
Face Reconstruction from Facial Templates by
Learning Latent Space of a Generator Network

Hatef Otroshi Shahreza1,2 and Sébastien Marcel1,3
1Idiap Research Institute, Martigny, Switzerland

2École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
3Université de Lausanne (UNIL), Lausanne, Switzerland
{hatef.otroshi,sebastien.marcel}@idiap.ch

O
ri

gi
na

l
R

ec
on

st
ru

ct
ed

0.815 0.629 0.618 0.728 0.602 0.742

Figure 1: Sample face images from the FFHQ dataset and their corresponding reconstructed images
using our template inversion method from ArcFace templates (used in a face recognition system).
The values below each image show the cosine similarity between the corresponding templates of
original and reconstructed face images.

Abstract

In this paper, we focus on the template inversion attack against face recognition
systems and propose a new method to reconstruct face images from facial templates.
Within a generative adversarial network (GAN)-based framework, we learn a
mapping from facial templates to the intermediate latent space of a pre-trained
face generation network, from which we can generate high-resolution realistic
reconstructed face images. We show that our proposed method can be applied in
whitebox and blackbox attacks against face recognition systems. Furthermore, we
evaluate the transferability of our attack when the adversary uses the reconstructed
face image to impersonate the underlying subject in an attack against another face
recognition system. Considering the adversary’s knowledge and the target face
recognition system, we define five different attacks and evaluate the vulnerability of
state-of-the-art face recognition systems. Our experiments show that our proposed
method achieves high success attack rates in whitebox and blackbox scenarios.
Furthermore, the reconstructed face images are transferable and can be used to
enter target face recognition systems with a different feature extractor model. We
also explore important areas in the reconstructed face images that can fool the
target face recognition system.
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1 Introduction

Face recognition (FR) systems tend toward ubiquity, and their applications, which range from cell
phone unlock to national identity system, border control, etc., are growing rapidly. Typically, in such
systems, a feature vector (called embedding or template) is extracted from each face image using a
deep neural network, and is stored in the system’s database during the enrollment stage. During the
recognition stage, either verification or identification, the extracted feature vector is compared with
the ones in the system’s database to measure the similarity of identities. Among potential attacks
against FR systems [Galbally et al., 2014, Biggio et al., 2015, Hadid et al., 2015, Mai et al., 2018,
Marcel et al., 2023], the template inversion (TI) attack significantly jeopardizes the users’ privacy.
In a TI attack, the adversary gains access to templates stored in the FR system’s database and aims
to reconstruct the underlying face image. Then, the adversary not only achieves privacy-sensitive
information (such as gender, ethnicity, etc.) of enrolled users, but also can use reconstructed face
images to impersonate.

In this paper, we focus on the TI attack against FR systems and propose a novel method to reconstruct
face images from facial templates (Figure 1 shows sample reconstructed face images using our
proposed method). Within a generative adversarial network (GAN)-based framework, we learn a
mapping from face templates to the intermediate latent space of StyleGAN3 [Karras et al., 2021], as
a pre-trained face generation network. Then, using the synthesis part of StyleGAN3, we can generate
high-resolution realistic face image. Our proposed method can be applied for whitebox and blackbox
attacks against FR systems. In the whitebox scenario, the adversary knows the internal functioning of
the feature extraction model and its parameters. However, in the blackbox scenario, the adversary
does not know the internal functioning of the feature extraction model and can only use it to extract
features from any arbitrary image. Instead, we assume that the adversary has a whitebox of another
FR model, which can be used for training the face reconstruction network. We also evaluate the
transferability of our attack by considering the case where the adversary uses the reconstructed face
image to impersonate the underlying subject in an attack against another FR system (which has a
different feature extraction model). Considering the adversary’s knowledge and the target FR system,
we define five different attacks, and evaluate the vulnerability of state-of-the-art (SOTA) FR systems.
Figure 2 illustrates the general black diagram of our proposed template inversion attack.

To elaborate on the contributions of our paper, we list them hereunder:

• We propose a novel method to generate high-resolution realistic face images from facial
templates. Within a GAN-based framework, we learn the mapping from facial templates to
the latent space of a pre-trained face generation network.

• We propose our method for whitebox and blackbox scenarios. While our method is based on
the whitebox knowledge of the FR model, we extend our attack blackbox scenario, using
another FR model that the adversary has access to.

• We define five different attacks against FR systems (based on the adversary’s knowledge
and the target system), and evaluate the transferability of the reconstructed face images and
vulnerability of SOTA FR models to TI attacks. We also explore important areas in the
reconstructed face images. To our knowledge, this is the first work which comprehensively
evaluates the transferability of the reconstructed face images in TI attacks.

The remainder of the paper is organized as follows: Section 2 introduces the problem formulation
and our proposed face reconstruction method. Section 3 covers the related works in the literature and
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Figure 2: Block diagram of our proposed template inversion attack
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compares them with our proposed method. Section 4 presents our experiential results. Finally, the
paper is concluded in Section 5.

2 Problem Definition and Proposed Method

In this paper, we consider a TI attack against a FR system based on the following threat model:

• Adversary’s goal: The adversary aims to reconstruct a face image from a template, and use
the reconstructed face image to enter the same or a different face recognition system, which
we call the target FR system.

• Adversary’s knowledge: The adversary knows a face template of a user enrolled in the FR
system’s database. The adversary also has either whitebox or blackbox knowledge of the
feature extractor model in the same FR system.

• Adversary’s capability: The adversary can present the reconstructed face image to the target
FR system (e.g., using a printed photograph). However, for simplicity, we consider that
adversary can inject the reconstructed face image as a query to the target FR system.

• Adversary’s strategy: The adversary can train a face reconstruction model to invert fa-
cial templates and reconstruct underlying face images. Then, the adversary can use the
reconstructed face images to inject as a query to the target FR system, to enter that system.

Let F (.) denote a facial feature extraction model, which gets the face image I ∈ I and extracts
facial template x = F (I) ∈ X . According to the threat model, the adversary has access to the target
facial template xdatabase = Fdatabase(I) and aims to generate a reconstructed face image Î . Then, the
adversary can use the reconstructed face image Î to impersonate the corresponding subject and attack
a target FR system with Ftarget(.), which might be different from Fdatabase(.).

To train a face reconstruction model, we can use a dataset of face images {Ii}Ni=1 with N face images
(no label is required), and generate a training dataset {(xi, Ii)}Ni=1, where xi = Fdatabase(Ii). Then,
a face reconstruction model G(.) can be trained to reconstruct face image Î = G(x) given each
facial template x ∈ X . To train such a face reconstruction model, we consider a multi-term face
reconstruction loss function as follows:

Lrec = Lpixel + LID, (1)

where Lpixel and LID indicate pixel loss and ID losses, respectively, and are defined as:

Lpixel = Ex∼X [‖I −G(x)‖22], (2)

LID = Ex∼X [‖Floss(I)− Floss(G(x))‖22]. (3)

The pixel loss is used to minimize the pixel-level reconstruction error of the generated face image.
The ID loss is also used to minimize the distance between facial templates extracted by Floss(.) from
original and reconstructed face images. In Eq. 3, Floss(.) denotes a feature extraction model that the
adversary is assumed to have complete knowledge of its parameters and internal functioning. Based
on the adversary’s knowledge of Fdatabase(.) (i.e., whitebox or blackbox scenarios), Floss(.) might be
the same or different from Fdatabase(.).

For the face reconstruction model, we consider StyleGAN3 [Karras et al., 2021], as a pre-trained face
generation network1. The StyleGAN3 model is trained on a dataset of face images using a GAN-based
framework that can generate high-resolution and realistic face images. The structure of StyleGAN3 is
composed of two networks, mapping and synthesis networks. The mapping network MStyleGAN(.) gets
a random noise z ∈ Z and generates an intermediate latent code w = MStyleGAN(z) ∈ W . Then, the
latent code w is given to the synthesis network SStyleGAN(.) to generate a face image. In our training
process, we fix the synthetic network SStyleGAN(.) and train a new mapping Mrec(.) to generate ŵ
corresponding to the given facial template x ∈ X . Then, the generated latent code ŵ is given to the
synthesis network SStyleGAN(.) to generate the reconstructed face image Î = SStyleGAN(ŵ). We can

1While we use StyleGAN3 in our experiments, our method can also be used with other face generator
networks. In our experiment in Section A.3 of the appendix, we use StyleSwin [Zhang et al., 2022] as the face
generator network and Figure 7 of the appendix shows reconstructed face images of our method using StyleSwin.
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train our new mapping Mrec(.) using our reconstruction loss function as in Eq. 1. However, to obtain
a realistic face image from the generated ŵ through the pre-trained synthetic network SStyleGAN(.),
the generated ŵ needs to be in the distributionW; otherwise, the output may not look like a real
human face. Hence, to generate ŵ vectors such that they have the same distribution as StyleGAN’s
intermediate latent, w ∈ W , we use a GAN-based framework to learn the distributionW . To this
end, we use the Wasserstein GAN (WGAN) [Arjovsky et al., 2017] algorithm to train a critic network
C(.) which critiques the generated ŵ vectors compared to the real StyleGAN’s w ∈ W vectors, and
simultaneously we optimize our mapping network to generate ŵ vectors with the same distribution as
W . Hence, we can consider our mapping network Mrec(.) as a conditional generator in our WGAN
framework, which generates ŵ = Mrec([n,x]) given a facial template x ∈ X and a random noise
vector n ∈ N . Then, we can train our mapping network and critic network using the following loss
functions:

LWGAN
C = Ew∼W [C(w)]− Eŵ∼Mrec([n,x])[C(ŵ)] (4)

LWGAN
Mrec

= Eŵ∼Mrec([n,x])[C(ŵ)] (5)
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Figure 3: Block diagram of our face reconstruction network.

In a nutshell, we train a new map-
ping network Mrec(.) using our re-
construction loss function in Eq. 1,
and also optimize Mrec(.) within our
WGAN framework using Eq. 5. Si-
multaneously, we also train the critic
network C(.) within our WGAN train-
ing using Eq. 4 to learn the distribu-
tion of StyleGAN’s intermediate la-
tent space W and help our mapping
network Mrec(.) to generate vectors
with the same distribution asW . Fig-
ure 3 depicts the block diagram of the
proposed method. We should note
that our mapping network Mrec(.) has
2 fully connected layers with Leaky
ReLU activation function.

In our problem formulation, we consider three different feature extraction models, including
Fdatabase(.), Floss(.), and Ftarget(.). Hence, based on the adversary’s knowledge and the target system,
we can consider five different attacks:

• Attack 1: The adversary has whitebox knowledge of the system from which the template is
leaked and wants to attack the same system (i.e., Fdatabase = Floss = Ftarget).

• Attack 2: The adversary has whitebox knowledge of the feature extractor of the system from
which the template is leaked, but aims to attack to a different FR system (i.e., Fdatabase =
Floss 6= Ftarget).

• Attack 3: The adversary wants to attack the same system from which the template is leaked,
but has only blackbox access to the feature extractor of the system. Instead, we assume
that the adversary has the whitebox knowledge of another FR model to use for training (i.e.,
Fdatabase = Ftarget 6= Floss).

• Attack 4: The adversary aims to attack a different FR system than the one from which
the template is leaked. In addition, the adversary has whitebox knowledge of the feature
extractor of the target system (i.e., Fdatabase 6= Floss = Ftarget).

• Attack 5: The adversary aims to attack a different FR system from which the template
is leaked and has only blackbox knowledge of both the target system and the one from
which the template is leaked. However, the adversary instead has the whitebox knowledge
of another FR model to use for training (i.e., Fdatabase 6= Floss 6= Ftarget).

In the attack 1 and attack 2, the adversary has the whitebox knowledge of the system from which the
template is leaked (i.e., Fdatabase(.)) and uses the same model as Floss(.) for training the reconstruction
network. However, in attacks 3-5, the adversary has the blackbox knowledge of the system from which
the template is leaked, and therefore uses another FR model as Floss(.). Comparing the knowledge
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Table 1: Comparison of different attacks in this paper.
Fdatabase Floss Evaluation Adversary’s Knowledge of

Original and Target Systems Difficulty of Attack

Attack 1 whitebox Fdatabase same system whitebox knowledge of Fdatabase and Ftarget very easy

Attack 2 whitebox Fdatabase
different system
(transferability) whitebox knowledge of Fdatabase easy

Attack 3 blackbox adversary’s own same system blackbox knowledge of Fdatabase and Ftarget difficult

Attack 4 blackbox Ftarget
different system
(transferability)

blackbox knowledge of Fdatabase
and whitebox knowledge of Ftarget

difficult

Attack 5 blackbox adversary’s own different system
(transferability) only blackbox knowledge of Fdatabase very difficult

of the adversary in these attacks, we expect that attack 1 be the easiest attack for the adversary and
attack 5 be the most difficult one. Table 1 compares adversary’s knowledge and difficulty of different
attacks defined in this paper.

3 Related Works

Table 2 compares our proposed method with related works in the literature. Generally, the methods for
TI attack against FR systems, can be categorized based on different aspects, including the resolution
of generated face images (high/low resolution), the type of attack (whitebox/blackbox attack), and the
basis of the method (optimization/learning-based).

Zhmoginov and Sandler [2016] proposed an optimization-based method and a learning-based
method to generate low-resolution face images in the whitebox attack against FR systems. In
their optimization-based attack, they used a gradient-descent-based approach to find an image that
minimizes the distance of the face template as well as some regularization terms to generate a smooth
image, including the total variation and Laplacian pyramid gradient normalization [Burt and Adelson,
1987] of the reconstructed face image. In their learning-based attack, they trained a convolutional
neural network (CNN) with the same loss terms to generate face images from given facial templates.

Cole et al. [2017] proposed a learning-based attack to generate low-resolution images using a multi-
layer perceptron (MLP) to estimate landmark coordinates and a CNN to generate face textures, and
then reconstructed face images using a differentiable warping based on estimated landmarks and face
texture. They trained their networks in an end-to-end fashion, and minimized the errors for landmark
estimation and texture generation as well as the distance of face template as their loss function. To
extend their method from the whitebox attack to the blackbox attack, they proposed not to minimize
the distance of face templates in their loss function.

Mai et al. [2018] proposed a learning-based attack to generate low-resolution images in the blackbox
attack against FR systems. They proposed new convolutional blocks, called neighborly deconvolution
blocks A/B (shortly, NbBlock-A and NbBlock-B), and used these blocks to reconstruct face images.
They trained their proposed networks using two loss functions, including pixel loss (i.e., `2 norm
of reconstruction pixel error) and perceptual loss (i.e., `2 norm of distance for intermediate features
of VGG-19 [Simonyan and Zisserman, 2014] given original and reconstructed face images). They

Table 2: Comparison with related works.

Reference Resolution Basis White/Black-box Transferability Eval. Available code

Zhmoginov and Sandler [2016] low 1) optimization whitebox 7 72) learning
Cole et al. [2017] low learning both∗ 7 7
Mai et al. [2018] low learning blackbox 7 3
Duong et al. [2020] low learning both∗∗ 7 7
Truong et al. [2022] low learning both∗∗ 7 7
Ahmad et al. [2022] low learning blackbox 7 7
Dong et al. [2021] high learning blackbox 7 3
Vendrow and Vendrow [2021] high optimization blackbox 7 3
Dong et al. [2023] high optimization blackbox 7 3
Ours high learning both∗∗∗ 3 3

∗The method is based on the whitebox attack, and is extended to blackbox by removing a loss term that required the FR model.
∗∗The method is based on the whitebox attack, and the blackbox attack is performed by knowledge distillation of the FR model.
∗∗∗The method is based on the whitebox attack, and is extended to blackbox using a different FR model.

5



defined two types of attacks and compared the reconstructed face images with the same (type 1) or
different (type 2) image of the same subject. However, they did not evaluate the transferability of
reconstructed face images.

Duong et al. [2020] and Truong et al. [2022] used a same bijection learning framework and trained
a GAN with a generator with structure of PO-GAN [Karras et al., 2017] and TransGAN [Jiang
et al., 2021], respectively. While their method is based on the whitebox attack, they proposed to use
knowledge distillation to extend to the blackbox attack. To this end, they trained a student network
that mimics the target FR model. However, they did not provide any details (nor source code) about
student network training, such as the structure of the student network, etc.

Ahmad et al. [2022] used a GAN-based face reconstruction network to generate low-resolution face
images in the blackbox scenario. They focus on the size of training dataset and proposed a method to
learn the reconstruction network with less training data. While using GAN-based approach, sample
reconstructed face images in their paper do not look realistic and suffer from many artifacts.

Dong et al. [2021] used a pre-trained StyleGAN to generate high-resolution face images in the black-
box attack against FR systems. They generated synthetic face images using pre-trained StyleGAN
and extracted their templates. Then, they trained a fully connected network using mean squared error
to map extracted templates to the corresponding noise in the input space Z of StyleGAN. In contrast,
Vendrow and Vendrow [2021], instead of a learning-based approach, used a grid search optimization
using the simulated annealing [Van Laarhoven and Aarts, 1987] approach to find the noise z ∈ Z
in the input of StyleGAN, which generates an image that has the same template. As their iterative
method has a large computation cost, they evaluated their method on 20 images only. Along the same
lines, Dong et al. [2023] also tried to solve a similar optimization to [Vendrow and Vendrow, 2021]
with a different approach. They used the genetic algorithm to find the noise z ∈ Z in the input of
StyleGAN that can generate an image with the same template.

Compared to most works in the literature that generate low-resolution face images, our proposed
method generates high-resolution realistic face images. While low-resolution reconstructed images
can be used for evaluating the vulnerability of FR systems under some assumptions, high-resolution
images can lead to different types of presentation attacks against FR systems. Previous works in the
literature for reconstructing high-resolution face images [Vendrow and Vendrow, 2021, Dong et al.,
2021, 2023] tried to find an appropriate noise z ∈ Z in the input of StyleGAN that can generate an
image with a similar template. However, the input of StyleGAN z ∈ Z is a noise and is difficult to
control and optimize. In contrast, the intermediate latent spaceW , which we use in our paper, is
more controllable2. However, finding appropriate latent code w ∈ W in the intermediate space of
StyleGAN that can generate an image with a similar facial template is challenging for two reasons.
First, for a learning-based approach, we do not have correct values of w ∈ W for each real face
image to directly use for training the mapping from face templates to the intermediate latent spaceW
of StyleGAN. Second, as described in Section 2, the mapped latent code should be in the same the
intermediate latent spaceW of StyleGAN, otherwise the generated image is not face-like.

We should also note that, unlike most works in the literature, we propose our method for both
whitebox and blackbox scenarios and evaluate the transferability of our attack. Similar to [Cole et al.,
2017, Duong et al., 2020, Truong et al., 2022], our method is based on the whitebox knowledge of
FR model, however our approach for extending our method to the blackbox attack using another FR
model has not been used in TI attacks. Last but not least, we define five different attacks against
FR systems and evaluate the vulnerability of SOTA FR models to our attacks. To our knowledge,
this is the first paper in which the transferability of reconstructed face images in TI attacks has been
investigated.

4 Experiments

In this section, we present our experiments and discuss our results. First, in Section 4.1 we describe
our experimental setup. Then, we present our experimental results in Section 4.2, and discuss our
findings.

2Several papers in the literature used the intermediate latent space W of StyleGAN for image editing [Roich
et al., 2022, Alaluf et al., 2022, Hu et al., 2022].
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4.1 Experimental Setup

Table 3: Recognition performance of face recognition
models used in our experiments in terms of true match
rate (TMR) at the thresholds correspond to false match
rates (FMRs) of 10−2 and 10−3 evaluated on the MO-
BIO and LFW datasets. The values are in percentage.

model MOBIO LFW
FMR=10−2 FMR=10−3 FMR=10−2 FMR=10−3

ArcFace 100.00 99.98 97.60 96.40
ElasticFace 100.00 100.00 96.87 94.70
HRNet 98.98 98.23 89.30 78.43
AttentionNet 99.71 97.73 84.27 72.77
Swin 99.75 98.98 91.70 87.83

To evaluate the performance of our method,
we consider two SOTA FR models3, in-
cluding ArcFace [Deng et al., 2019], Elas-
ticFace [Boutros et al., 2022], as the mod-
els from which templates are leaked (i.e.,
Fdatabase). For transferability evaluation, we
also use three different FR models with
SOTA backbones from FaceX-Zoo [Wang
et al., 2021], including HRNet [Wang et al.,
2020], AttentionNet [Wang et al., 2017],
and Swin [Liu et al., 2021], for the target
FR system (i.e., Ftarget). The recognition
performance of these models are reported
in Table 3. All these models are trained on
MS-Celeb1M dataset [Guo et al., 2016]. We assume that the adversary does not have access to the FR
training dataset, and therefore we use another dataset for training our face reconstruction models. To
this end, we use the Flickr-Faces-HQ (FFHQ) dataset [Karras et al., 2019], which consists of 70,000
high-resolution (i.e., 1024× 1024) face images (without identity labels) crawled from the internet.
We use 90% random portion of this dataset for training, and the remaining 10% for validation.

To evaluate different attacks against FR systems, we consider two other face image datasets with iden-
tity labels, including the MOBIO [McCool et al., 2013] and Labeled Faces in the Wild (LFW) [Huang
et al., 2007] datasets. The MOBIO dataset consists of bi-modal (face and voice) data captured using
mobile devices from 150 people in 12 sessions (6-11 samples in each session). The LFW dataset
includes 13,233 face images of 5,749 people collected from the internet, where 1,680 people have
two or more images.

For each of the attacks described in Section 2, we build one or two separate FR systems with one or
two SOTA FR models based on the attack type. If the target system is the same as the system from
which the template is leaked, we have only one FR system. Otherwise, if the target system is different
the system from which the template is leaked, we have two FR systems with two different feature
extractors. In each case, we use one of our evaluation datasets (i.e., MOBIO and LFW) to build both
FR systems (so that the subject with the leaked template be enrolled in the target system too). In
each evaluation, we assume that the target FR system is configured at the threshold corresponding
to a false match rate (FMR) of 10−3, and we evaluate the adversary’s success attack rate (SAR) in
entering that system.

We should note that the templates extracted by the aforementioned FR models have 512 dimensions.
The input noise z ∈ Z to the mapping network of StyleGAN’s pre-trained network is from the
standard normal distribution and has 512 dimensions. The input noise n ∈ N to our mapping
network Mrec(.) is with dimension of 8 and also from the standard normal distribution. We also use
Adam [Kingma and Ba, 2015] optimizer to train our mapping network4 .

4.2 Analysis

In this section, we consider SOTA FR models and evaluate the performance of our face reconstruction
method in five different attacks described in Section 2. We also explore the effect of our WGAN
training as well as effect of loss terms as our ablation study. In addition, explore important areas in
the reconstructed face images that lead to success TI attack. Finally, we discuss limitations of our
face reconstruction model.

Whitebox Knowledge of Fdatabase For attacks 1-2, the adversary is assumed to have whitebox
knowledge of the system from which the template is leaked (i.e., Fdatabase) and use the same feature
extraction model for training (i.e., Floss), thus in such cases Floss = Fdatabase. We considered ArcFace

3While we use three different face recognition models in our problem formulation, since these models are
applied in separate stages, as our experiments in Section A.4 of appendix shows, there is no issue if the inputs
and outputs (e.g., pre-processing steps or dimensions) be different in each of these face recognition models.

4Source code of our experiment is available at: https://gitlab.idiap.ch/bob/bob.paper.neurips2023_face_ti
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Table 4: Evaluation of attacks with whitebox knowledge of the system from which the template is
leaked (i.e., Floss = Fdatabase) against SOTA FR models in terms of adversary’s success attack rate
(SAR) using our proposed method on the MOBIO and LFW datasets. The values are in percentage
and correspond to the threshold where the target system has FMR = 10−3. Cells are color coded
according the type of attack as defined in Section 2 for attack 1 ( light gray ) and attack 2 ( dark gray ).

Fdatabase
MOBIO LFW

ArcFace ElasticFace HRNet AttentionNet Swin ArcFace ElasticFace HRNet AttentionNet Swin
ArcFace 92.38 81.90 71.43 70.48 74.29 86.82 74.20 36.57 36.40 58.86
ElasticFace 78.10 87.62 64.29 64.76 69.05 78.25 82.52 41.80 40.25 61.09

Table 5: Evaluation of attacks (with blackbox knowledge of the system from which the template is
leaked i.e., Fdatabase) against SOTA FR models in terms of adversary’s success attack rate (SAR) using
different methods on the MOBIO and LFW datasets. The values are in percentage and correspond to
the threshold where the target system has FMR = 10−3. M1: NbNetB-M [Mai et al., 2018], M2:
NbNetB-P [Mai et al., 2018], M3: [Dong et al., 2021], M4: [Vendrow and Vendrow, 2021], and M5:
[Dong et al., 2023]. Cells are color coded according the type of attack as defined in Section 2 for
attack 3 ( lightest gray ), attack 4 ( middle dark gray ), and attack 5 ( darkest gray ).

Fdatabase Floss Ftarget
MOBIO LFW

M1 M2 M3 M4 M5 Ours M1 M2 M3 M4 M5 Ours

ArcFace ElasticFace

ArcFace 1.90 15.24 2.38 28.10 58.57 81.90 10.68 40.25 12.91 58.88 75.31 77.16
ElasticFace 1.43 11.43 4.29 15.24 37.61 73.81 8.36 34.39 6.35 29.10 50.17 68.06

HRNet 0.95 6.19 2.86 10.00 30.48 57.14 1.30 7.78 1.75 9.20 24.72 28.45
AttentionNet 0 6.67 3.33 4.29 26.67 54.29 1.33 7.17 2.29 9.17 24.16 28.87

Swin 1.43 13.33 3.81 10.95 40.00 67.14 4.27 23.85 5.97 21.75 41.27 48.28

ElasticFace ArcFace

ArcFace 2.38 18.57 2.86 16.19 48.09 87.14 15.33 48.67 11.81 37.45 65.40 83.20
ElasticFace 3.81 43.81 4.76 43.33 72.38 89.05 21.44 58.16 11.59 52.88 74.08 83.43

HRNet 0.48 20.00 1.43 10.48 42.86 73.81 3.46 18.36 2.74 11.82 32.99 49.02
AttentionNet 1.90 18.10 3.33 9.05 40.00 71.90 2.89 16.31 2.91 10.95 31.15 46.63

Swin 0.95 26.19 2.86 15.24 46.67 75.24 9.22 38.79 8.26 24.62 51.20 66.89

and ElasticFace models and reconstructed face images from the templates extracted by these models
in attacks against different FR systems. Table 4 reports the vulnerability of different target systems
to our attacks5 1-2 in terms of adversary’s SAR at the system’s FMR of 10−3. Similar results for
the system’s FMR of 10−2 are reported in Table 7 of the appendix. According to these tables, our
method achieves considerable SAR against ArcFace and ElasticFace target systems in attack 1. In
attack 2, we observe that there is a degradation in SAR with respect to attack 1. However, the
reconstructed face images can still be used to enter another target system. Meanwhile, the FR model
with a higher recognition accuracy is generally more vulnerable to attack 2. For instance, when
ArcFace is considered as Fdatabase, we observe that ElasticFace and Swin have the highest SAR as
target systems, while there is the same order for their recognition performance in Table 3.

Blackbox Knowledge of Fdatabase For attacks 3-5, the adversary is assumed to have blackbox
knowledge of the system from which the template is leaked (i.e., Fdatabase) and use another feature
extraction model for training (i.e., Floss), therefore in such cases Floss 6= Fdatabase. Table 5 compares
the performance of our method with blackbox methods6 in the literature [Mai et al., 2018, Dong et al.,
2021, Vendrow and Vendrow, 2021, Dong et al., 2023] for attacks 3-5 in terms of adversary’s SAR at
system’s FMR of 10−3. Similar results for the FMR of 10−2 are available in Table 8 of the appendix.

As these tables show, our proposed method achieves the highest SAR compared to [Mai et al., 2018,
Dong et al., 2021, Vendrow and Vendrow, 2021, Dong et al., 2023] against FR systems on the MOBIO
and LFW datasets. In particular, in attack 5 which is the hardest attack, where Fdatabase, Floss, and
Ftarget are different, the results show that the target FR system is still vulnerable to our attack. The
results of our method for attack 5 also show transferability of our attack to different FR systems.
Similar to attack 2, we can also observe that in attack 5, the FR model with a higher recognition
accuracy is generally more vulnerable to our attack.

5We should highlight that the whitebox methods reported in Table 2 do not have available source code, and
we could not compare our method with whitebox methods in Table 2.

6The other blackbox methods in the literature do not have available source code and we could not reproduce
their results.
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Figure 4: Sample face images from the LFW
dataset (first raw) and their corresponding re-
constructed images using our template inversion
method from ArcFace templates in different at-
tacks, attacks 1-2 (second raw) and attacks 3-5
(second raw, using ElasticFace for Floss). The val-
ues below each image show the cosine similarity
between the corresponding ArcFace templates of
original and reconstructed face images.

Figure 4 also shows sample face images from the
LFW dataset and the reconstructed images using
our proposed method from ArcFace templates
in different attacks. We should highlight that as
show in Figure 4, the reconstructed face images
in attack 1 and attack 2 are the same, but they
are used to enter different target FR system. The
same holds for the reconstructed face images in
attacks 3-5.

Ablation Study To evaluate the effect of
WGAN in training our mapping network and the
effect of each term in our loss function (i.e., Eq.
1), we consider the ArcFace model in the white-
box scenario and train different face reconstruc-
tion networks with different loss functions. Then,
we attack a system with the ArcFace model as
a feature extractor (i.e., attack 1) and compare
the SARs as reported in Table 6. According to
these results, the proposed adversarial training
has a significant effect on our face reconstruction
method. Because we fix the synthesis network
of StyleGAN, the mapped latent codes need to
be of the same distribution as W . Otherwise,
the generated image is not face-like and training
fails to converge. The WGAN training in our
method helps our mapping network to learn the
distribution of StyleGAN’s intermediate latent
space, and thus the synthesis network generates
face-like images. When we use the WGAN training and based on the results in Table 6, the ID loss
has a high impact on the performance of the template inversion model. While the pixel loss by itself
does not achieve a good performance, it improves the performance of ID loss in our reconstruction
loss function in Eq. 1. This table confirms that the proposed WGAN training and our reconstruction
loss function lead to a more successful attack. More experiments for ablation study on the effect of
different elements in our proposed method are presented in the appendix.

Table 6: Evaluating the effect of each loss term in our loss function in attack 1 against ArcFace
in terms of SAR in the system with FMRs of 10−2 and 10−3 evaluated on the MOBIO and LFW
datasets. The values are in percentage.

WGAN training Reconstruction MOBIO LFW
(Eqs. 4 and 5) Loss Function FMR=10−2 FMR=10−3 FMR=10−2 FMR=10−3

3
Lrec = Lpixel + LID 100.00 92.38 93.64 86.82
Lrec = LID 98.10 82.38 90.56 80.74
Lrec = Lpixel 0 0 0.65 0.07

7
Lrec = Lpixel + LID 0 0 0.32 0.02
Lrec = LID 0 0 0.14 0.02
Lrec = Lpixel 0 0 0.44 0.09

Important Areas in the Reconstructed Face Images As another experiment, we explore important
areas in the reconstructed face images. Finding these areas help us to investigate what features
between the original template and synthetic images fool the face recognition system, and therefore
we can understand what information is encoded in the facial templates. To this end, we apply the
Grad-Cam [Selvaraju et al., 2017] algorithm using the face recognition model on the reconstructed
face images to see which areas of the reconstructed face images are important and cause the facial
templates of our reconstructed face images to be close to the original facial templates. Figure 5 shows
results of applying the Grad-Cam algorithm on sample reconstructed face images using our proposed
method. As the results in this figure show, important areas that cause the reconstructed face images
to have similar templates to the original ones correspond to areas such as eyes, nose, lips, etc. In
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0.773 0.738 0.661 0.768 0.695

Figure 5: Sample face images from the FFHQ dataset and the corresponding important areas in
the reconstructed face images using the Grad-Cam algorithm. The reconstructed face images are
generated from ArcFace templates. In each example, the top image is the output of the Grid-Cam
algorithm, and the bottom images are real (right) and reconstructed (left) images. The value below
each sample is the cosine similarity between the templates of original and reconstructed face images.

particular, the area around the eyes seems to be the most important part in most of the reconstructed
face images. These results also show that the general shape of the face (e.g., thin or chubby face),
hairs, textures, etc., are not often necessarily important in the reconstructed face images, and thus,
we can also conclude that these attributes are not well-encoded in the templates extracted by face
recognition models.
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Figure 6: Sample failure cases images from
the LFW dataset and their corresponding recon-
structed images using our template inversion
method from ArcFace templates in the attack 3
(using ElasticFace for Floss). The values below
each image show the cosine similarity between
the corresponding templates of original and recon-
structed face images.

Limitations Despite the significant perfor-
mance of our method in terms of success attack
rate in all types of attacks reported in Table 4 and
Table 5, the reconstructed face images fail to en-
ter the system in some cases. Figure 6 illustrates
sample failure cases in the attack 3 against Ar-
cFace (using ElasticFace for Floss) on the LFW
dataset. From the failure cases, we can conclude
that there is a bias in the face reconstruction for
specific demographies, like elderly or dark skin
people. Indeed, such kind of bias in the recon-
structed face images is caused by inherent biases
in datasets used to train FR model, the Style-
GAN model, and our mapping network in our
face reconstruction model7.

5 Conclusion

In this paper, we proposed a new method to re-
construct high-resolution realistic face images
from facial templates in a FR system. We used a pre-trained StyleGAN3 network and learned a map-
ping from facial templates to intermediate latent space of StyleGAN within a GAN-based framework.
We proposed our method for whitebox and blackbox scenarios. In the whitebox scenario, the adversary
can use the feature extraction model for training the face reconstruction network; however, in the
blackbox scenario, we assume that the adversary has access to another feature extraction model. In
addition, we consider the threat model where the adversary might impersonate in the same or another
(i.e., transferable attack) FR system. Based on the adversary’s knowledge of the feature extraction
model and the target FR system, we defined five different attacks and evaluated the vulnerability of
SOTA FR systems to our proposed method. Our experiments showed that the reconstructed face
images by our proposed method not only can achieve a high SAR in whitebox and blackbox scenarios,
but also are transferable and can be used to enter target FR systems with a different FR model.

7The biases for different demographies in verification task for ArcFace model are studied in [de Freitas Pereira
and Marcel, 2021]. Similarly, biases in StyleGAN generated images and also the FFHQ dataset (i.e., our training
dataset) are investigated in [Karakas et al., 2022, Tan et al., 2020, Balakrishnan et al., 2020].
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A More Analyses

A.1 Evaluation of Whitebox and Blackbox Attacks at FMR= 10−2

Table 7 and Table 8 of this appendix report the evaluation of attacks with whitebox and blackbox
knowledge, respectively, of the system from which the template is leaked (i.e., Floss = Fdatabase)
against SOTA FR models at FMR= 10−2 in terms of adversary’s success attack rate (SAR) using
our proposed method on the MOBIO and LFW datasets. As the results in these tables show, our
method outperforms previous methods in the literature.

Table 7: Evaluation of attacks with whitebox knowledge of the system from which the template is
leaked (i.e., Floss = Fdatabase) against SOTA FR models in terms of adversary’s success attack rate
(SAR) using our proposed method on the MOBIO and LFW datasets. The values are in percentage
and correspond to the threshold where the target system has FMR= 10−2. Cells are color coded
according the type of attack as defined in Section 2 of the paper for attack 1 ( light gray ) and attack 2

( dark gray ).

Fdatabase
MOBIO LFW

ArcFace ElasticFace HRNet AttentionNet Swin ArcFace ElasticFace HRNet AttentionNet Swin
ArcFace 100.00 93.81 80.00 81.90 85.24 93.64 90.89 68.08 62.75 76.24
ElasticFace 90.95 93.33 78.57 83.81 84.29 87.88 92.80 71.82 64.24 75.70

Table 8: Evaluation of attacks (with blackbox knowledge of the system from which the template is
leaked i.e., Fdatabase) against SOTA FR models in terms of adversary’s success attack rate (SAR) using
different methods on the MOBIO and LFW datasets. The values are in percentage and correspond to
the threshold where the target system has FMR= 10−2. M1: NbNetB-M [Mai et al., 2018], M2:
NbNetB-P [Mai et al., 2018], M3: [Dong et al., 2021], M4: [Vendrow and Vendrow, 2021], and M5:
[Dong et al., 2023]. Cells are color coded according the type of attack as defined in Section 2 of the
paper for attack 3 ( lightest gray ), attack 4 ( middle dark gray ), and attack 5 ( darkest gray ).

Fdatabase Floss Ftarget
MOBIO LFW

M1 M2 M3 M4 M5 Ours M1 M2 M3 M4 M5 Ours

ArcFace ElasticFace

ArcFace 26.67 49.05 20.48 67.14 85.71 89.52 26.66 61.66 28.31 76.98 87.25 87.85
ElasticFace 11.90 49.52 16.19 34.29 60.95 86.67 32.42 66.61 23.05 57.84 74.31 87.43

HRNet 10.48 24.76 10.00 26.19 54.28 79.05 18.69 43.21 17.37 33.55 50.22 60.93
AttentionNet 11.43 38.10 18.10 24.29 54.76 80.48 10.84 31.88 13.31 26.73 44.99 53.86

Swin 10.48 45.24 10.95 29.52 58.09 82.86 14.79 45.80 16.98 38.03 57.71 67.80

ElasticFace ArcFace

ArcFace 17.14 49.05 20.95 47.14 79.91 95.24 33.08 67.89 26.35 57.48 73.80 91.23
ElasticFace 30.00 70.95 25.7 75.24 88.80 94.76 52.99 81.74 33.53 79.62 88.80 93.34

HRNet 8.10 47.14 15.24 31.43 67.14 83.81 29.27 60.34 23.22 39.06 62.01 76.68
AttentionNet 12.86 47.14 23.43 40.95 66.19 87.14 18.53 46.36 17.78 31.53 55.29 69.45

Swin 10.00 54.76 13.81 37.14 68.57 89.05 24.50 60.19 21.40 41.13 65.82 80.15

A.2 Ablation Study

Table 9: Evaluating the effect of ID loss term in our
loss function in attack 3 against HRNet in terms of
SAR in the system with FMRs of 10−2 and 10−3

evaluated on the MOBIO and LFW datasets. The
values are in percentage.

Floss in MOBIO LFW
ID loss FMR=10−2 FMR=10−3 FMR=10−2 FMR=10−3

ArcFace 91.90 86.19 76.01 48.22
ElasticFace 86.71 82.38 72.59 43.71

Ablation Study on the Effect of Feature Ex-
tractor in the ID loss To evaluate the effect
of feature extractor in our loss function, we
consider attack 3 on HRNet templates and
use ArcFace and ElasticFace for Floss(.) in
our loss function. Table 9 of this appendix
reports the result of this ablation study. Com-
paring the results of different face recognition
models used as Floss(.) in our loss function,
we can see that the mapping which is trained
using ArcFace achieves a higher SAR that the
mapping that is trained with ElasticFace.
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Moreover, comparing these results with the recognition performances of ArcFace and ElasticFace
reported in Table 2 of the paper, we can conclude that a face recognition method with a higher
recognition performance can lead to a better reconstruction when used as Floss in the blackbox attack
using our proposed method.

Ablation Study on the Effect of Noise in our WGAN Training To evaluate the effect of noise
used in our GAN training, we implement another ablation with the same configuration used for our
ablation study in the paper (i.e., attack 1 against ArcFace), and we train two networks with and
without noise in the input of the mapping network. Table 10 of this appendix reports the result of our
ablation study. As this table shows, using noise in our WGAN training improves the performance of
our face reconstruction method.

Table 10: Evaluating the effect of using noise in our
method in attack 1 against ArcFace in terms of SAR
in the system with FMRs of 10−2 and 10−3 evaluated
on the MOBIO and LFW datasets. The values are in
percentage.

MOBIO LFW
FMR=10−2 FMR=10−3 FMR=10−2 FMR=10−3

with noise 100.00 92.38 93.64 86.82
without noise 97.14 74.76 89.19 77.72

It is noteworthy that generally, in training
GANs (even in conditional GANs) a noise
(e.g., from Gaussian distribution) is used in
the input of the generator network. The sam-
ples of noise in the input help the generator
to learn the distribution of the output space,
and therefore help the generator network to
generate outputs from the same distribution
of real data. The discriminator (or critic in
WGAN) network tries to distinguish if the
sample output is from the distribution of real
data or not. In other words, adding random noise in the input makes the training stochastic which is
suitable for learning a distribution. In our problem, it is very important that the generated latent code
is from the same distribution as the intermediate latent spaceW of StyleGAN. In particular, if the
generated latent code is not in the same distribution ofW , it can easily lead to a non-face-like image
at the output of StyleGAN.

Table 11: Evaluating the effect of mapping space in
our method in attack 1 against ArcFace in terms of
SAR in the system with FMRs of 10−2 and 10−3

evaluated on the MOBIO and LFW datasets. The
values are in percentage.

Mapping MOBIO LFW
Space FMR=10−2 FMR=10−3 FMR=10−2 FMR=10−3

W 100.00 92.38 93.64 86.82
Z 71.42 41.42 75.94 57.18

Ablation Study on the Mapping Space To
evaluate the effect of the mapping space in
our proposed method, we consider attack 1
on against ArcFace model, and train mapping
to input latent space Z and the intermediate
latent spaceW of StyleGAN. Table 11 of this
appendix reports the result of our ablation
study.

As the results in this table show, mapping
to the intermediate latent space W leads to
a higher performance. This is because the
intermediate latent space has more information and is more controllable than input space Z , which
is originally of Gaussian distribution for noise in StyleGAN. This ablation study highlights the
importance of mapping to the intermediate latent space W of StyleGAN, which has not been
proposed in the literature for template inversion.

A.3 Using a Different Face Generator Network

In our experiments, we used StyleGAN which is one of the most popular face generator models in
the literature. However, our method can also be used with other face generator networks. As another
experiment, we use StyleSwin [Zhang et al., 2022], which is another face generator model based on
transformers. Figure 7 of this appendix shows the reconstructed face images from ArcFace templates
using StyleSwin in our method instead of StyleGAN. We used a similar mapping network and learned
a mapping from facial templates to the intermediate latent space of StyleSwin. As these results show,
our method can also be used with other face generator networks.

A.4 Application of Our Method for Face Recognition Models with Different Inputs/Outputs

While we use three different face recognition models in our problem formulation, since these models
are applied in separate stages, there is no issue if the inputs and outputs (e.g., pre-processing steps or
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Figure 7: Sample face images from the FFHQ dataset and their corresponding reconstructed images
from ArcFace templates using our template inversion method with StyleSwin [Zhang et al., 2022]
as the face generator model. The values below each image show the cosine similarity between the
corresponding templates of original and reconstructed face images.

dimensions) be different in each of these face recognition models. For differences in inputs (face
images), because each of these models is applied independently on the given face image, the required
pre-processing can be considered within the function of the face recognition model in our problem
formulation. For differences in outputs (face templates), since the facial templates extracted by each
model are compared to facial templates extracted by the same model, there is no conflict in the
dimensions. The only point to be noted is that the input of our mapping network should have the
same dimension as the templates of .

Let us consider the complete pipeline of our problem formulation as depicted in Figure 2 of the
paper. The first face recognition model (i.e., Fdatabase) uses its own pre-process and extracts facial
templates from face images captured by the camera of the face recognition system (from which the
template is leaked). These facial templates (extracted from Fdatabase) are then used as input to our
face reconstruction model. Therefore, the input of our mapping should have the same dimension as
templates of Fdatabase. In any case, the output of the face reconstruction network is a high-resolution
(1024× 1024) face image, regardless of the dimension of the input facial template. During training,
the generated high-resolution face image is first pre-processed as required by Floss (i.e., normalised,
resized and aligned based on coordinates required by Floss), and the extracted templates are compared
with templates of the original image extracted from Floss (with the required pre-processing for Floss).
During inference (i.e., attacking the target FR system), however, the generated high-resolution face
image is pre-processed as required by Ftarget. Therefore, there is no conflict in the inputs/outputs in
our pipeline.

Table 12: Evaluation of success attack rate for TI
attack using VGGFace templates (as Fdatabase) using
ArcFace as Floss in attack against FR systems with
different models (as Ftarget). Note that pre-processing
(normalization and alignment coordinates) of VG-
GFace is different than all target models and its input
resolution is 224× 224. The input resolution for Arc-
Face (used as Floss) and ElasticFace is 112× 112 but
for Swin is 224 × 224. The templates extracted by
VGGFace has 2048 dimensions, while templates of
ArcFace, ElasticFace, and VGGFace have 512 dimen-
sion.

ArcFace ElasticFace Swin

FMR = 10−2 92.92 93.10 83.97
FMR = 10−3 86.61 82.39 72.89

In our experiments reported in the paper, all
face recognition models except Swin take in-
put with 112× 112 resolution. However, the
Swin model takes input with 224× 224 res-
olution. The dimensions of facial templates
extracted by all other face recognition models
(in Table 3 of the paper) in our experiments
are similar and equal to 512. To show that our
method can also be used in case of different
dimensions of facial templates and to show-
case another face recognition model with dif-
ferent pre-processing, as a new experiment,
we use a new model, VGGFace [Parkhi et al.,
2015], with a different dimension of facial
templates (2048-dimension) and different in-
put image resolution (224× 224) which has
a different normalization as well as different
landmark coordinates for face alignment. We use ArcFace as our Floss and evaluate the reconstructed
face images in attacks against different face recognition systems (as Ftarget) on the LFW dataset.
The results in Table 12 of this appendix show that our proposed method can be applied in the case
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where the inputs/outputs of face recognition models in our problem formulation (Fdatabase, Floss, and
Ftarget) are different, and still achieves high success attack rates against face recognition systems with
different inputs/outputs.

B Ethics Statement

Motivations The proposed face reconstruction method is presented with the motivation of showing
vulnerability of face recognition systems to template inversion attacks. We hope this work encourages
researchers of the community to investigate the next generation of safe and robust face recognition
systems and to develop new algorithms to protect existing systems. In addition, we should note that
the project on which the work has been conducted has passed an Institutional Ethical Review Board
(IRB).

Ethics Considerations While the proposed method might pose a social threat against unprotected
systems, we do not condone using our work with the intent of attacking a real face recognition system
or other malicious purposes. We should, however, note that for the next generation of safe face
recognition systems, any kind of potential attacks should be completely studied by the researchers;
and then based upon such vulnerability studies, new protection and defense algorithms will be
proposed by the research community in the future. To facilitate future studies, we publish source
code of our work as described in Section C of this appendix.

Mitigation of such Attacks This paper demonstrates an important privacy and security threat
to the state-of-the-art unprotected face recognition systems. Along the same lines, data protection
frameworks, such as the European Union General Data Protection Regulation (EU-GDPR) [European
Council, 2016], put legal obligations to protect biometric data as sensitive information. To this
end and to prevent such attacks to face recognition systems, several biometric template protection
algorithms are proposed in the literature [Nandakumar and Jain, 2015, Sandhya and Prasad, 2017,
Kaur et al., 2022, Kumar et al., 2020, Shahreza et al., 2022, 2023].

C Reproducibility Statement

In our experiments, we use PyTorch package and the pre-trained model of StyleGAN38 and
StyleSwin9 to generate high-resolution face images. We train our mapping network for 16 epochs
with an initial learning rate of 0.1 using Adam optimizer [Kingma and Ba, 2015] and divide the
learning rate by 2 every three epochs. Training our mapping network using our proposed method
takes around two days on a system equipped with an NVIDIA GeForce RTXTM 3090. We build
face recognition pipelines using Bob [Anjos et al., 2012, 2017] toolbox10. The source code of our
experiments is publicly available11 to help reproduce our results.

D Licenses and Copyright Permissions

Datasets We have signed the licenses (GDPR compliance) to use from the data controller of any of
the datasets used in this paper (i.e., MOBIO, LFW, and FFHQ) and followed the terms of use of these
datasets in this paper. We have also cited the corresponding paper for each dataset.

Models We used pretrained models of following deep neural networks and followed the license of
each one in implementing our experiments:

• ArcFace, ElasticFace, and VGGFace face recognition models implemented in Bob [Anjos
et al., 2012, 2017] toolbox (under BSD 3-Clause License)

• HRNet, AttentionNet, and Swin face recognition models implemented in FaceX-Zoo [Wang
et al., 2021] toolbox (under Apache License, Version 2.0)

8Available at https://github.com/NVlabs/stylegan3
9Available at https://github.com/microsoft/StyleSwin

10Available at https://www.idiap.ch/software/bob/
11Available at https://gitlab.idiap.ch/bob/bob.paper.neurips2023_face_ti
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• StyleGAN3 (official) model published under Nvidia Source Code License12.
• StyleSwin (official) model published under MIT License.

12Available at https://github.com/NVlabs/stylegan3/blob/main/LICENSE.txt
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