
A Experimental Setup

A.1 Implementation Details

We provide additional implementation details:

Architecture. To bridge the mismatch between continuous rescaling factor ϕ values and discrete
spatial dimensions in the feature maps, we round the spatial dimensions of the outputs of downscaling
operations to the nearest integer value. For upscaling operations we use 1/ϕ but round the upscaled
spatial dimensions so that they match the dimensions of the features from the skip connections used
in the concatenation. We use a final convolution, with kernel size 1x1 and without activation function,
to transform the number of channels to the target number of labels for the segmentation task.

Initialization. We separate the weights of the last fully connected layer of the hypernetwork into
different groups, each one corresponding to a fully connected layer predicting an individual parameter
tensor of the primary network. This strategy leads to each predicted parameter of the primary network
having an initialization that only depends on its own dimensions and not on the entire architecture.

Training. We use the Adam optimizer with default β parameters β1 = 0.9 and β2 = 0.99. For
training we include a label for the background to ensure the cross-entropy loss has exactly one label
for each pixel in the output. We do not use the background label when computing evaluation metrics.
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B Additional Results

Table 1: Segmentation performance on each dataset in terms of mean Dice score for a held-out test
set, across five random seeds, as well as the corresponding computational cost of running inference
(in GFLOPs). We report mean Dice score over the anatomical structures and standard deviation
across model initialization.

Dataset ϕ GFLOPs Stochastic FiLM Fixed SSHN

CAMUS

0.00 0.47 30.5 ± 1.0 32.2 ± 1.1 39.1 ± 0.7 35.8 ± 0.6
0.05 0.47 66.1 ± 0.5 67.3 ± 0.7 69.1 ± 0.6 72.4 ± 0.4
0.10 0.49 74.3 ± 0.5 73.0 ± 1.8 77.5 ± 0.1 80.0 ± 0.3
0.15 0.50 77.3 ± 0.4 77.6 ± 0.6 79.4 ± 0.5 82.1 ± 0.6
0.20 0.53 79.0 ± 0.3 79.2 ± 1.1 77.5 ± 0.5 83.9 ± 0.3
0.25 0.57 80.7 ± 0.4 80.0 ± 1.0 80.7 ± 0.2 85.0 ± 0.3
0.30 0.62 81.4 ± 0.2 80.3 ± 2.7 79.4 ± 0.2 84.9 ± 0.3
0.35 0.69 82.4 ± 0.3 81.5 ± 2.0 79.6 ± 0.6 85.3 ± 0.4
0.40 0.77 82.5 ± 0.6 82.4 ± 1.0 81.8 ± 0.3 86.0 ± 0.2
0.45 0.89 83.1 ± 0.5 82.5 ± 1.3 82.5 ± 0.3 86.0 ± 0.1
0.50 1.07 83.3 ± 0.1 83.2 ± 0.3 83.5 ± 0.3 86.2 ± 0.3

OASIS

0.00 0.47 12.1 ± 0.7 13.6 ± 1.4 31.5 ± 0.5 28.3 ± 0.7
0.05 0.47 60.9 ± 3.0 61.0 ± 5.8 80.5 ± 0.5 82.7 ± 0.1
0.10 0.49 52.3 ± 1.8 61.8 ± 6.0 84.9 ± 0.5 86.7 ± 0.3
0.15 0.50 81.6 ± 0.3 83.2 ± 1.2 86.9 ± 0.2 89.0 ± 0.2
0.20 0.53 81.4 ± 1.6 84.1 ± 1.5 87.9 ± 0.4 89.6 ± 0.1
0.25 0.57 83.9 ± 0.1 85.8 ± 0.5 88.2 ± 0.1 90.2 ± 0.2
0.30 0.62 84.8 ± 0.3 86.5 ± 0.7 88.3 ± 0.3 90.3 ± 0.1
0.35 0.69 83.9 ± 0.7 86.4 ± 0.8 88.6 ± 0.2 90.5 ± 0.1
0.40 0.77 84.7 ± 0.5 87.0 ± 0.5 88.8 ± 0.2 90.6 ± 0.1
0.45 0.89 84.2 ± 0.5 86.5 ± 0.4 88.9 ± 0.1 90.6 ± 0.1
0.50 1.07 84.8 ± 0.2 87.2 ± 0.6 89.1 ± 0.0 90.7 ± 0.1

PanDental

0.00 0.47 56.0 ± 1.7 60.2 ± 0.9 68.5 ± 2.0 63.7 ± 0.8
0.05 0.47 80.7 ± 0.6 80.5 ± 0.4 83.8 ± 0.3 83.9 ± 0.4
0.10 0.49 80.1 ± 0.9 79.7 ± 0.9 85.2 ± 0.2 85.0 ± 0.7
0.15 0.50 81.9 ± 0.5 82.1 ± 0.8 86.5 ± 0.4 86.4 ± 0.6
0.20 0.53 84.1 ± 0.7 84.6 ± 0.4 85.8 ± 0.8 87.5 ± 0.8
0.25 0.57 84.7 ± 0.8 85.2 ± 0.3 87.6 ± 0.1 88.6 ± 0.5
0.30 0.62 85.1 ± 0.5 85.5 ± 0.5 87.3 ± 0.0 88.9 ± 0.3
0.35 0.69 85.6 ± 0.9 85.7 ± 0.4 86.9 ± 0.1 89.4 ± 0.2
0.40 0.77 85.7 ± 0.9 85.5 ± 0.4 87.9 ± 0.1 89.7 ± 0.2
0.45 0.89 85.8 ± 0.7 85.7 ± 0.6 88.1 ± 0.1 89.8 ± 0.2
0.50 1.07 85.6 ± 0.7 85.4 ± 0.6 88.9 ± 0.2 89.9 ± 0.3

WBC

0.00 0.47 68.9 ± 1.3 73.1 ± 1.2 76.6 ± 0.9 75.9 ± 1.8
0.05 0.47 85.6 ± 0.1 86.1 ± 0.5 86.5 ± 0.5 85.8 ± 2.0
0.10 0.49 84.3 ± 0.2 84.9 ± 1.3 85.9 ± 0.8 88.4 ± 0.6
0.15 0.50 85.5 ± 0.9 83.7 ± 2.1 86.9 ± 0.4 89.1 ± 0.3
0.20 0.53 86.7 ± 1.2 87.0 ± 1.2 86.6 ± 0.5 90.6 ± 0.1
0.25 0.57 88.7 ± 0.4 87.5 ± 1.0 88.3 ± 0.6 91.8 ± 0.1
0.30 0.62 88.7 ± 0.5 87.2 ± 0.7 87.5 ± 0.7 91.8 ± 0.2
0.35 0.69 89.0 ± 0.7 87.6 ± 0.8 86.7 ± 0.4 92.2 ± 0.1
0.40 0.77 87.7 ± 1.8 87.5 ± 0.8 89.1 ± 0.3 92.7 ± 0.1
0.45 0.89 88.3 ± 1.6 86.5 ± 0.9 89.3 ± 0.2 92.7 ± 0.4
0.50 1.07 88.1 ± 2.0 87.1 ± 1.4 90.9 ± 0.6 92.7 ± 0.4

16



Table 2: Registration performance on the OASIS dataset in terms of mean Dice score for a held-
out test set, across five random seeds, as well as the corresponding computational cost of running
inference (in GFLOPs). We report mean Dice score over the anatomical structures and standard
deviation across model initialization.

ϕ GFLOPs Stochastic FiLM Fixed SSHN
0.00 0.47 66.6 ± 0.1 67.4 ± 0.4 67.7 ± 0.2 67.7 ± 0.2
0.05 0.47 66.9 ± 0.2 67.6 ± 0.3 67.9 ± 0.2 67.8 ± 0.2
0.10 0.49 67.2 ± 0.1 67.8 ± 0.4 68.5 ± 0.1 68.4 ± 0.3
0.15 0.50 67.6 ± 0.3 68.6 ± 0.5 69.1 ± 0.2 69.1 ± 0.2
0.20 0.53 68.6 ± 0.0 69.5 ± 0.4 69.5 ± 0.0 69.9 ± 0.2
0.25 0.57 69.1 ± 0.0 70.0 ± 0.4 70.0 ± 0.1 70.5 ± 0.3
0.30 0.62 69.5 ± 0.1 70.3 ± 0.4 70.2 ± 0.1 70.9 ± 0.3
0.40 0.77 70.0 ± 0.2 70.5 ± 0.4 70.7 ± 0.1 71.5 ± 0.3
0.45 0.89 70.2 ± 0.2 70.6 ± 0.5 71.2 ± 0.2 71.6 ± 0.3
0.50 1.07 70.3 ± 0.2 70.7 ± 0.5 71.5 ± 0.1 71.7 ± 0.3

Table 3: Training time (in minutes) for the each method and task. For the Fixed baseline we take into
account the time taken to train all the independent models with different scale factors necessary to
characterize the Pareto frontier. We find that Stochastic, FiLM and SSHN all have similar training
times whereas the set of Fixed models requires substantially more time to train.

Task Dataset Stochastic FiLM Fixed SSHN
Registration OASIS 174.3 182.6 1867.7 208.8

Segmentation

CAMUS 48.8 50.5 512.1 57.0
OASIS 255.1 264.3 2811.1 304.5
PanDental 48.7 46.9 485.0 54.3
WBC 40.3 45.5 449.8 47.3
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C Additional Experimental Results

C.1 Segmentation Architecture Ablation

We originally tested our method on using the U-Net architecture [58], which is a popular architecture
choice in image segmentation tasks, particularly for medical imaging applications [29]. Nevertheless,
our method can be extended to other architectures. Given an arbitrary segmentation network,
our method requires replacing fixed resizing layers with variable resizing layers and using the
hypernetwork to predict all the convolutional parameters of the network.

In this experiment we test our method on other popular alternative segmentation architectures. While
the majority of segmentation architectures feature the same basic components (convolutional layers,
resizing layers, skip connections), we aimed to cover other architectual components not included in
the U-Net design such as pyramid spatial pooling layers and squeeze-excitation layers. The ablation
includes the following architectures:

• Residual UNet. This is popular U-Net variant where the operations at each resolution feature
a residual connection similar to the ResNet architecture [62]. Previous work has highlighted
the importance of this type of connections in biomedical image segmentation [14].

• FPN. Feature Pyramid Networks [44] constuct a pyramid of features at several resolution
levels, combining them in a fully convolutional manner and performing predictions at
multiple resolutions during training.

• PSPNet. Pyramid Spatial Pooling [75] layers gather context information at multiple resolu-
tion levels in parallel, and several competitive natural image segmentation models include
them in their architectures [9]. For our implementation, we perform the dynamic resizing
operations in the encoder part and used the multi resolution PSP blocks in the decoder part.

• SENet. Squeeze Excitation networks [26] incorporate an attention mechanism to dynami-
cally reweigh feature map channels during the forward pass. Squeeze-Excitation layers have
been shown to be performant in segmentation tasks [52, 59, 77]. In our implementation, we
include Squeeze-Excitation layers to both the encoder and the decoder stages of the network.

For each considered architecture we compare a single hypernetwork with a variable rescaling factor
to a set of individual baselines with varying rescaling factors. We train baselines at 0.05 ϕ increments,
i.e. ϕ = 0, 0.05, 0.1, . . . , 0.5. We evaluate on the OASIS2d semantic segmentation task introduced
in the paper, which features 24 brain structure labels. We evaluate using Dice score and average over
the labels. Results in Figure 10 show segmentation quality as the rescaling factor ϕ varies. We find
similar results to those in the paper (Figure 3) with our single hypernetwork model matching the set
of individually trained networks.
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Figure 10: Segmentation Architecture Ablation Test Dice Score on the OASIS segmentation task
for various choices of primary network architecture. Each plot features a family of networks trained
with fixed amounts of feature rescaling (Fixed) and a single instance of the proposed hypernetwork
method (SSHN) trained on the entire range of rescaling factors. Results are averaged across three
random initializations, and the shaded regions indicate the standard deviation across them.
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Figure 11: Diagram for Scale-Space Hypernetworks with multiple separate rescaling fac-
tors (ϕ0, ϕ1, ϕ2). Each rescaling factor ϕi determines the downscaling and upscaling of the ith
downscaling step and the ith to last upscaling step. Given a series of rescaling factor values ϕ, the
hypernetwork h(ϕ;ω) predicts the parameter values θ of the primary segmentation network fϕ(x; θ).

C.2 Separate Rescaling Factors

In the main body of the paper, we explored using a single rescaling factor ϕ to control all rescaling
operations in the network. In this section, we also study a more general formulation where each
downscaling step is controlled by a separate rescaling factor ϕi. Our experiments show that a hyper-
network model is capable of modeling this hyperparameter space despite the increased dimensionality.
We find that this more general formulation achieves comparable accuracy and efficiency to the single
rescaling factor model, with similar accuracy-efficiency Pareto frontiers.

Method. We use separate factors ϕ = {ϕ0, ϕ1, . . . , ϕK} for each rescaling operation in the network.
We train the hypernetwork h(ϕ;ω) to predict the set of weights θ for a set of rescaling factors ϕ.
For a network with K downscaling and K upscaling steps, the rescaling factor ϕi controls both the
downscaling of the ith block of the network and the upscaling of the (K − i)th upscaling block to
achieve consistent spatial dimensions between the respective encoder and decoder. Figure 11 presents
a diagram of the flow of information for the case of a UNet with four levels and three rescaling steps.

Setup. We train the hypernetwork model on the OASIS segmentation task using the same experi-
mental setup as the single rescaling factor experiments. We sample each ϕi ∼ U(0, 1) independently.
We use the same (ϕi, 1− ϕi) input encoding to prevent biasing the predicted weights towards the
magnitude of the input values. Once trained, we evaluate using the test set, sampling each of the three
rescaling factors by 0.1 increments. This amounts to 113 = 1331 different settings.

Results. Figure 12 shows Dice scores for the OASIS test set as we vary each of the rescaling factors ϕ
in the network. The hypernetwork is capable of achieving high segmentation accuracy (> 0.88 dice
points) for the vast majority of ϕ = (ϕ0, ϕ1, ϕ2) settings. Figure 13 shows the trade-off between
segmentation accuracy and inference cost for the evaluated settings of ϕ along with the baseline and
the hypernetwork model with a single rescaling factor.

Discussion. We find that first rescaling factor ϕ0 has the most influence of segmentation results,
while ϕ2 has the least. The model achieves optimal results when ϕ0 ∈ [0.3, 0.5]. We observe that as
either ϕ0 or ϕ1 approach zero, segmentation accuracy sharply drops, consistent with the behavior we
found in the networks with a common rescaling factor. Having separate rescaling factors ϕ yields
results comparable to using a single factor ϕ for the whole network.

We highlight that h(ϕ;ω) manages to learn a higher dimensional hyperparameter input space suc-
cessfully using the same model capacity. Moreover, we find that for the vast majority of ϕ settings
the segmentation accuracy is quite high for the segmentation task, suggesting that the task can be
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solved with a wide array of rescaling settings. In Figure 13 we show that despite the increased
hyperparameter space the Pareto frontier closely matches the results of using a single rescaling factor,
suggesting that having a single rescaling factor is a good choice for this task.
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Figure 12: Segmentation results on a hypernetwork model with separate factors ϕ = (ϕ0, ϕ1, ϕ2)
for each rescaling operation in the segmentation network. We report mean dice score across all
anatomical structures on the OASIS test set. We highlight in white the ϕ settings explored by our
single factor model. We mask underperforming settings (<0.88) with grey to maximize the dynamic
range of the color map. We find that the first rescaling factor ϕ0 has a substantially larger influence
in segmentation quality compared to ϕ1 and ϕ2.
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Figure 13: Segmentation accuracy as a function of required GFLOPs for one inference pass in the
network. Mean Dice score across all anatomical structures on the OASIS test set for the baseline
models (UNet), the hypernetwork model with a common rescaling factor ϕ (Hyper-Common), and
the hypernetwork model with separate rescaling factors (ϕ0, ϕ1, ϕ2). For Hyper-Separate we include
both individual suboptimal points and the Pareto frontier as a line.
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D Additional Analysis

We include additional visualizations of how varying the rescaling factor ϕ affects the predicted
weights and the associated feature maps. Figure 15 illustrates the predicted network parameters
for a series of channels and layers as the rescaling factor ϕ varies. To capture the variability of
the predicted parameters, Figure 14 presents the coefficient of variation for parameters across a
series of rescaling factors. We observe that the first layer presents little to no variation as ϕ changes.
Figure 16 presents sample feature maps as the rescaling factor ϕ changes, for separate layers in the
network. The predicted convolutional kernels by the hypernetwork extract similar anatomical regions
for different values of ϕ.
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Figure 14: Coefficient of variation (CV) (σ/|µ|) for each convolutional parameter predicted by the
hypernetwork across a series of rescaling ratios ϕ = {0, 0.1, 0.2, . . . , 1.0}. Features at the first layer
and the last layer present substantially smaller CV values compared to the rest of the layers.
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Figure 15: Sample predicted convolutional parameters maps for various features channels (columns)
and for different primary network layers (rows). For each feature we show how each convolutional
parameter (y-axis) changes as the rescaling factor ϕ varies (x-axis). We find that the hypernetwork
leads to substantial variability as ϕ changes in some layers, especially those near the middle of the
architecture.
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Figure 16: Sample intermediate convolutional feature maps for various rescaling factors ϕ (columns)
and different primary network layers (rows).
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