
A Theoretical Validation of Balanced Division

Supposing there is no prior knowledge regarding the distribution of unlearning requests, it is optimal to presume
that users submit requests with equal probability. Under this condition, a balanced division in the ensemble
retraining framework can achieve maximum unlearning efficiency.

Proof. Let hi denote the training overhead of shard Si, which is in proportion to the shard size, i.e., the number
of samples in the shard. Since the users submit unlearning requests with equal probability, the probability of a
request located in shard Si is Pi = hi/Z where Z =

∑
j hj . Thus, the expectation of retraining overhead when

dealing with an unlearning request is

E(H) =

k∑
i=1

Pi · hi =
1

Z

k∑
i=1

h2
i . (6)

According to Cauchy-Schwarz Inequality [2], for n random variables xi, we can get a lower bound of
∑

i x
2
i as:

n∑
i=1

x2
i ≥

(
∑n

i=1 xi)
2

n
. (7)

Taking it into (6), we have

E(H) =
1

Z

k∑
i=1

h2
i ≥ Z

k
. (8)

We can easily find that setting hi = Z/k achieves this lower bound, which indicates that a balanced division
achieves the maximum unlearning efficiency.

B Sinkhorn Algorithm

In this section, we provide the details of optimizing the objective of the optimal balanced clustering algorithm.
Firstly, we smooth the objective with an entropic regularization term:

min
w∈Γ

[
k∑

j=1

N∑
i=1

wij · ‖xi − µj‖
2
2 + ε ·

k∑
j=1

N∑
i=1

wij · (log(wij)− 1)

]
s.t. ‖w‖1=1,w�0,

∑
i wij=

1
k
,
∑

j wij=
1
N

. (9)

We rewrite Eq (9) with Lagrange multipliers as

max
f ,g

min
w

J =

{
k∑

j=1

N∑
i=1

wijcij + ε ·
k∑

j=1

N∑
i=1

wij · (log(wij)− 1)−
k∑

j=1

fj

[(
N∑
i=1

wij

)
− 1

k

]

−
N∑
i=1

gi

[(
k∑

j=1

wij

)
− 1

N

]}
, cij = ‖xi − µj‖

2
2. (10)

Taking the differentiation w.r.t. wij on Eq (10), we have

∂J
∂wij

= 0 ⇒ cij + ε log(wij)− fj − gi = 0. (11)

To update our variables, we first fix gi and update fj with

f
(t+1)
j = ε

{
log

(
1

k

)
− log

[
N∑
i=1

exp

(
g
(t)
i − cij

ε

)]}
. (12)

Then we fix fj and update gi with

g
(t+1)
i = ε

{
log

(
1

N

)
− log

[
k∑

j=1

exp

(
f
(t)
j − cij

ε

)]}
. (13)

In summary, we can iteratively update fj and gi until we obtain the final solutions.

14



Table 4: Running time of the learning process on ML-10M.

ML-10M DMF LightGCN
RecEraser UltraRE RecEraser UltraRE

Stage I 872.53m 259.18s 879.06m 257.83s
Stage II 213.55s 208.44s 860.12s 852.32s
Stage III 83.74s 67.26s 384.50s 376.57s

Total 877.48m 534.88s 899.80m 1,486.72s

C Additional Experiments on the Large-scale dataset

As illustrated in Section 7, current experiments do not sufficiently demonstrate the efficiency enhancement of
UltraRE, because the majority of time is spent during stage II (independent training) while the enhancements
occur in stages I (non-overlapping division) and III (model combination). Thus, following [7], we further conduct
experiments on ML-10M (the largest dataset used in [7]) with 50 shards (a large shard number), and report the
results in Table 4. From it, we observe that UltraRE significantly improves efficiency compared to RecEraser.
Specifically, in stages I and III, UltraRE demonstrates average efficiency enhancements of 20,227.87% and
13.30% respectively. Note that, in the large-scale dataset, our proposed clustering algorithm (OBC) outperforms
the BKM used in RecEraser, reducing clustering time from several hours to just a few minutes (in stage I,
872.53m/879.06m vs 259.18s/257.83s). The experimental results demonstrate higher efficiency improvements
when compared to the results reported in the main text, providing additional evidence of the substantial efficiency
enhancements achieved by our method.

15


