
A Long N -step Surrogate Stage Reward for Deep
Reinforcement Learning

Junmin Zhong
Arizona State University

Ruofan Wu
Arizona State University

Jennie Si ∗

Arizona State University

Abstract

We introduce a new stage reward estimator named the long N -step surrogate stage
(LNSS) reward for deep reinforcement learning (RL). It aims at mitigating the high
variance problem, which has shown impeding successful convergence of learning,
hurting task performance, and hindering applications of deep RL in continuous
control problems. In this paper we show that LNSS, which utilizes a long reward
trajectory of future steps, provides consistent performance improvement measured
by average reward, convergence speed, learning success rate, and variance reduction
in Q values and rewards. Our evaluations are based on a variety of environments
in DeepMind Control Suite and OpenAI Gym by using LNSS piggybacked on
baseline deep RL algorithms such as DDPG, D4PG, and TD3. We show that LNSS
reward has enabled good results that have been challenging to obtain by deep RL
previously. Our analysis also shows that LNSS exponentially reduces the upper
bound on the variances of Q values from respective single-step methods.

1 Introduction

Reinforcement learning (RL) shows great promise as a theory of learning in complex dynamic tasks
[1, 2]. For continuous control problems involving high-dimensional states and control spaces, several
deep reinforcement learning (DRL) algorithms, such as deep deterministic policy gradient (DDPG)
[3], proximal policy optimization (PPO) [4], Soft actor critic (SAC) [5], D4PG [6] and twin delayed
DDPG (TD3) [7], have demonstrated their great potential.

However, the high variance problem [8, 9] in DRL still poses great challenges for it to be effective
in solving complex contentious control problems. On one hand, this problem is intrinsic to the trial
and error nature of reinforcement learning, which causes low data efficiency, slow learning, or even
instability of learning and poor task performance [10, 11]. On the other hand, high variances are
often caused by several factors, such as variances in value estimation [12], variances resulting from
different random seeds [10], and variances due to noisy stochastic reward or corrupted sparse reward
[13]).

Different approaches have been proposed to address the high variance problem, from the original
TD(λ) algorithm to Q(σ) [14] as a generalization of TD(λ) [15]. Rollout methods [16, 17, 18] have
enabled the success of some of the most important milestone cases such as Backgammon [17] and
AlphaGo [19] in machine learning history. Although these algorithms has been demonstrated in
discrete state and control problems, variants of rollout are believed to be effective also in continuous
control tasks. Modern DRL algorithms such as Rainbow [20] integrate n-step learning on top of
DQN and results in a speed-up in learning and an improvement of the final performance on Atari
2600 games. D4PG [6] uses the same n-step methods to update target values, and have been shown
effective in continuous control tasks. PPO [4] uses a truncated version of generalized advantage
estimation (GAE) to update policy which reduces policy variance [21]. However these methods do
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not explicitly account for noisy rewards where such uncertainties have been reported to degrade the
model/controller performance [22].

In this paper, we propose a new algorithm, namely the long N -step surrogate stage (LNSS) reward
estimator. LNSS aims at providing variance reduction for DRL methods in continuous control
problems, even under noisy reward signals or corrupted sparse reward. LNSS is simple, and can be
easily piggybacked on DRL algorithms. It is based on a surrogate reward r′ obtained from a trajectory
of rewards of future "N -step"s. In turn, r′ is used in Q value update where the target function is then
of the same form as that in single-step TD methods. Using a long "N -step"s of the reward sequence
containing environment information, it is expected to be more advantageous to learning than using a
short trajectory of n-step of the reward sequence.

We show theoretically that the LNSS method exponentially reduces the upper bound on the variance
of Q value from a respective single-step method. We then conduct extensive experiments in selected
environments in DMC and GYM where most current DRL algorithms such as DDPG, D4PG, and TD3
that typically struggle to obtain good results [23]. We consider uniform random noises of different
magnitudes to show how LNSS can benefit a variety of DRL algorithms while the performances of
other methods degrade significantly. We further show how LNSS can still be effective in environments
where only sparse rewards are available.

Contributions. 1) We introduce a new, simple yet effective surrogate reward r′ that interpolates
between the single-step TD methods and Monte-Carlo (MC) methods [15], to trade off the strengths
from the two extremes. 2) We theoretically show the proposed method helps reduce the upper bound
on the variance of Q value with a long trajectory of rewards of future "N -step"s. 3) Extensive experi-
ments on DMC and GYM benchmarks show that LNSS robustly benefits the learning performance of
a variety of DRL algorithms even under reward noise or sparse reward. Mainly, the LNSS consistently
reduces variances in the learned value function and achieves robust results from different random
seeds in several different types of continuous control problems. Please check our code

2 Related Work

The "n-step" methods. Here, as in the literature, n-step methods refer to those involving a trajectory
of rewards of multiple future steps in DRL algorithms for speeding up learning and reducing variance
[24, 25, 6]. They usually proceed as follows. First, collect n-step returns to form a discounted sum
of rewards [26, 27]. Then, perform n-step return backup to update the value function [15]. It was
empirically suggested that n-step methods perform better than single-step methods since n-step
returns propagate rewards to relevant state-action pairs more efficiently [24, 25].

Using longer trajectories with a larger n is expected to improve learning performance [28]. However,
to date, the n-step DRL methods have only been demonstrated by using relatively small n. Rainbow
[20] uses n = 1, 3, 5 to evaluate performance of 57 Atari 2600 games and reported n = 3 as the
best-performing reward trajectory length. D4PG [6] uses n = 1, 5 to evaluate a variety of continuous
control tasks in DMC and results show that n = 5 performs uniformly better than others. However, 3
and 5 are relative small for complex tasks which usually have a maximum of 1000 steps in an episode.

There are potentially two reasons that prevent n-step methods from using larger length n. One is
that the longer the n-step return, the larger reward scale that can cause saturation and inefficiency in
learning for most DRL algorithms [10]. The second reason is that the longer the n-step return, the
smaller discount factor (γn) in n-step backup [15]. Based on previous studies [29], variations in the
scale of the discount factor directly causes uncertainty to the RL performance. New algorithmic ideas
are needed for DRL algorithms to benefit from longer reward bootstrapping.

Reward estimation. Reward estimation aims at reducing sample complexity and learning variance
as reward variances may be introduced from using random seeds in training [9], from sensor noises
in real-world applications [8] and from corrupted sparse rewards [13]. Several approaches have been
proposed for reward estimation. Small backups [30], instead of directly using an actual reward, use
multi-step imaginary rollouts as a predicted reward. Model-based policy search with Bayesian neural
network [31] finds expected cost by averaging over multiple virtual rollout. The λ-prediction [32]
uses an extra network to predict reward and the training of which may introduce additional variance.
Model-based value expansion [33] uses an imaginary reward from a model to estimate the values of
state value functions. To reduce learning variance resulted from noisy rewards, regression reward
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estimator [13] expects the estimated reward to reduce the variance propagated to the value function.
Unbiased reward estimator [22] estimates a surrogate reward by learning a reward confusion matrix
which estimates true reward from noisy reward. However, all these estimation methods require extra
models (either in the form of neural networks, environment transitions, or reward noise model),
which imposes overhead on learning and introduces estimation error. Additionally, how to effectively
and efficiently integrate these reward estimates into DRL algorithms is not clear, or at least not
straightforward.

LNSS. In contrast, our method does not introduce any new hyper parameters into learning as we
still use the same form of reward signals but only to a longer horizon of "N -step"s. The LNSS
method can be piggybacked on any DRL algorithms directly. Comparing to n-step methods, by using
our surrogate reward r′ to perform single-step updates, we can benefit from n-step returns without
changing the reward scale. This frees LNSS from a limited reward horizon to a much longer length
N .

Selecting DRL algorithms. First, note that few existing n-step methods have been successfully
applied to different DRL algorithms with consistent learning variance reduction. We selected DDPG,
D4PG, and TD3 as base DRL algorithms, with which our LNSS is to be piggybacked on for the
following considerations. Among all DMC based benchmark results [23], distributional method
D4PG [6] outperforms other DRL algorithms such as DDPG [3], and TD3 [5]. On the other hand,
TD3, DDPG have relatively good performance in simple tasks such as walker but struggled to achieve
good results in harder DMC tasks such as humanoid-walk and fish-swim. We thus use the three
chosen DRL algorithms to systematically test the idea of LNSS piggybacked on promising DRL
algorithms in complex tasks, even in noisy reward environments.

3 Background

Reinforcement Learning. We consider a reinforcement learning agent interacts with its environment
in discrete time. At each time step k, the agent observes a state sk ∈ S and select an action ak ∈ A
based on its policy π : S → A, namely, ak = π(sk), and receives a scalar reward r(sk, ak) ∈ R (use
rk as short hand notation).

Evaluation of a policy π is performed using the expected return after taking an action ak based on
state sk following the policy π:

Qπ(sk, ak) = E[Rk|sk, ak]

where Rk =

∞∑
t=k

γt−krt,

sk ∼ p (· | sk−1, ak−1) ,

ak = π (sk) ,

(1)

with 0 < γ < 1. The two common approaches (single-step and n-step) to update the Q value for a
policy π are as follows.

Single-step RL Algorithms. RL algorithms rely on using TD error or residual of the Bellman
equation to update the state-action Q value for a policy π, as described below,

Qπ (sk, ak) = rk + γQπ (sk+1, ak+1) . (2)
This equation provides the basis for single-step RL methods. It is also known as a backup operation
since it transfers information from one step ahead back to the current step.

"n-step" RL algorithms. Using n-step rewards for faster reward propagation in RL has long been
investigated [26, 14, 6, 20]. In n-step methods, the value function Qπ (sk, ak) update using an n-step
return is based on the following,

Qπ (sk, ak) =

k+n−1∑
t=k

γt−krt + γnQπ(sk+n, ak+n). (3)

The n-step return is expected to help agents learn more efficiently by affecting multiple state action
pairs within one update and gain information over the n-step horizon.
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More details on specific modern DRL algorithms such as the single-step methods (DDPG and TD3)
and the n-step methods (D4PG and PPO) can be found in Appendix D.

4 Long N -step Surrogate Stage (LNSS) Reward

In this section, we introduce LNSS based on infinite horizon discounted reward formula-
tion of reinforcement learning. Given a reward trajectory of N steps from time step k, let
G(sk:k+N−1, ak:k+N−1) ∈ R (use Gk as short hand notation) denote the discounted N -step re-
ward, i.e.,

Gk =

k+N−1∑
t=k

γt−krt, (4)

where rt is the tth stage reward and t is from k to k+N −1. In LNSS, we introduce r′k as a surrogate
stage reward in place of rk in Equation (2). To determine r′k, we treat it as a weighted average of the
N -step reward sequence, namely

r′k =

∑k+N−1
t=k γt−krt∑N−1

n=0 γ
n

. (5)

We then propose the surrogate stage reward r′k to be

r′k = Gk
γ − 1

γN − 1
. (6)

This surrogate stage reward r′k as formulated in Equation (6) relies on a discounted reward of an
N -step horizon, from time step k to step (k +N − 1), from the stored experiences into a temporary
replay buffer D′. For a training episode of T steps [0, 1, 2..., T ], the D′ is a moving window of size
N from the initial state s0 until the terminal state sT . As a result, when there is a sufficient number
(i.e., N ) of reward samples, LNSS computes the surrogate reward r′k from below,

r′k =
γ − 1

γN − 1

k+N−1∑
t=k

γt−krt. (7)

Note that, when the reward is estimated at the beginning or toward the end of a long trial, less than N
reward samples are available for estimating r′k. A simple adjustment is given in Appendix C.

Once r′k is obtained, r′k and state action pairs (sk, ak, sk+1) will append as a new transition
(sk, ak, r

′
k, sk+1) stored into the memory buffer D.

Note that many DRL algorithms [4, 20, 6] use distributed learning procedure to accelerate experience
sample collection. We use the same technique to speed up sampling experiences. Then a DRL
algorithm is ready to update the Q value and the respective policy based on mini-batch data from the
memory buffer. In general form, we have

Qi+1(sk, ak) = r′k + γQi(sk+1, πi(sk+1)),

πi(sk) = argmax
ak

Qi(sk, ak),
(8)

where i is iteration number. Putting the above two equations together, we have

Qi+1(sk, ak) = r′k + γmax
ak+1

Qi(sk+1, ak+1). (9)

Remark 1. 1) Different from n-step methods, in our LNSS,N is the number of steps for accumulating
rewards in Equation (6. We still perform a single-step update as in Equation (8). This allows us to
prevent steep discounts of γn in n-step backup when using longer n-step returns. As a result, LNSS
can effectively use large N at a scale of 100 while D4PG (Barth-Maron et al., 2018) uses n at a scale
of 5 steps, and the same for Rainbow (Hessel et al., 2018).

2) LNSS can also be effective in a sparse reward environment. With a longer reward trajectory of N
future steps, LNSS continuously provides a reward estimate as feedback to the agent by assigning
credits progressively backward from the time of achieving the desired states. That is to say that LNSS
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has turned a sparse reward into a dense reward. Thus, this helps the agent effectively and efficiently
learn the task. However, the single-step method does not have the ability to provide any guidance or
feedback to the learning agent until reaching a goal.

3) TheQ value for policy π due to LNSS differ from that in Equation 1. The former aims to maximize
the sum of a sequence of surrogate rewards which are the weighted averages of the sequence of
N -steps of the original rewards. As such, goal-related information can be progressively propagated
back from the goal state to the current state. This prevents the agent from getting trapped from
reaching its intended goal and thus being stuck in an undesirable set of states due to a lack of feedback.

5 Variance Analysis

We now analyze the behavior of an actor-critic RL and our LNSS actor-critic RL. We consider the
infinite horizon discounted reward formulation of RL (with 0 < γ < 1). Specifically, we show that
the upper bound on the variance in Q value due to LNSS differs by an exponential factor from that
of a single step actor-critic RL (AC). As this upper bound reduces exponentially as N increases, it
suggests significant variance reduction by using LNSS from using single step reward.

We first represent the Q values using single step reward rk in Equation (2) and using surrogate reward
r′k from LNSS in Equation (8), respectively as follows,

Var [Qi+1(sk, ak)] = Var [rk] + Var [γQi(sk+1, ak+1)] + 2Cov [rk, γQi(sk+1, ak+1)]. (10)

Var [Qi+1(sk, ak)] = Var [r′k] + Var [γQi(sk+1, ak+1)] + 2Cov [r′k, γQi(sk+1, ak+1)]. (11)

Lemma 1. Assume {rk} is IID and drawn from the memory buffer D. Let Qi(sk+1, ak+1) in
Equation (8) be the i-th approximated return to solve Equation (1). We then have the following,

Cov [rk, rj ̸=k] = 0, (12)

Cov [rk, Qi(sk+1, ak+1)] = 0. (13)

Theorem 1. Consider the variances of twoQ value sequences, denoted asQi and Qi, in Equation (10)
and Equation (11), which are obtained respectively from a single step method and an LNSS method.

Figure 1: Variance discount factor ψ in
Equation (14).

Additionally, assume that Q0 = Var [Q0] = 0 and
Q0 = Var [Q0] = 0. Let the IID reward {rk} and {r′k} be
drawn from the memory buffer D. Assume the variance of
{rk} is upper bounded by a finite positive number B, i.e.,
Var [rk] ≤ B. Further define a constant ψ as,

ψ = (
γ − 1

γN − 1
)2(

γ2N − 1

γ2 − 1
). (14)

Then the upper bounds of the variances of the two Q value
sequences, Var [Qi+1] and Var [Qi+1], are respectively de-
scribed below,

Var [Qi+1(sk, ak)] ≤
i+1∑
t=1

(γt−1)2B, (15)

Var [Qi+1(sk, ak)] ≤ ψ

i+1∑
t=1

(γt−1)2B. (16)

Proof. Both proofs of Lemma 1 and Theorem 1 are given in Appendix A.

Remark 2. We now provide some insights based on the variance analysis above.
1) Given ψ in Equation (14), i.e., ψ = ( γ−1

γN−1
)2(γ

2N−1
γ2−1 ), it follows that for large N , ψ =

(γ − 1)
2
( −1
γ2−1 ) =

1−γ
1+γ .

2) Furthermore, by the following identifies, γ2−1 = (γ−1)(γ+1) and γ2N−1 = (γN−1)(γN+1),
we have that ψ = (γ−1

γ+1 )(1 +
2

γN−1
). Therefore, ψ decreases exponentially (refer to Figure 1).

3) From inspecting Equations (15) and (16), we can see a clear advantage of using long "N -step" in
LNSS over the typical reward rk.
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6 Experiments and Results

In this section, we first show how LNSS can benefit learning by using a simple Maze environment. To
provide insight on the effect of using LNSS, we compare the performance of the original Q-learning
with the one that the stage reward is replaced by LNSS reward.

We then provide a comprehensive evaluation of our proposed LNSS piggybacked on three promising
DRL algorithms (DDPG, D4PG, TD3) by measuring their performance on several benchmarks in
DMC and GYM (for results on GYM, please refer to Appendix E.5). Details of the implementation,
training, and evaluation procedures are provided in Appendix B. In reporting evaluation results below,
we use the following short-form descriptions.

1) “Base”: the original DRL algorithms (TD3, D4PG, DDPG).

2) “LNSS": LNSS piggybacked on the respective DRL algorithms where N=100 unless otherwise
specified.

3) “n5": the DRL algorithms with an "n-step" implementation as in Equation (3) with n = 5.

Our evaluations aim to quantitatively address the following questions:
Q1. How is LNSS different from original reward? and How it helps learning?
Q2. How does LNSS improve Base method?
Q3. How does LNSS compare with previous n-step method (n5)?
Q4. Is LNSS robust enough to compensate for stochastic reward?
Q5. Does LNSS improve Base methods under a sparse reward setting?
Q6. How does LNSS reduce the variance of estimated Q values?
Q7. How different N in LNSS affects performance?

Figure 2: Evaluation of LNSS piggybacked on Q-learning in simple Maze (right panel). The
evaluations are averaged over 10 seeds. The x-axis is the number of episodes (top-left panel) and the
state number (bottom-left panel) in the plots for episode reward and stage reward, respectively. Note
that the stage reward for LNSS is calculated based on Equation 6

6.1 The Simple Maze Problem

The right panel of Figure 2 shows the Maze environment where S0 is the initial state, S5 is the goal
state, and black blocks are walls. The unique optimal policy is {right,right,down,down,left}. We
consider two problem formulations:

1) Without Penalty: the agent only receives a reward 1 upon reaching goal state S5. For all other
states, the agent receives 0’s.

2) With Penalty: the agent only receives a reward 1 upon reaching goal state S5. For all other states,
the agent receives -0.1 per stage as a penalty.

Q1 LNSS takes future rewards into formulating the surrogate stage reward to guide a RL agent
in reaching the goal state. As Figure 2 lower-left panels show, the stage reward from LNSS is more
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No Penalty Case
Up Down Right Left

State Original Reward LNSS Reward Original Reward LNSS Reward Original Reward LNSS Reward Original Reward LNSS Reward
0 0 0 0 0 0.47 1.33 0 0
1 0 0 0 0 0.62 1.45 0 0
2 0 0 0.76 1.48 0 0 0 0
3 0 0 0.89 1.36 0 0 0 0
4 0 0 0 0 0 0 0.99 0.99

With Penalty Case
Up Down Right Left

State Original Reward LNSS Reward Original Reward LNSS Reward Original Reward LNSS Reward Original Reward LNSS Reward
0 -0.09 -0.05 -0.09 -0.05 -0.09 1.1 -0.09 -0.05
1 -0.07 -0.02 0 -0.01 -0.1 1.26 -0.13 -0.03
2 -0.055 0 -0.055 1.36 -0.054 0 -0.055 -0.01
3 -0.03 0 0.04 1.3 -0.03 0.03 0 0
4 -0.01 0.03 -0 0.06 0 0.07 0.38 0.997

Table 1: Q tables of Q-learning using original reward and LNSS reward. The Q values reported are
averages across 10 different random seeds.

informative as LNSS provides sequences of gradual and smoother rewards to be used in Q-learning.
As a result, from the upper-left panels, this informative guidance from LNSS significantly enhances
the performance in terms of episode rewards. The effect is even more pronounced when dealing with
penalties.

From Table 1, with the original reward, the Q value is the sum of discounted expected rewards as
in Equation 4. The farther away the goal state, the smaller the Q values are as a result of discounts
over the horizon. When learning under the environment of using penalty rewards, the Q values in
States S0, S1, S2 show that they are even farther away from the goal state value. The Q values can
not be effectively updated due to a lack of informative feedback signal, and thus, causing the agent to
get stuck and cease learning. In comparison, with the LNSS reward, goal-related information can be
propagated back from the goal state to the initial state. This guidance plays a crucial role in assisting
agents to overcome situations where they might otherwise get stuck.

Acrobot SwingUp Humanoid Walk Fish Swim Finger TurnHard

Algorithm Success Avg. Rwd Rank Success Avg. Rwd Rank Success Avg. Rwd Rank Success Avg. Rwd Rank
[%] [µ± 2σ] [%] [%] [µ± 2σ] [%] [%] [µ± 2σ] [%] [%] [µ± 2σ] [%]

Noise Level 0% (0.0)
DDPG-LNSS 100 304.6 ± 82.9 -25.1 100 250.9 ± 16.5 -34.6 100 645.1 ± 86.9 -12.7 100 943.3 ± 32.9 0
DDPG-Base 100 187.9 ± 68.5 -53.8 0 1.3 ± 0.4 -99.6 100 272.9 ± 27.3 -63.1 80 301.8 ± 160.3 -68.0
DDPG-n5 100 195.2 ± 67.6 -51.9 0 2.2 ± 1.5 -99.4 100 150.5 ± 33.7 -79.6 100 459.8 ± 126.3 -51.3

TD3-LNSS 100 114.8 ± 33.8 -71.8 100 307.9 ± 16.9 -19.8 100 676.8 ± 44.2 -8.4 100 940.1 ± 29.6 -0.3
TD3-Base 0 5.2 ± 4.1 -98.7 60 184.2 ± 178.8 -52.1 100 483.1 ± 127.6 -34.6 90 251.8 ± 101.4 -73.3
TD3-n5 70 61.7 ± 45.7 -84.8 0 1.01 ± 0.41 -99.6 100 731.7 ± 132.3 -1.1 90 394.2 ± 164.4 -58.2

D4PG-LNSS 100 406.3 ± 13.1 0 100 383.9 ± 37.1 0 100 738.7 ± 59.8 0 100 811.5 ± 59.9 -14.0
D4PG-Base 100 133.5 ± 16.2 -67.1 100 277.7 ± 79.8 -27.7 100 585.7 ± 36.1 -20.7 100 336.9 ± 107.8 -64.3
D4PG-n5 100 310.1 ± 49.5 -23.7 100 360.3 ± 50.4 -6.2 100 683.5 ± 95.6 -7.5 90 413.7 ± 243.8 -56.1

Noise Level 1% (0.01)
DDPG-LNSS 100 243.5 ± 62.3 -40.1 100 255.1 ± 22.6 -33.6 100 700.4 ± 107.6 -5.2 100 934.3 ± 30.58 -0.1
DDPG-Base 100 188.2 ± 58.7 -53.7 0 0.99 ± 0.25 -99.8 100 340.1 ± 135.4 -53.9 100 302.5 ± 130.4 -67.9
DDPG-n5 100 159.6 ± 25.8 -60.7 0 1.15 ± 0.43 -99.7 100 149.4 ± 59.1 -79.8 100 416.9 ± 168.4 -55.8

TD3-LNSS 100 109.3 ± 20.8 -73.1 100 197.6 ± 45.1 -48.5 100 700.1 ± 84.5 -5.2 100 912.8 ± 92.2 -3.2
TD3-Base 0 2.4 ± 1.53 -99.4 0 2.05 ± 1.43 -99.5 100 506.9 ± 111.5 -31.4 60 193.4 ± 142.2 -79.5
TD3-n5 70 69.6 ± 23.5 -82.9 0 1.55 ± 0.8 -99.6 100 688.7 ± 132.3 -6.8 90 384.1 ± 232.4 -59.3

D4PG-LNSS 100 330.3 ± 60.6 -18.7 100 247.9 ± 42.3 -35.4 100 688.3 ± 55.3 -6.8 100 801.9 ± 80.2 -15.0
D4PG-Base 100 136.5 ± 30.2 -66.4 100 210.5 ± 44 -45.2 100 650.2 ± 89.3 -11.9 100 300.5 ± 143.2 -68.1
D4PG-n5 100 262.9 ± 67.1 -35.3 0 10.9 ± 2.3 -97.2 100 578.7 ± 78.9 -21.7 90 383.7 ± 293.8 -59.3

Noise Level 10% (0.1)
DDPG-LNSS 100 232.6 ± 61.5 -42.8 100 235.4 ± 25.7 -38.7 100 699.5 ± 95.3 -5.3 100 940.2 ± 54.1 -0.3
DDPG-Base 100 170.7 ± 42.1 -58.0 0 0.76 ± 0.42 -99.8 100 330.42 ± 144.2 -55.3 100 315.2 ± 205.4 -66.6
DDPG-n5 100 139.1 ± 28.7 -65.8 0 1.3 ± 0.9 -99.7 100 116.5 ± 16.8 -84.2 100 456.5 ± 219.7 -51.6

TD3-LNSS 100 80.7 ± 15.73 -80.1 100 200.2 ± 117.6 -47.3 100 696.5 ± 174.1 -5.7 100 888.54 ± 92 -5.8
TD3-Base 0 2.19 ± 1.35 -99.5 0 1.5 ± 0.33 -99.7 100 454.9 ± 272.9 -38.4 60 190.1 ± 215.7 -79.9
TD3-n5 0 24.9 ± 22.7 -93.9 0 1.1 ± 0.28 -99.7 100 654.7 ± 130.2 -11.4 80 338.1 ± 216.4 -64.2

D4PG-LNSS 100 331.3 ± 49.5 -18.5 100 240.8 ± 46.3 -37.3 100 681.4 ± 212.6 -7.8 100 803.9 ± 83.3 -14.8
D4PG-Base 100 130.1 ± 28.9 -67.9 0 1.42 ± 0.7 -99.7 100 645.3 ± 245.2 -12.6 100 302.5 ± 153.2 -67.9
D4PG-n5 100 251.4 ± 56.4 -38.1 0 0.89 ± 0.6 -99.8 100 563.4 ± 214.7 -23.7 90 355.1 ± 285.5 -62.4

Table 2: Systematic evaluations of LNSS respectively augmented Base algorithms, and comparisons
to the Base and n5-augmented Base algorithms. "Rank" (%) is the "percent of reward difference",
the closer it is to 0 the better.

6.2 Main Results

Evaluation results in Table 2 are performed using default setup of Acrobot SwingUp, Humanoid
Walk, Fish Swim, and Finger TurnHard in DMC. In the Table 2, "Success" is shorthand for success
rate, "Avg. Rwd" stands for average reward, and "Rank" (%) is the "percent of reward difference",
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which is ( the average reward of the evaluated algorithm over that of the top performing algorithm -
1), the closer it is to 0 the better. Note that, in computing the success rate, only those trials that have
achieved a reward of at least 50 are accounted for as successes.

The results are obtained at different noise levels, based on the last 50 evaluations of 10 different
random seeds (same for all compared algorithms). Best performances are boldfaced for average
reward (Avg. Rwd).

Q2 LNSS improves Base methods. The learning curves for the four continuous dense reward
benchmark environments are shown in Figure 3. Quantitative comparisons to the baselines are
summarized in the first section of Table 2 (noise = 0). Overall, LNSS (solid lines) outperforms their
respective base methods (dash lines) in terms of averaged reward (Awg.Rwd), learning speed, and
success rate for all three DRL algorithms. Among the measures, the success (learning) rate is to
address the random initialization challenge caused by random seeds [10]. LNSS method helps its
Base method to achieve a 100% learning success rates whereas DDPG and TD3 Base method struggle
with Humanoid Walk and Finger TurnHard. Besides, according to the "Rank" measure in Table 2,
LNSS helps enhance the performances of almost all Base methods up to the top-performing algorithm
in each category in all the tested environments. Detailed plots of pair-wise comparison for without
noise condition are provided in appendix E.1.

Figure 3: Systematic evaluation of LNSS piggybacked on three DRL algorithms (DDPG, D4PG, TD3)
in DMC environments without reward noise. The shaded regions represent the 95 % confidence range
of the evaluations over 10 seeds. The x-axis is the number of steps. Detailed pair-wise comparison
plots are provided in appendix E.1.

Q3 LNSS outperforms previous "n-step" methods (n5). The main improvement of LNSS over
n5 are reflected in improved success rate, averaged reward, and "Rank". This improvement can
be quantitatively viewed in the first section of Table 2 (noise = 0). LNSS consistently enables the
Base methods to achieve 100% learning success rate. However, the n5 method may even cause
some learning to fail such as TD3 in Humanoid Walk and D4PG in Finger TurnHard. Additionally,
according to "Rank" in Table 2, LNSS methods enable all cases to reach performances near those
from the best algorithms. However, only TD3-n5 has resulted in slightly better "Rank" in Fish Swim
only for without noise condition while all other n5 methods are below LNSS or even below its Base
such as TD3-n5 for humanoid walk and DDPG-n5 for Fish swim. We also observe that LNSS has
improved the average reward and lowered the standard deviation for all Base algorithms over those
by the n5 method.

Q4 LNSS is robust under noisy rewards. We performed the same set of evaluations in Table 2
in DMC experiments under random uniform reward noise settings with magnitudes at 1% and 10%
of the maximum DMC step reward (1). As results in the appendix E.2 (noise level 1%), Appendix
E.3 (Noise level 10%), and the last two sections in Table 2 (noise = 1% and 10%) show, at larger
noise level, all algorithms have degraded performance with lower mean averaged reward, larger
standard division, and more negative "Rank". However, LNSS consistently outperformed Base and
n5 methods in terms of all measures for all three DRL algorithms. It is important to point out that we
observe LNSS methods robustly improve the success rate with 100% for all environments. However,
we observe that both Base and n5 methods suffer greatly due to the increased noise level such as

8



in Humanoid Walk and Finger Turn Harde environments. As Equation (3) shows the performance
degradation for n5 methods are due to accumulated noise when collecting the discounted sum of
returns. This accumulated noise will induce a much larger approximation variance and result in
degraded performance.

Q5 LNSS is effective in environments with sparse rewards. For setting up sparse rewards in
Cheetah environments, refer to appendix B. As Cheetah Sparse and Cartpole Sparse result in Figure
3. One can observe that LNSS enables all DRL algorithms successfully learn all three sparse reward
tasks with converged episode rewards greater than 800. However, due to the limited feedback from
sparse rewards, all base methods struggle to learn and even fail to learn (e.g, Cheetah Run). Moreover,
it is important to point out that LNSS helps improve the learning speed over the base methods. This is
expected as a long future reward trajectory of N -step is able to provide continuous reward feedback
to the agent by assigning credits progressively backward from the time of achieving the desired states.
In contrast, a single-step method does not provide any guidance or feedback to the learning agent
until reaching the goal.

Q6 LNSS helps reduce the variance of Q value estimation. For this evaluation, we let coefficient
of variation of Q value (in percentage) as cv(Q) = std(Q)

Q %. In Figure 4, we show cv(Q) every
2e5 steps where as an example, we show TD3-LNSS outperforms TD3-Base and TD3-n5 under 1%
noise in rewards. Similar results are obtained for DDPG and D4PG classes of algorithms and shown
in appendix E.4. Also shown in the same Appendix are respective results at different noise levels.
Results (Figure 12 to Figure 20 in appendix E.4) also show that for each LNSS augmented DRL
algorithms, it has resulted in improved performance in cv(Q) to near the best performance among
all DRL algorithms. Figure 4 provides an empirical validation for our theoretical result on bounds
of variances of the Q value, namely, with large LNSS parameter N or at the late stage of learning,
Q value variances become smaller as the upper bound of Q value variance decreases significantly
according to Equation (14) in Theorem 1.

Figure 4: The cv(Q) (coefficient of variaiton of Q value, the lower the better) of TD3 in DMC with
1% noise. Results are averaged over 10 seeds. The x-axis is the number of steps. Additional and
respective results for DDPG and D4PG can be found in appendix E.4

Q7. Effects of different length N in LNSS. In Figure 5, we show the effect of different choices of
N (N = 5, 10, 20, 50, 100) in our proposed LNSS on top of TD3. (Similar results hold for D4PG
and DDPG which can be found in appendix E.7.) Comparisons are performed using the same set
of hyperparameters except a varying N . Figure 5 depicts performance curves for DMC tasks. The
LNSS with N = 50 and N = 100 outperform LNSS with N = 5, 10 in terms of final reward and
learning speed. The results corroborate what we expect from our theoretical analysis (please refer to
Figure 1 in the paper). We can see a clear benefit of using large N (N = 50, and 100 ) over small(N=
5, and 10).

Additionally, in Figure 6, we show how cv(Q) (coefficient of variation of Q) varies with different N .
Among the three N values, N = 100 outperforms others. Also, we observe that, in more complex
environment, a longer N is favorable. Notice that, for cartpole sparse environment, there is little
difference among different N values. However, in Finger TurnHard and Humanoid Walk, the cv(Q)
values of Base cases and N = 5 cases increase dramatically. However, the cv(Q) values for N = 50
and N = 100 change only slightly. Figure 6 provides an empirical validation for our theoretical
analysis on variance discount factor ψ in Figure 1 that the longer the N , the more reduction in
variance of Q value estimation.
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Figure 5: Episode rewards for the 3 tasks in DMC by TD3-LNSS with different N (N =
5, 10, 20, 50, 100) in Equation (6). The results are averaged from 10 seeds. The x-axis is the
number of steps. Respective results for DDPG and D4PG are provided in appendix E.7

Figure 6: cv(Q) (coefficient of variaiton of Q value, the lower the better) for the 3 tasks in DMC by
LNSS with different N (N = 5, 50, 100) in Equation (6).

6.3 Limitation of This Study.

Here we introduce a new multi-step method, the LNSS, to effectively utilize longer reward trajectories
of future steps than those used in existing methods to estimate the Q value with an aim of reducing
variances in learning. By piggybacking LNSS on top of TD3, DDPG, and D4PG, we demonstrate
improved performance in terms of final reward, learning speed, and variance reduction in Q value.
However, there exist two limitations. 1) The LNSS requires positive semi-definite reward values in
a long trajectory. Large negative reward may wash out the significance of good positive rewards.
However, this limitation can be easily fixed by elevated reward stored in the temporary buffer D′

by a positive constant, and lower bounded it by 0. 2) Early termination is another limitation during
implementation, which mostly affects LNSS in GYM environments (Hopper, Humanoid, Walker2d).
Different from DMC tasks, GYM allows an environment to terminate before reaching the maximum
time steps. As such, in early training stage, only 10 or 20 steps may be used to compute LNSS which
diminishes the power of large N (such as 50 or 100). To resolve this limitation, re-programming task
settings in the original GYM environments is required.

7 Discussion and Conclusion

1) In this work, we introduce a novel "N -step" method, the LNSS which utilize longer reward
trajectories of future steps than those used in existing methods to estimate the Q value with an aim
of reducing variances in learning. It is easy to implement, as shown in the paper, and it can be
easily piggybacked on policy gradient DRL algorithms. It has been shown consistently outperform
respective Base and short n-step algorithms in solving benchmark tasks in terms of performance score,
learning success rate, and convergence speed. 2) We provide a theoretical analysis to show that LNSS
reduces the upper bound of variance in Q value exponentially from respective single step methods.
3) We empirically demonstrate the performance of LNSS piggybacked on TD3, DDPG, and D4PG
in a variety of benchmark environments that have been challenging for existing methods to obtain
good results. 4) We show LNSS can provide consistent performance improvement under various
reward noise settings, and for sparse rewards. Our results suggest that LNSS is a promising tool
for improving learning speed, learning performance score, and reducing learning variance. Further
investigation on how to maximize the benefit of selecting an optimal reward length N , and how to
take advantage of a different n in Q value update are exciting questions to be addressed in future
work.
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Appendix A Variance Analysis

We now analyze the behavior of an actor-critic RL and our LNSS actor-critic RL. We consider the
infinite horizon discounted reward formulation of RL (with 0 < γ < 1). Specifically, we show that
the upper bound on the variance in Q value due to LNSS differs by an exponential factor from that of
a single step Actor Critic (AC). As this upper bound reduces exponentially as N increases, it suggests
significant variance reduction by using LNSS from using single step reward.

We first represent the Q values using single step reward rk in Equation (2) and using surrogate reward
r′k from LNSS in Equation (8), respectively as follows,

Var [Qi+1(sk, ak)] = Var [rk] + Var [γQi(sk+1, ak+1)] + 2Cov [rk, γQi(sk+1, ak+1)]. (17)

Var [Qi+1(sk, ak)] = Var [r′k] + Var [γQi(sk+1, ak+1)] + 2Cov [r′k, γQi(sk+1, ak+1)]. (18)

Lemma 1. Assume {rk} is IID and drawn from the memory buffer D. Let Qi(sk+1, ak+1) in
Equation (8) be the i-th approximated return to solve Equation (1). We then have the following,

Cov [rk, rj ̸=k] = 0, (19)

Cov [rk, Qi(sk+1, ak+1)] = 0. (20)

Proof. Given that {rk} is IID, we reach Equation (19) immediately. Based on Equation (1), the
conditional probability distribution ofQi(sk+1, ak+1) only depends on state action pair (sk+1, ak+1).
It thus leads to Equation (20).

Based on Lemma 1, we now analyze the variance of the Q value sequence.

Theorem 1. Consider the variances of two Q value sequences, denoted as Qi and Qi, in Equation
(17) and Equation (18), which are obtained respectively from a single step method and an LNSS
method. Additionally, assume that Q0 = Var [Q0] = 0 and Q0 = Var [Q0] = 0. Let the IID reward
{rk} and {r′k} be drawn from the memory buffer D. Assume the variance of {rk} is upper bounded
by a finite positive number B, i.e., Var [rk] ≤ B. Further define a constant ψ as,

ψ = (
γ − 1

γN − 1
)2(

γ2N − 1

γ2 − 1
). (21)

Then the upper bounds of the variances of the two Q value sequences, Var [Qi+1] and Var [Qi+1], are
respectively described below,

Var [Qi+1(sk, ak)] ≤
i+1∑
t=1

(γt−1)2B, (22)

Var [Qi+1(sk, ak)] ≤ ψ

i+1∑
t=1

(γt−1)2B. (23)

Proof. We prove by mathematical induction. First let i = 0. Based on Equation (20), Equations (17)
and (18) become:

Var [Q1(sk, ak)] = Var [rk],

Var [Q1(sk, ak)] = Var [r′k].
(24)

First note that Var [Q1(sk, ak)] ≤ B as Var [rk] ≤ B.
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Then from Equation (6), Var [r′k] can be written as:

Var [r′k] = Var [
γ − 1

γN − 1

k+N−1∑
t=k

γt−krt]

= (
γ − 1

γN − 1
)2Var [

k+N−1∑
t=k

γt−krt]

= (
γ − 1

γN − 1
)2

k+N−1∑
l=k

k+N−1∑
t=k

(γt−k)2Cov (rt, rl)

= (
γ − 1

γN − 1
)2

k+N−1∑
t=k

(γt−k)2Var [rt]

≤ (
γ − 1

γN − 1
)2(

γ2N − 1

γ2 − 1
)B,

(25)

where in the above, the equation above the inequality is obtained from applying Lemma 1.

We thus have,
Var [Q1(sk, ak)] ≤ ψB. (26)

This shows that the theorem holds for i = 0.

Then Assume that Equation (22) and (23) hold for i = l − 1, where l = 1, 2, .... Then, for i = l, we
have

Var [Ql+1(sk, ak)] = Var [rk] + Var [γQl(sk+1, ak+1)]

≤ B+ γ2
l∑

t=1

(γt−1)2B

=

l+1∑
t=1

(γt−1)2B.

(27)

Additionally,
Var [Ql+1(sk, ak)] = Var [r′k] + Var [γQi(sk+1, ak+1)]

≤ ψB+ γ2ψ

l∑
t=1

(γt−1)2B

= ψ

l+1∑
t=1

(γt−1)2B.

(28)

Thus Theorem 1 holds.

Appendix B Additional Implementation Details

We use PyTorch for all implementations. All results were obtained using our internal server consisting
of AMD Ryzen Threadripper 3970X Processor, a desktop with Intel Core i7-9700K processor and a
desktop with AMD Ryzen 7 3800XT processor. Our implementation code is detailed and provided in
Github link and Appendix. C

Training Procedure.

An episode is initialized by resetting the environment, and terminated at max step T = 1000 or early
termination if criteria are met depending on specific tasks. A trial is a complete training process
contains a series of consecutive episodes. Each trial is run for a maximum 9× 105 time steps with
evaluations at every 1× 104 time steps. Each task is reported over 10 trials where the environment
and the network were initialized by 10 mother random seeds, (0− 9) in this study.

For each training trial, to remove the dependency on the initial parameters of a policy, we use a purely
exploratory policy for the first 8000 time steps (start timesteps). Afterwards, we use an off-policy
exploration strategy, adding Gaussian noise N (0, 0.1) to each action.
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Evaluation Procedure.

Every 1 × 104 time steps training, we have an evaluation section and each evaluation reports the
average reward over 5 evaluation episodes, with no exploration noise and with fixed policy weights.
The random seeds for evaluation are different from those in training which are shown in the following
section on Random Seed.

Random Seed.

Each of the tasks we used in this work was trained for 10 trials with 10 different mother random
seeds sm (0,1,...,9) across all algorithms. Within each trial, evaluations were performed using seeds
(sm + 100). For distributed training, we implement n parallel actors to generate experiences and
each actor ai, i = 0, 1, 2, ...n has a seed sai defined as sai = sm + i. The seeds sai are used in the
environment, Numpy, and PyTorch for seed initialization.

Network Structure and optimizer.

TD3.The actor-critic networks in TD3 are implemented by feedforward neural networks with three
layers of weights. Each layer has 256 hidden nodes with rectified linear units (ReLU) for both the
actor and critic. The input layer of actor has the same dimension as observation state. The output
layer of the actor has the same dimension as action requirement with a tanh unit. Critic receives both
state and action as input to THE first layer and the output layer of critic has 1 linear unit to produce Q
value. Network parameters are updated using Adam optimizer with a learning rate of 10−3 for simple
control problems and for harder problems, we set the learning rate to a smaller value of 5 ∗ 10−5.
After each time step k, the networks are trained with a mini-batch of a 256 transitions (s, a, r, s′),
(s, a, r′, s′) in case of LNSS, sampled uniformly from a replay buffer D containing the entire history
of the agent.

D4PG. Same with the actor-critic networks in D4PG are implemented by feedforward neural networks
with three layers of weights. Each layer has 256 hidden nodes with rectified linear units (ReLU) for
both the actor and critic. The input layer of actor has the same dimension as observation state. The
output layer of the actor has the same dimension as action requirement with a tanh unit. Critic receives
both state and action as input to THE first layer and the output layer of critic has a distribution with
hyperparameters for the number of atoms l, and the bounds on the support (Vmin, Vmax). Network
parameters are updated using Adam optimizer with a learning rate of 10−3. After each time step
k, the networks are trained with a mini-batch of 256 transitions (s, a, r, s′), (s, a, r′, s′) in case of
LNSS, sampled uniformly from a replay buffer D containing the entire history of the agent.

DDPG. The actor-critic networks in DDPG are implemented by feedforward neural networks with
three layers of weights. Each layer has 256 hidden nodes with rectified linear units (ReLU) for both
the actor and critic. The input layer of actor has the same dimension as observation state. The output
layer of the actor has the same dimension as action requirement with a tanh unit. Critic receives both
state and action as input to the first layer and the output layer of critic has 1 linear unit to produce Q
value. Network parameters are updated using Adam optimizer with a learning rate of 10−3 for simple
control problems and for harder problems, we set the learning rate to a smaller value of 5 ∗ 10−5.
After each time step k, the networks are trained with a mini-batch of a 256 transitions (s, a, r, s′),
(s, a, r′, s′) in case of LNSS, sampled uniformly from a replay buffer D containing the entire history
of the agent.

Hyperparameters.

For TD3, target policy smoothing is implemented by adding ϵ ∼ N (0, 0.2) to the actions chosen by
the target actor-network, clipped to (−0.5, 0.5), delayed policy updates consist of only updating the
actor and target critic network every d iterations, with d = 2. While a larger d would result in a larger
benefit with respect to accumulating errors, for fair comparison, the critics are only trained once per
time step, and training the actor for too few iterations would cripple learning. Both target networks
are updated with τ = 0.005.
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The TD3 used in this study is based on the paper [7] and the code from the authors
(https://github.com/sfujim/TD3). The distributed learning process is based on [34].

Hyperparameter TD3 Value
Start timesteps 8000 steps
Evaluation frequency 10000 steps
Max timesteps 9e5 steps
Exploration noise N (0, 0.1)
Policy noise N (0, 0.2)
Noise clip ±0.5
Policy update frequency 2
Batch size 256
Buffer size 1e6
γ 0.99
τ 0.005
Number of parallel actor 8 (20 )
LNSS-N choose as results shows
Adam Learning rate 1e-3 (5e-5)

Table 3: TD3 + LNSS hyper parameters used for the GYM and DMC benckmark tasks

The D4PG used in this study is based on paper [6] and the code is modified from TD3 using the same
distributed learning process as TD3.

Hyperparameter D4PG Value
Start timesteps 8000 steps
Evaluation frequency 10000 steps
Max timesteps 9e5 steps
Exploration noise N (0, 0.1)
Noise clip ±0.5
Batch size 256
Buffer size 1e6
γ 0.99
τ 0.005
Number of parallel actor 8
LNSS-N choose as results shows
Adam Learning rate 1e-3
Vmax 100
Vmin 0
l 51

Table 4: D4PG + LNSS hyper parameters used for the DMC benckmark tasks

The DDPG used in this study is based on paper [3] and the code is from the paper and the hyperpa-
rameter is from Table 5.

Distributed Learning Procedure. Distributed Learning is widely used in DRL algorithms [4, 6, 20]
for speeding up experience gathering. Note from Equation (30) and (31) that updating the actor and
the critic relies on sampling from some state distributions pπ(s). We can parallelize this process by
using a distributed process of multiple independent actors, each writing to the same memory buffer.
Samples of experiences from the memory buffer can then be used in learning.

To speed up the learning process, we use a distributed implementation to parallelize computation. In
the style of [34], we use a centralized agent with several workers operating in parallel. Each worker
loads the most recent policy, interacts with the environment, and sends its observations to the central
agent. Given the computing resource, 8 workers for simple control problems and 20 workers for
harder problems were implemented in this study. All algorithm hyper-parameters are summarized in
Table 3, Table 4, and Table 5.

Sparse Reward Setup. 1) Cheetah Run Sparse: Cheetah needs to run forward as fast as possible.
The agent gets a reward only after speed exceeds 2.8 m/s, making the reward sparse. r = 1. That is,
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Hyperparameter DDPG Value
Start timesteps 8000 steps
Evaluation frequency 10000 steps
Max timesteps 9e5 steps
Exploration noise N (0, 0.1)
Policy noise N (0, 0.2)
Noise clip ±0.5
Policy update frequency 2
Batch size 256
Buffer size 1e6
γ 0.99
τ 0.005
Number of parallel actor 8 (20 )
LNSS-N choose as results shows
Adam Learning rate 1e-3 (5e-5)

Table 5: DDPG + LNSS hyper parameters used for the DMC benckmark tasks

if v >= 2.8 else r = 0.

Appendix C Code Details

Our implementation code is detailed and provided in Github link
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Algorithm 1 Long N -step Surrogate Stage (LNSS) Reward
Given:

• an RL algorithm A, e.g DDPG,TD3,D4PG
• "N -step" number N
• n-step update n
• an experience buffer D
• a temporary experience buffer D′ with size N
• Total training episode T

Initialize: A, D, D′

1: for episode = 1, T do
2: Reset initialize state s0, D′

3: for k = 0, T do
4: Choose an action ak based on current state sk and learned policy from A.
5: Execute the action ak and observe a new state sk+1 with reward signal rk
6: Store the transition (sk, ak, rk, sk+1) in D′

7: if k +N − 1 ≤ T then
8: Get earliest memory (s′0, a

′
0, r

′
0, s

′
1) in the D′

9: Calculate r′ based on Equation (7)
10: Store the transition (s′0, a

′
0, r

′, s′1) in D
11: Clear transition (s′0, a

′
0, r

′
0, s

′
1) in the D′

12: else
13: Repeat step 8 to 11 and Calculate r′ based on Equation

r′k =
γ − 1

γT−k+1 − 1

T∑
t=k

γt−krt. (29)

14: end if
15: using r′ to perform n-step of optimization using A and mini-batch data from D
16: end for
17: end for

Appendix D Background

Here we present some DRL algorithm details regarding signle step updates and n-step updates related
to our work:

1) DDPG [3] is a well-established off-policy policy gradient method. As an actor-critic (AC)
algorithm, it contains two steps of policy evaluation (computing value function for a policy) and
policy improvement (using value function to find a better policy). The policy (πϕ) is called an actor
and the action value function (Qθ(sk, ak)) is call a critic where both the actor and the critic are
estimated by deep neural networks with parameters ϕ and θ respectively. Most AC methods are based
on Bellman equation. The target equation becomes yk = rk + γQθ(sk+1, ak+1) so that the critic
value Qθ is updated by minimizing the loss function with respect to the weights (θ) as:

L (θ) = Es∼pπ,a∼π[(y −Qθ(sk, ak))
2]. (30)

The actor weights can be updated by applying chain rule return from the start distribution J with
respect to the policy parameter ϕ :

∇ϕJ(ϕ) = Es∼pπϕ

[
∇aQθ(sk, ak)|ak=πϕ(sk)

∇ϕπϕ(sk)
]
. (31)

2) TD3 [7] is based on DDPG but uses a clipped doubleQ network idea, whereQθj (sk, ak) (j = 1, 2)
represents the two respective Q values. It takes the lesser value between the two, thus the target
function y becomes:

y = rk + γ min
j=1,2

Qθj (sk+1, ak+1). (32)
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Results show that this twin delayed doubleQ network approach has effectively limited overestimation
error. As in DDPG, each of the Q values is updated by minimizing the loss function L (θj) with
respect to their weights:

L (θj) = Es∼pπ,a∼π[(y −Qθj (sk, ak))
2]. (33)

The actor network is updated the same way as DDPG (Equation (31)).

3) D4PG [6] is based on DDPG and they utilizes "n-step" returns with "n-step" horizon when
estimating the TD error and replacing the Bellman operator with "n-step" variant:

(T n
π Q) (xk, ak) = rk + E[

k+n−1∑
t=k

γtrt

+ γnQ (xk+n, π (xk+n)) | xk, ak]

(34)

where (T n
π Q) (xk,ak) is the distributional Q-value function they proposed in [6] and the expectation

is with respect to the "n-step" transition dynamics.

4) PPO [4] is an on-policy policy gradient method that learns the state value function V (sk). Based
on a fixed length (T ) horizon, in stead of directly use V (sk) in Bellman equation, it uses a truncated
version of a generalized advantage estimation (GAE) of Ak [21]:

Âk = δk + (γλ)δk+1 + · · ·+ · · ·+ (γλ)T−k+1δT−1,

δk = rk + γV (sk+1)− V (sk) ,
(35)

where λ is the GAE parameter [4] to compromise between estimation variance and bias.

5) The mean reward method [35] utilizes "n-step" horizon information based on the following mean
reward,

ravg =
1

n
(

k+n−1∑
t=k

rt), (36)

which is used to update the Bellman equation as in a single step method,

Qπ(sk, ak) = ravg + γQπ(sk+1, ak+1). (37)

Appendix E Additional Detailed Results

Here we provide additional detailed results to supplement those that we have reported in the paper.
This is a complete set of results for all experiments.

E.1 Systematic Evaluation of LNSS without Reward Noise.

Figure 7: Systematic evaluation of LNSS piggybacked on three DRL algorithms (DDPG, D4PG,
TD3) in DMC environments without reward noise. The shaded regions represent the 95 % confidence
range of the evaluations over 10 seeds. The x-axis is the number of steps.
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E.2 Results with noise level 1%

Here we include a detailed performance evaluation at noise level of 1% in Figure 8 and Figure 9.

Figure 8: Systematic evaluation of LNSS piggybacked on three DRL algorithms (DDPG, D4PG,
TD3) in DMC environments with 1% reward noise. The shaded regions represent the 95 % confidence
range of the evaluations over 10 seeds. The x-axis is the number of steps.

Figure 9: Systematic evaluation of LNSS piggybacked on three DRL algorithms (DDPG, D4PG,
TD3) in DMC environments with 1% reward noise. The shaded regions represent the 95 % confidence
range of the evaluations over 10 seeds. The x-axis is the number of steps.
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E.3 Results with noise level 10%

Here we include a detailed performance evaluation at noise level of 10% in Figure 10 and Figure 11

Figure 10: Systematic evaluation of LNSS piggybacked on three DRL algorithms (DDPG, D4PG,
TD3) in DMC environments with 10% reward noise. The shaded regions represent the 95 %
confidence range of the evaluations over 10 seeds. The x-axis is the number of steps.

Figure 11: Systematic evaluation of LNSS piggybacked on three DRL algorithms (DDPG, D4PG,
TD3) in DMC environments with 10% reward noise. The shaded regions represent the 95 %
confidence range of the evaluations over 10 seeds. The x-axis is the number of steps.
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E.4 Variance Study at different levels of reward noise

Note in the following results (Figure 12 to Figure 20), "Best" denotes the best performing
algorithm under all evaluation conditions for a given task. Please refer to Table 2 for correspon-
dence.

Without Reward noise results:

Figure 12: cv(Q) (coefficient of variation of Q value, the lower the better) of D4PG in DMC
environments. Results are averaged over 10 seeds. The x-axis is the number of steps.

Figure 13: cv(Q) (coefficient of variation of Q value, the lower the better) of DDPG in DMC
environments. Results are averaged over 10 seeds. The x-axis is the number of steps.

Figure 14: cv(Q) (coefficient of variation of Q value, the lower the better) of TD3 in DMC
environments. Results are averaged over 10 seeds. The x-axis is the number of steps.
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1% Reward noise results:

Figure 15: cv(Q) (coefficient of variaiton of Q value, the lower the better) of D4PG in DMC
environments. Results are averaged over 10 seeds. The x-axis is the number of steps.

Figure 16: cv(Q) (coefficient of variation of Q value, the lower the better) of DDPG DMC
environments. Results are averaged over 10 seeds. The x-axis is the number of steps.

Figure 17: cv(Q) (coefficient of variation of Q value, the lower the better) of TD3 in DMC
environments. Results are averaged over 10 seeds. The x-axis is the number of steps.
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10% Reward noise results:

Figure 18: cv(Q) (coefficient of variation of Q value, the lower the better) of D4PG in DMC
environments.. Results are averaged over 10 seeds. The x-axis is the number of steps.

Figure 19: cv(Q) (coefficient of variation of Q value, the lower the better) of DDPG in DMC
environments.. Results are averaged over 10 seeds. The x-axis is the number of steps.

Figure 20: cv(Q) (coefficient of variation of Q value, the lower the better) of TD3 in DMC
environments.. Results are averaged over 10 seeds. The x-axis is the number of steps.

E.5 Gym Evaluation

In Figure 21, we evaluate LNSS on top of TD3 using several challenging continuous control tasks in
Gym under a noise-free setting. Here we can see LNSS outperformed its Base method in Walker2D
and Hopper but in Humanoid, it only matches its base method. One of the reasons is early termination.
Different from DMC tasks, Gym allows an environment to terminate before reaching the maximum
time steps. As such, in early training stage, only 10 or 20 steps may be used to compute LNSS which
diminishes the power of large N (such as 50 or 100).

Additionally, LNSS is much stable than n5 method in Gym and TD3-n5 method lost its performance
improvement in Gym environments. One potential reason is that different from DMC tasks, Gym
does not have a uniform reward range with a maximum reward much greater than 1. Therefore, as
we mentioned before, in n5 method, the large scale of "n-step" returns can cause saturation and
inefficiency in learning [10]. However, LNSS has the same reward scales as Base method even with
longer N which prevent the potential large reward scale problem.

E.6 LNSS vs. mean reward method

In Figure 22, we compare performance of TD3 with mean reward method using long reward sequences
(n = 100 in Equation (36)) in all 6 tasks in Gym and DMC. The figure shows, with LNSS reward,
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Figure 21: Systematic evaluation in GYM environments of LNSS on top of TD3 using several
challenging continuous control tasks in Gym under noise-free setting. The shaded regions represent
half a standard deviation of the average evaluation over 10 trials. The x-axis of the plots is the number
of steps.Due to early termination in GYM, LNSS was not taking full effect in Humanoid Task. For
ramifications refer to the Limitation section in the paper.
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Figure 22: Overall performance curves of LNSS and mean reward method over all tasks. The shaded
region represents half a standard deviation of the average evaluation over 10 trials.

TD3-LNSS outperforms the mean reward method in all tasks in terms all measures (episode reward,
learning variance, and learning speed).

One potential reason for mean reward method cannot address return with a long horizon is that as in
Equation (36)), ravg treats every stage reward with the same significance (without discount) which
will hurt learning. For example, when considering a reward trajectory with n >> 1, the first step
should have more significance than the reward at n step.

E.7 Hyper-parameter with different N Comparison

In Figure 23, we show the effect of different choices of N (N = 5, 10, 20, 50, 100) in our proposed
LNSS for D4PG. Comparisons are performed using the same set of hyperparameters except that N
is different in all experiments. The significance of large N value varies task to task. In the DMC
environment, N = 100 outperforms others in reward and learning speed and matches others in
learning variance.

In Figure 24, we show the effect of different choices of N (N = 5, 10, 20, 50, 100) in our proposed
LNSS for DDPG. Comparisons are performed using the same set of hyperparameters except that N
is different in all experiments. The significance of large N value varies task to task. In the DMC
environment, N = 100 outperforms others in learning speed and variance and matches others in
episode reward.
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Figure 23: Episode rewards for the 4 tasks in DMC by D4PG-LNSS with different N (N =
5, 10, 20, 50, 100) in Equation (6). The results are averaged from 10 seeds. The x-axis is the number
of steps.

Figure 24: Episode rewards for the 4 tasks in DMC by DDPG-LNSS with different N (N =
5, 10, 20, 50, 100) in Equation (6). The results are averaged from 10 seeds. The x-axis is the number
of steps.
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