the variance, we first estimate θ =859

cos−1(ρ) by860

θ̂ = π(1− P̂RR).

Then according to the Central Limit Theorem (CLT), for the sample mean of iid Bernoulli’s, as861

k → ∞, we have862

1

k

k
∑

j=1

1{s̃1j = s̃2j} → N(P̃ ,
P̃ (1− P̃ )

k
).

As a result, we have θ̂ → N(θ, VRR

k ), where863

VRR =
π2(eǫ

′

+ 1)4

(eǫ′ − 1)4

[

(1− θ

π
)
(eǫ

′ − 1)2

(eǫ′ + 1)2
+

2eǫ
′

(eǫ′ + 1)2

][ e2ǫ
′

+ 1

(eǫ′ + 1)2
− (1− θ

π
)
(eǫ

′ − 1)2

(eǫ′ + 1)2

]

=
π2(eǫ

′

+ 1)4

(eǫ′ − 1)4

[

(1− θ

π
)
(eǫ

′ − 1)2

(eǫ′ + 1)2
+

2eǫ
′

(eǫ′ + 1)2

][ θ

π

(eǫ
′ − 1)2

(eǫ′ + 1)2
+

2eǫ
′

(eǫ′ + 1)2

]

=
π2θ

π
(1− θ

π
) + (1− θ

π
)

2eǫ
′

(eǫ′ − 1)2
+

θ

π

2eǫ
′

(eǫ′ − 1)2
+

4e2ǫ
′

(eǫ′ − 1)4

= θ(π − θ) +
2π2eǫ

′

(eǫ′ − 1)2
+

4π2e2ǫ
′

(eǫ′ − 1)4
.

We conclude the proof by replacing ǫ′ = ǫ/N+.864
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E.4 Proof of Theorem 4.6865

Proof. Let us consider a single projection vector wj = W[:,j]. Denote xj = wT
j u and x′

j = wT
j u

′ for866

a neighboring data u′ of u, and sj = sign(xj), s′j = sign(x′
j). Also, let Lj = ⌈ |xj |

βmaxi=1,...,p |Wij |⌉867

and L′
j = ⌈ |x′

j |
βmaxi=1,...,p |Wij |⌉. W.l.o.g., we can assume sj = 1 by the symmetry of random projec-868

tion and the symmetry of DP. Consider two cases:869

• Case I: Lj ≥ 2. In this case, we know that s′j = sj , i.e., the change from u to u′ will not870

change the sign of the projection. Thus, in Algorithm 4, we have871

Pr(s̃j = 1)

Pr(s̃′j = 1)
= exp(

Lj − L′
j

k
ǫ)
exp(

L′
j

k ǫ) + 1

exp(
Lj

k ǫ) + 1
.

By the definition of β-adjacency, |Lj−L′
j | equals either 0 or 1. When Lj = L′

j , Pr(s̃j=1)
Pr(s̃′j=1) =872

1. When Lj − L′
j = 1, we have873

Pr(s̃j = 1)

Pr(s̃′j = 1)
=

exp(
Lj

k ǫ) + exp( 1k ǫ)

exp(
Lj

k ǫ) + 1
.

Hence, we have 1 ≤ Pr(s̃j=1)
Pr(s̃′j=1) ≤ e

ǫ
k by the numeric identity 1 ≤ a+c

b+c ≤ a
b for a ≥ b > 0874

and c > 0. Thus, by symmetry, e−
ǫ
k ≤ Pr(s̃j=1)

Pr(s̃′j=1) ≤ e
ǫ
k . On the other hand,875

Pr(s̃j = −1)

Pr(s̃′j = −1)
=

exp(
L′

j

k ǫ) + 1

exp(
Lj

k ǫ) + 1
.

Similarly, when Lj = L′
j , the ratio equals 1. When Lj = L′

j − 1, we have Pr(s̃j=−1)
Pr(s̃′j=−1) ≤876

exp(
L′

j

k ǫ− Lj

k ǫ) = e
ǫ
k . By symmetry we obtain e−

ǫ
k ≤ Pr(s̃j=−1)

Pr(s̃′j=−1) ≤ e
ǫ
k .877

• Case II: Lj = 1. In this case, sj might be different from s′j . First, if L′
j = 2, then the878

above analysis also applies that Pr(s̃j=1)
Pr(s̃′j=1) and Pr(s̃j=−1)

Pr(s̃′j=−1) are both lower and upper bounded879

by e−
ǫ
k and e

ǫ
k , respectively. It suffices to examine the case when L′

j = 1. In this case, if880

s′j = sj = 1 then the probability ratios simply equal 1. If s′j = −1, we have881

Pr(s̃j = 1)

Pr(s̃′j = 1)
=

exp( ǫ
k )

exp( ǫ
k )+1

1
exp( ǫ

k )+1

= e
ǫ
k ,

P r(s̃j = −1)

Pr(s̃′j = −1)
=

1
exp( ǫ

k )+1

exp( ǫ
k )

exp( ǫ
k )+1

= e−
ǫ
k .

Combining two cases, we have that log Pr(s̃j=t)
Pr(s̃′j=t) ≤ ǫ

k , for t = −1, 1, and for all j = 1, ..., k. That is,882

each single perturbed sign achieves ǫ
k -DP. Since the k projections are independent, by Theorem 2.1,883

we know that the output bit vector s̃ = [s̃1, ..., s̃k] is ǫ-DP as claimed.884
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