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This document provides more details of our approach and additional experimental results.

A Implementation Details

A.1 Pipeline

We summarize the pipeline of the proposed CODA in Algorithm 1, which consists of two stages, i.e.,
source compaction and target disambiguation.

A.2 Model selection

Following Dassl3 and OneRing4, we trained the model for 100 epochs and used the last-step
checkpoint for evaluation, which is fair and reasonable in the context of domain generalization. Since
previous works do not provide a dedicated train-validation split, it is not possible to create a separate
validation set from the training dataset for model selection.

A.3 The choice of hyperparameters

Source Compaction. During the training phase, we set the number of virtual classes to be equal to
the number of source classes, |Cv| = |Cs|, and the balancing parameter γ, which controls the trade-off
between Lreal and Lvirtual, is set to 0.0005. For the mixing coefficient µ, we set it to 0.5.

Target Disambiguation. For N (x), we set the number of nearest neighbors to 10. For threshold θ0
in S(x), we set it to 0.5 ln (|Cs|+ |Cv|). For LTTT, we set the balancing parameter λ to 0.1.

Other hyperparameters have been clarified in the main paper.

B Experimental Results

B.1 Ablation studies

In the main paper, we have extensively compared the proposed CODA with different types of
baseline approaches: Open-Set Domain Adaptation (OSDA) [5, 1], OD [2, 10, 7], Source-Free
Domain Adaptation (SFDA) [4, 11], Test-Time Aadaptation (TTA) [8, 9, 13], and Open-Set Domain
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Algorithm 1 The pipeline of proposed CODA.
Input: Source domain Ds = {(xi

s, y
i
s)}

ns
i=1, featurizer g : X 7→ Z , and predictor h : Z 7→ Y .

Output: The label predictions for unseen target domains Dt = {(xj
t )}

nt
j=1.

while train do
Train g and h with Lreal + Lvirtual using Ds.

end
Initialize the memory bank S = {S1, · · · ,S|Cs|+|Cv|} and class prototypes {pk}|Cs|+|Cv|

k=1 .
for xj

t ∈ Dt do
Obtain its embedding feature zjt = g(xj

t ).
Compute its nearest neighbor N (xj

t ) in S, based on N (x) = {z ∈ S|sim(g(x), z) ≤ θNN}.
for z ∈ N (xj

t ) do
Compute the likelihood of assigning z to the k-th class: p(y = k|z), k = 1, 2, ..., |Cs|+ |Cv|.

end
Estimate the class conditionals p̂k with N (xj

t ), based on Eq. (6).
Update the global class prototype computed from the whole S: pk ← µpk + (1− µ)p̂k.
Compute the test-time training objective LTTT(x

j
t ) = S(xj

t )LST(x
j
t ) + λLSC(x

j
t ).

end

Generalization (OSDG) [14, 12].According to Table 3 in the main paper, the results show that
even when Target Disambiguation (TD) is not utilized, the performance of using only Source
Compaction (SC) is still significantly better than all the compared methods. In this section, we
extend our investigation by examining the impact of TD when combined with other state-of-the-art
methods for open-set domain generalization (OSDG). Specifically, we consider the combination
of One Ring-S [12], which is a leading OSDG method, with TD, TTA methods including TTT [8],
Tent [9], and Memo [13], as well as SFDA methods such as SHOT [4] and AaD [11]. The results
are shown in Table 1 and Table 2. The results clearly demonstrate that the benefits of TD surpass
those of other TTA and SFDA methods. In particular, Tent [9] exhibits lower performance due to the
imbalance between the accuracy of known classes (acck) and unknown classes (accu), indicating the
challenges involved in applying TTA techniques in our specific task.

B.2 Parameter sensitivity

We evaluate the sensitivity of CODA to hyper-parameters N (the number of virtual classes) and γ
(balancing parameter that controls the trade-off between Lreal and Lvirtual) on the PACS, Office-Home,
and Office-31 datasets, respectively. The results are presented in Figure 1. It can be observed that the
performance of CODA is not significantly affected by variations in different parameters. Specifically,
the H-score remains relatively stable under a wide range of hyper-parameter values. These findings
provide evidence for the strong efficacy and scalability of the proposed CODA method in diverse
real-world scenarios.

B.3 Visualization

Figure 2 shows Grad-CAM [6] visualizations of baseline (ERM) and our method (CODA) on the
PACS dataset. Consistent with the observations reported in the main paper, the activated regions
highlighted by CODA provide a comprehensive and accurate representation of the foreground
object. These regions effectively capture the discriminative features and contribute to a more precise
understanding of the object within the image.

C Limitation

While the proposed CODA approach treats all open classes as a single unknown class, it is important
to acknowledge that in certain real-world scenarios, there may be a need to not only identify outliers
but also uncover their inner semantic structures. In these cases, the current CODA framework may not
be applicable as it focuses primarily on addressing the presence of unknown classes. Any modification
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Table 1: Additional ablation studies. hs (%) is reported.

Method PACS Office-Home Office-31 Digits Average
SC 51.2 64.8 75.3 39.0 57.6

+ TTT [8] 52.0 65.2 75.5 39.4 58.0 (+0.4)
+ Tent [9] 40.7 59.6 66.5 35.0 50.5 (-7.1)
+ T3A [3] 53.0 65.8 77.0 40.2 59.0 (+1.4)
+ MEMO [13] 53.9 65.0 77.4 40.5 59.2 (+1.6)
+ SHOT [4] 49.3 60.8 72.4 36.2 54.7 (-2.9)
+ AaD [11] 55.6 65.4 79.8 40.7 60.4 (+2.8)
+ TD (ours) 58.3 66.3 81.0 41.3 61.7 (+4.1)

Table 2: Additional ablation studies. hs (%) is reported.

Method PACS Office-Home Office-31 Digits Average
One Ring-S [12] 41.5 62.3 71.3 40.3 53.9

+ TTT [8] 42.2 61.8 71.6 40.2 54.0 (+0.1)
+ Tent [9] 28.3 30.0 68.8 34.5 40.4 (-13.5)
+ T3A [3] 47.4 65.0 72.1 40.8 56.3 (+2.4)
+ MEMO [13] 48.6 64.1 72.5 41.2 56.6 (+2.7)
+ SHOT [4] 39.5 60.9 66.8 37.4 51.2 (-2.7)
+ AaD [11] 47.3 63.2 75.0 41.4 56.7 (+2.8)
+ TD (ours) 55.5 63.2 76.9 40.0 58.9 (+5.0)

or extension of the approach would be necessary to tackle the additional requirement of understanding
the inner structures of outliers.
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(a) PACS (b) Office-Home (c) Office-31

Figure 1: the sensitivity of CODA to hyper-parameters N and γ.

ER
M

C
O

D
A 

(o
ur

s)

Figure 2: Gram-CAM visualizations of ERM (top) and CODA (bottom).

References
[1] Silvia Bucci, Mohammad Reza Loghmani, and Tatiana Tommasi. On the effectiveness of image rotation

for open set domain adaptation. In ECCV, 2020.

[2] Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution examples
in neural networks. In ICLR, 2017.

[3] Yusuke Iwasawa and Yutaka Matsuo. Test-time classifier adjustment module for model-agnostic domain
generalization. NeurIPS, 34:2427–2440, 2021.

[4] Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? source hypothesis
transfer for unsupervised domain adaptation. In ICML, pages 6028–6039. PMLR, 2020.

[5] Kuniaki Saito, Shohei Yamamoto, Yoshitaka Ushiku, and Tatsuya Harada. Open set domain adaptation by
backpropagation. In ECCV, pages 153–168, 2018.

4



[6] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and
Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based localization. In ICCV,
pages 618–626, 2017.

[7] Yiyou Sun and Yixuan Li. Dice: Leveraging sparsification for out-of-distribution detection. In ECCV,
2022.

[8] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time training with
self-supervision for generalization under distribution shifts. In ICML, pages 9229–9248. PMLR, 2020.

[9] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully test-time
adaptation by entropy minimization. In ICLR, 2021.

[10] Hongxin Wei, Renchunzi Xie, Hao Cheng, Lei Feng, Bo An, and Yixuan Li. Mitigating neural network
overconfidence with logit normalization. In ICML, 2022.

[11] Shiqi Yang, Yaxing Wang, Kai Wang, Shangling Jui, et al. Attracting and dispersing: A simple approach
for source-free domain adaptation. In NeurIPS, 2022.

[12] Shiqi Yang, Yaxing Wang, Kai Wang, Shangling Jui, and Joost van de Weijer. One ring to bring them all:
Towards open-set recognition under domain shift. arXiv preprint arXiv:2206.03600, 2022.

[13] Marvin Mengxin Zhang, Sergey Levine, and Chelsea Finn. Memo: Test time robustness via adaptation and
augmentation. In NeurIPS, 2022.

[14] Ronghang Zhu and Sheng Li. Crossmatch: Cross-classifier consistency regularization for open-set single
domain generalization. In ICLR, 2022.

5


	Implementation Details
	Pipeline
	Model selection
	The choice of hyperparameters

	Experimental Results
	Ablation studies
	Parameter sensitivity
	Visualization

	Limitation

