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Abstract

With growing concerns regarding privacy in machine learning models, regulations
have committed to granting individuals the right to be forgotten while mandating
companies to develop non-discriminatory machine learning systems, thereby fuel-
ing the study of the machine unlearning problem. Our attention is directed toward
a practical unlearning scenario, i.e., recommendation unlearning. As the state-of-
the-art framework, i.e., RecEraser, naturally achieves full unlearning completeness,
our objective is to enhance it in terms of model utility and unlearning efficiency. In
this paper, we rethink RecEraser from an ensemble-based perspective and focus
on its three potential losses, i.e., redundancy, relevance, and combination. Under
the theoretical guidance of the above three losses, we propose a new framework
named UltraRE, which simplifies and powers RecEraser for recommendation
tasks. Specifically, for redundancy loss, we incorporate transport weights in the
clustering algorithm to optimize the equilibrium between collaboration and balance
while enhancing efficiency; for relevance loss, we ensure that sub-models reach
convergence on their respective group data; for combination loss, we simplify the
combination estimator without compromising its efficacy. Extensive experiments
on three real-world datasets demonstrate the effectiveness of UltraRE. The source
codes are available at https://github.com/ZhangYizhao/UltraRE.

1 Introduction

Machine Learning (ML) models have made significant strides in various domains, including natural
language processing [36], image recognition [15], and recommender systems [18, 27, 28]. However,
privacy concerns arise due to individual data involved in training ML models. These concerns are
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mainly twofold. Firstly, the General Data Protection Regulation (GDPR) [44] provides individuals
with the right to request the removal of their data, including any impact the data may have on the
trained models, i.e., the right to be forgotten. Secondly, the Algorithmic Accountability Act [31]
requires companies to evaluate the effect of their ML systems on bias and discrimination.

Machine unlearning is a practical approach that promotes privacy in ML systems by removing
previously used data and learned information from ML models. Individuals can remove sensitive
information that is learned through their data, while companies can proactively unlearn biased [32]
or inaccurate [24] data. Unlearning methods can be divided into two approaches based on the level
of completeness, namely exact unlearning (full completeness), and approximate unlearning (partial
completeness).

In this paper, we concentrate on recommendation unlearning. The personalized recommendation is
a typical scenario that urgently requires unlearning because (i) recommender systems rely heavily
on individual data, and (ii) the performance of recommendation is highly sensitive to the quality of
training data [40]. Existing recommendation unlearning method [7] follows the Exact Unlearning
(EU) approach. As retraining is an algorithmic way to ensure fully complete unlearning, EU approach
is mainly developed on the ensemble retraining framework [4, 26, 7, 48]. Similar to the idea of
ensemble learning [39], the ensemble retraining framework involves dividing the dataset into non-
overlapping shards, training a sub-model for each shard independently, and ultimately combining all
sub-models. The ensemble retraining framework limits retraining overhead to sub-models, thereby
avoiding retraining from scratch on the entire dataset.

However, the ensemble retraining framework’s non-overlapping division isolates user and item
collaboration, which leaves considerable room for performance improvement in recommendation
tasks. Guided by the intuition of collaboration preservation, RecEraser groups similar data together
and combines sub-models with attention networks. In this paper, we analyze RecEraser as an ensemble
system through a theoretical lens, and find that i) existing clustering algorithms exhibit an incongruity
between the requirements of collaboration and balance, and ii) the usage of attention networks is
not necessary. As shown in Figure 1, the lower bound of error rate B(ε) in an ensemble system
can be decomposed into three components, i.e., redundancy, relevance, and combination loss [34].
Each of these components is associated with a particular stage of the ensemble retraining framework.
Considering the three loss components as a well-grounded set of metrics, we simplify and power the
State-Of-The-Art (SOTA) recommendation unlearning framework, i.e., RecEraser. Specifically, for
redundancy loss (stage I), we incorporate transport weights in the clustering algorithm to pursue the
optimal trade-off between collaboration and balance; for relevance loss (stage II), we ensure that sub-
models reach convergence on their respective shard data; for combination loss (stage III), we simplify
the design of the sub-model combiner to reduce complexity without compromising its efficacy. As a
result, we propose a novel recommendation unlearning framework named Ultra RecEraser (UltraRE)
that offers greater model utility and efficiency while still achieving full completeness. The main
contributions of this paper are summarized as follows:

• We propose a novel ensemble retraining framework (UltraRE) to address the problem of
recommendation unlearning. UltraRE enhances both model utility and unlearning efficiency
while achieving unlearning completeness at the algorithmic level.

• During stage I (non-overlapping division), we propose an optimal balanced clustering
algorithm that transforms the discrete clustering problem into a continuous optimization
process while incorporating a balanced constraint to achieve both balanced clustering and
minimal inertia simultaneously.

• During stage III (model combination), we take an empirical investigation into the choice of
model combiners, and simplify the complexity of model combiner without compromising
model utility.

• We empirically validate and demonstrate the proposed framework through extensive experi-
ments on three real-world datasets in terms of model utility and unlearning efficiency.

2 Preliminary

In this section, we first briefly introduce the goals and targets in recommendation unlearning, followed
by the error decomposition of an ensemble system.
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Figure 1: Decomposition of error rate [34] in the ensemble retraining framework which is the SOTA
framework for model-agnostic exact unlearning and recommendation unlearning.

2.1 Recommendation Unlearning

Unlearning Goals. As introduced in [7, 26], there are mainly three goals for an unlearning task:
(G1) Unlearning completeness, which requires completely eliminating the impact of target data from
a previously trained model; (G2) Unlearning efficiency, which entails maximizing the efficiency of
unlearning while minimizing the need for computationally expensive retraining; and (G3) Model
utility, which ensures that the unlearned model can achieve recommendation performance comparable
to that of the model retrained from scratch.

As the ensemble-retaining framework belongs to the EU approach, which naturally achieves G1 at
an algorithmic level, i.e., the highest level of completeness [43]. In this paper, our objective is to
enhance the quality of the ensemble-retraining framework within the recommendation context, with a
view to advancing G2 and G3.

Unlearning Targets. The concept of training data holds a multifaceted view, resulting in different
unlearning targets. In the context of personalized recommendation, the user-item interaction serves
as the training data. Considering ratings as a form of user-item interaction, the unlearning target may
differ based on the perspective, either focusing on the user-wise, item-wise, or sample-wise aspects.
For instance, user-wise unlearning refers to unlearning all interactions made by the specific target
user(s). In this paper, we focus on the ensemble retraining framework, which is versatile and can be
applied to any type of unlearning target.

2.2 Ensemble System

Ensemble learning has proven to be successful in various fields of machine learning. An ensemble
system involves combing multiple models, such as bagging [5, 23], stacking [46], and mixture of
experts [20, 42]. Early studies have been guided by the intuition that ensemble systems achieve
better performance when employing a combination of accurate and diverse models. From a theo-
retical standpoint, using Fano’s inequality of information theory, [34] decomposes the error rate of
an ensemble system into three components, i.e., redundancy (model diversity), relevance (model
accuracy), and combination (information lost during model combination) loss. As shown in Figure 1,
the aforementioned ensemble retraining framework is basically an ensemble system. We divide the
ensemble retraining into three stages, i.e., non-overlapping division, independent training, and model
combination. Each stage is associated with one specific error component.

3 Related Work

3.1 Machine Unlearning

Machine unlearning is the process of removing the influence of specific training data, i.e., unlearning
target, from a learned model [35]. A naive approach to achieve this is by retraining the model from
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scratch on the updated dataset that excludes the target. However, this approach can be computationally
prohibitive in practice. Based on the degree of unlearning completeness, existing unlearning methods
can be classified into the following two approaches.

Exact Unlearning. This approach aims to ensure that unlearning target is fully unlearned, i.e.,
as complete as retraining from scratch. Cao and Yang [6] achieved this by transforming training
data points into a reduced number of summations to enhance unlearning efficiency. Recently,
Bourtoule et al. [4] proposed an ensemble retraining framework, i.e. SISA, which divides the dataset
into non-overlapping subsets, trains a sub-model on each subset, and combines all sub-models in the
end. This design reduces the retraining overhead to subsets. Similarly, ARCANE [48] divides the
dataset by class and applies one-class anomaly detection training on each subset. However, ARCANE
can only be applied to classification tasks.

Approximate Unlearning. This approach estimates the influence of unlearning target, and removes
the influence through direct parameter manipulation [11, 13, 41, 45]. While theoretically more
efficient than exact unlearning, this approach faces challenges regarding unlearning completeness,
i.e., exactness, due to the inaccurate estimation of influence. In this approach, the influence of
unlearning target is estimated by influence function [21, 22], which is found to be fragile in deep
learning [1]. Recent studies also point out that the influence of individual training data on deep
models is intractable to compute analytically [12].

3.2 Recommendation Unlearning

RecEraser was proposed to achieve unlearning in recommender systems [7]. Following SISA’s
ensemble retraining framework, RecEraser groups similar data together, instead of random divi-
sion. This modification effectively preserves collaborative information necessary for personalized
recommendations. In addition, RecEraser uses an attention-based combination to further enhance
model utility. Similarly, LASER also groups similar data together [26]. However, instead of training
a model on each subset and combining them, LASER trains a model sequentially on each subset
using curriculum learning. While this modification significantly enhances model utility, it comes
at the cost of reduced efficiency. Theoretically, LASER can only accelerate the unlearning speed
two times compared to retraining from scratch, which is generally unsatisfying in practice. Recently,
Approximate recommendation unlearning was proposed to enhance efficiency [25]. However, it still
suffers from common weaknesses of approximate unlearning and is unable to provide algorithmic
unlearning completeness, which exact unlearning achieves.

4 Methodology

In this section, we present our UltraRE for addressing the recommendation unlearning problem.
Following the design of the ensemble retraining framework, we rethink RecEraser from an ensemble-
based perspective. Instructed by the error decomposition theory in ensemble systems (see Figure 1),
we associate each loss component with a specific stage in the ensemble retraining framework. Our
proposed UltraRE refines the design of each stage to minimize its corresponding loss component. In
the following subsections, we describe in detail the modifications we propose for each stage.

4.1 Redundancy Loss (Stage I)

In stage I, the ensemble retraining framework divides the original training data into several non-
overlapping shards.

Random Balanced Division. The original framework (SISA [4], designed for the machine un-
learning problem), uses random balanced division. The assumption that there is no prior knowledge
regarding the distribution of unlearning requests is widely accepted and practical [4, 7, 26]. In the
absence of such knowledge, it is optimal to presume that users submit these requests with equal prob-
ability. Therefore, in order to attain optimal unlearning efficiency, the ensemble retaining framework
needs to achieve balanced division. The theoretical explanation can be found in Appendix A.
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(b) Imbalanced Grouping

Figure 2: An illustration of balanced and imbal-
anced grouping. We conducted an experiment on a
real-world dataset (ML-1M). (a) and (b) are the re-
sults of random balanced division and k-means re-
spectively. Each color block represents one shard.
The size of the block varies with the number of
samples in the shard, with larger blocks represent-
ing more samples.

Balanced k-means. Collecting collaborative
information across users and items is essential
to the performance of recommendation mod-
els. With the intuition of preserving collabora-
tion, RecEraser [7] uses clustering algorithms
to group similar samples together. Additionally,
RecEraser needs to achieve balanced division.
Thus, the balanced clustering algorithms were
proposed [7, 8, 26]. Assume that there are N
input samples x ∈ Rd for clustering. Note that
the input samples can consist of user embedding,
item embedding, or a combination of both de-
pending on the unlearning target, i.e., user-wise,
item-wise, or sample-wise. The core idea of
their proposed algorithm is i) limiting the maxi-
mum number of samples in one shard, typically
|Si| ≤ dN/ke, ii) constructing a priority list for every sample-centroid pair, and iii) assigning each
sample to its destination shard by priority value.

4.1.1 Optimal Balanced Clustering

-means Balanced -means Optimal Balanced Clustering

0.20 0.05

0.10 0.15

0.15 0.10

0.05 0.20

Figure 3: An illustration of different clustering
algorithms. The red block located at coordinate
(xi,µj) represents assigning xi to µj . On the left,
k-means groups samples based solely on their sim-
ilarity, resulting in an imbalanced result. In the
middle, balanced k-means forces a balanced re-
sult by considering a similarity-based priority list.
On the right, Optimal Balanced Clustering (OBC)
incorporates a balanced constraint into the opti-
mization process and assigns samples according to
their transport weight values.

The loss component for stage I is redundancy
loss, which directs ensemble systems to enhance
the diversity among shards [34]. This theoretical
guidance conforms with prior work’s intuition
of collaboration preservation, which proposes
the balanced k-means algorithm to group sim-
ilar samples together [7]. However, to achieve
a balanced division, balanced k-means may not
always assign samples to their optimal clusters.
In practice, as shown in Figure 3, this can re-
sult in a significant number of sub-optimally
assigned samples, which degrades the clustering
performance. To address this incongruity, we
propose an Optimal Balanced Clustering (OBC)
algorithm that achieves an adaptive equilibrium
between sample similarity and shard balance.

Generally speaking, OBC incorporates a bal-
anced constraint into the optimization process.
As illustrated in Figure 3, we obtain the trans-
port weight of assigning an input sample x to a cluster centroid µ through the optimization process.
The input samples are assigned to the cluster with the largest weight. To start with the derivation of
OBC, we first introduce the basic concept of k-means. The k-means algorithm minimizes the total
distance of each sample-centroid pair, namely inertia I. It is formally defined as

I =

k∑
j=1

∑
i∈Sj

‖xi − µj‖22, µj =

∑
i∈Sj

xi

|Sj |
. (1)

Considering x and µ as two variables respectively sampled from subsets X and Y in the Euclidean
space Rd, the problem of inertia minimization can be framed as the Monge-Kantorovich problem.
Problem 1 (Monge-Kantorovich Problem). Given the transport cost function c : X × Y → R, the
objective of the Monge-Kantorovich problem is to find the joint probability measure P : X × Y → R
that minimizes the total transport cost

E[c(X,Y )] = min
P

∫
X×Y

c(x,µ)dP (x,µ). (2)

The Monge-Kantorovich problem offers the advantage of accommodating additional constraints to
the probability measure. Turning back to the inertia minimization problem, we insert a set of transport
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weights w where their summation equals one into Eq (1) to mimic the function of the joint probability
measure P . Then, we can rewrite the objective of k-means as

min
w

[
k∑

j=1

N∑
i=1

wij · ‖xi − µj‖22

]
, s.t.

k∑
j=1

N∑
i=1

wij = 1, wij ∈ {0, 1

N
},

N∑
i=1

wij =
1

k
, (3)

where wij = 1/N denotes assigning xi to µj , and the constraint
∑

j wij = 1/k ensures each
shard is treated equally. By introducing the transport weights w, we can transform the discrete
clustering problem into a continuous optimization process. This transformation allows us to impose
additional constraints on w that facilitate more fine-grained control over the clustering process.
Consequently, we add the constraint

∑
j wij = 1/N to ensure a balanced division. Following the

Monge-Kantorovich framework [3, 30], we also relax the range of w to R+ to guarantee the existence
of solution space for the objective. Finally, the shard assignment of xi is determined by argmaxj wij .
However, the worst-case complexity of computing the optimum for such a transport objective with
additional constraints scales in O(N3) [37]. To enhance efficiency, we utilize Sinkhorn divergence to
accelerate the optimization process [38, 29]. Specifically, we smooth the objective with an entropic
regularization as follows:

min
w∈Γ

[
k∑

j=1

N∑
i=1

wij · ‖xi − µj‖22 + ε ·
k∑

j=1

N∑
i=1

wij · (log(wij)− 1)

]
, (4)

where Γ = {‖w‖1 = 1,w � 0,
∑

i wij = 1
k ,

∑
j wij = 1

N }. The derived new objective can be
efficiently solved through Sinkhorn’s matrix scaling algorithm with a complexity of O(Nk) [9, 10].
The optimization details can be found in Appendix B.

4.2 Relevance Loss (Stage II)

In stage II, the ensemble retraining framework trains a sub-model on each shard independently, which
means sub-models do not interfere with each other during training. The loss component associated
with this stage is relevance loss, which implies that the aim is to enhance the performance of sub-
models. However, to ensure unlearning completeness at the algorithmic level, it is crucial that the
sub-models fully replicate the original model. This includes replicating not only the model structure,
but also hyper-parameters, parameter initialization, and any other relevant elements. Therefore, we do
not break the requirement of full replication and also leave stage II unchanged [4, 7, 8]. We assume
that the shard data is i.i.d. with the original training data and ensure that all sub-models fully replicate
the original model that attains convergence on the original training data. This ensures that sub-models
reach convergence on their respective shard data.

4.3 Combination Loss (Stage III)

In stage III, the ensemble retaining framework combines the sub-models to obtain the final model.
The original framework, i.e., SISA [4], uses an average combiner. However, this is a naive solution,
since various shards may have different contributions to the final model. Thus, the model-based
combiner is proposed by [7, 8]. Specifically, this approach utilizes machine learning models to
determine the combination weights by the following objective:

min
β

E

[
k∑

i=1

`(βiαi, R)

]
+ λ‖β‖22, s.t. ‖β‖1 = 1,β � 0, (5)

where ` is the original loss function for recommendation tasks, R is the recommendation data, αi

denotes the parameters of i-th sub-models, and β denotes the weights of combination. Note that the
parameters of sub-models are fixed during model combination. The L2 regularization parameterized
by λ on β is applied to prevent over-fitting. This approach is akin to the use of meta-estimators
in ensemble systems [33], where they are employed to alleviate information loss during model
combination. As empirically studied by [34], a simple meta-estimator such as Logistic Regression
(LR) proves to be enough on deep models. Building on this insight, we empirically validate the
effectiveness of LR on the recommendation tasks in Section 5.2.3. Our results show that LR can
perform comparably to attention networks [7] while substantially reducing model complexity.
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4.4 Putting Together

Our proposed UltraRE belongs to the ensemble retraining framework and follows the three-stage
structure described in Figure 1. In stage I, we obtain an adaptive equilibrium between sample
similarity and shard balance by optimizing Eq (4) In stage II, we do not interfere with sub-model
training, meeting the requirement of fully replicating the original model. In stage III, we apply LR to
determine the combination weight by optimizing Eq (5).

5 Experiments

We conduct experiments on three real-world datasets to evaluate the performance of our proposed
UltraRE framework. The evaluation mainly focuses on G2 (unlearning efficiency) and G3 (model
utility), as our proposed method (UltraRE) belongs to exact unlearning, which naturally achieves
G1 (unlearning completeness). UltraRE can handle all three types of unlearning targets, i.e., user-
wise, item-wise, and sample-wise. In this paper, we focus on user-wise unlearning without loss of
generality, as it is the most common one in practice. Additionally, we perform an ablation study to
further investigate the effectiveness of modification.

5.1 Experimental Settings

5.1.1 Datasets

Table 1: Summary of datasets.
Dataset User # Item # Rating # Sparsity

ML-100K 943 1,682 100,000 93.695%
ML-1M 6040 3,950 1,000,209 95.814%
ADM 478,235 266,414 836,006 99.999%

We conduct experiments on the fol-
lowing three real-world datasets: i)
MovieLens 100k (ML-100K)2: The
MovieLens datasets are among the
most extensively used in recommen-
dation researchn [14, 16]. ML-100K
contains 100 thousand ratings; ii)
MovieLens 1M (ML-1M): This is a stable version of the MovieLens dataset, containing 1 million
ratings; and iii) Amazon Digital Music (ADM)3: The Amazon dataset contains several sub-datasets
according to the categories of Amazon products. ADM is the sub-dataset containing digital music
reviews. To ensure reliable evaluations, we filter out the users and items that have less than 5
interactions. Specifically, we use 80% of ratings for training, 10% as a validation set for tuning
hyper-parameters, and the remainder for testing. Table 1 summarizes the statistics of three datasets.

5.1.2 Compared Models and Methods

Recommendation Models. Our proposed UltraRE is model-agnostic, enabling its application to
any recommendation model. In this paper, we select two representative recommendation models:
i) a classic model, i.e., Deep Matrix Factorization (DMF) [47], and ii) the SOTA model, i.e. Light-
GCN [18], for testing. Following the original papers, we adopt normalized binary cross entropy loss
and Bayesian personalized ranking loss for DMF and LightGCN respectively, and employ Adam
optimizer to train the above models. We run all experiments for 10 trials and report the average results.
Following [7], we use WMF [19] as a pre-training model to generate user and item embedding for
the purpose of clustering.

Unlearning Methods. We compare UltraRE with the benchmark and the SOTA methods, in-
cluding: i) Retrain: Retraining the model from scratch on the updated dataset; ii) SISA [4]: the
SOTA generic exact unlearning method which is based on ensemble retraining framework; and
iii) RecEraser [7]: the SOTA recommendation unlearning method which modifies SISA to boost
performance in recommendation tasks. Following [4, 7], we set the number of shards to 10 for all
unlearning methods that involve division, i.e., SISA, RecEraser, and UltraRE.

2https://grouplens.org/datasets/movielens/
3http://jmcauley.ucsd.edu/data/amazon/
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Table 2: Running time (s) of the learning process.

ML-100K DMF LightGCN
Retrain SISA RecEraser UltraRE Retrain SISA RecEraser UltraRE

Stage I 0.000 0.013 0.662 0.048 0.000 0.014 0.645 0.050
Stage II 1,442.263 193.317 189.742 190.289 4,422.531 582.659 594.714 591.638
Stage III 0.000 0.001 42.673 31.540 0.000 0.003 383.132 315.822

Total 1,442.263 193.331 233.077 221.877 4,422.531 582.676 978.491 907.510

ML-1M DMF LightGCN
Retrain SISA RecEraser UltraRE Retrain SISA RecEraser UltraRE

Stage I 0.000 0.046 23.904 0.429 0.000 0.058 23.950 0.467
Stage II 3,732.366 376.237 378.475 374.999 11,372.446 1,218.335 1,211.275 1,218.875
Stage III 0.000 0.003 93.519 69.327 0.000 0.004 682.182 624.349

Total 3,732.366 376.286 495.898 444.755 11,372.446 1,218.397 1,917.407 1,843.691

ADM DMF LightGCN
Retrain SISA RecEraser UltraRE Retrain SISA RecEraser UltraRE

Stage I 0.000 0.052 20.864 0.373 0.000 0.054 20.851 0.352
Stage II 2,012.655 207.457 201.769 206.417 6,724.734 698.737 679.051 682.742
Stage III 0.000 0.003 57.352 48.975 0.000 0.004 404.110 374.253

Total 2,012.655 207.512 279.985 255.765 6,724.743 698.795 1,104.012 1,057.347

5.2 Results and Discussion

5.2.1 Unlearning Efficiency (G2)

We use running time to evaluate the efficiency of unlearning. To fully exploit the efficiency of the
ensemble retraining framework, we run all shards in parallel. Specifically, we measure the running
time of each stage during the learning process and report the results in Table 2. As the shard division
(stage I) and combination weights (stage III) are determined during learning and remain unchanged
during unlearning, their time cost during unlearning is negligible during unlearning compared to
retraining (stage II). Since all shards run in parallel, the running time of stage II remains consistent
between learning and unlearning. Therefore, by measuring the running time of stage II during
learning, we can evaluate the running time of unlearning. We run all experiments on the same Ubuntu
20.04 LTS System server with 48-core CPU, 256GB RAM and NVIDIA GeForce RTX 3090 GPU.
From Table 2, we observe that i) compared with Retrain, the ensemble retraining frameworks, i.e.,
SISA, RecEraser, and UltraRE, significantly enhance unlearning efficiency. Although spending more
time in stages I and III, these frameworks decrease the total running time by an average of 85.39%; ii)
Using random balanced division and average combiner, SISA enjoys a notably faster speed than other
ensemble retraining frameworks. Nevertheless, this simple design also limits SISA’s performance
regarding model utility (see Section 5.2.2); and iii) Among the comparison of recommendation
unlearning frameworks, i.e., RecEraser and UltraRE, our proposed UltraRE decreases the running
time of both stages I and III. In stage I, our proposed optimal balanced clustering algorithm can
improve the efficiency by 98.11% on average. This improvement is even greater when dealing with
larger datasets, i.e., ML-1M and ADM. In stage III, we simplify the choice of the model combiner,
resulting in an average efficiency increase of 11.95%.

5.2.2 Model Utility (G3)

We use two common metrics, i.e., Normalized Discounted Cumulative Gain (NDCG) and Hit Ratio
(HR), to evaluate the performance of recommender models [17, 47]. For both metrics, we truncate
the ranked list at 10, and report NDCG@10 and HR@10 during both the learning and unlearning
processes. To simulate user-wise unlearning, we randomly select q% of users to unlearn, where q
is investigated in {5, 10} across all datasets. From Table 3, we observe that i) Retrain achieves the
best performance, suggesting using ensemble retraining frameworks (including SISA, RecEraser, and
UltraRE) may come at the cost of slightly increased error rates. This trade-off occurs because these
frameworks prioritize unlearning efficiency over preserving model utility; ii) The performance of
cluster-based division methods, i.e., RecEraser and UltraRE, surpasses that of the random division
method, i.e., SISA. This implies that by clustering similar samples together, redundancy loss can be

8



Table 3: Recommendation performance during learning and unlearning (G3: model utility). The best
results except Retrain are highlighted in bold. The superscript ∗ indicates p < 0.01 for the t-test of
UltraRE against RecEraser.

ML-100K DMF LightGCN
Retrain SISA RecEraser UltraRE Retrain SISA RecEraser UltraRE

Learn NDCG 0.3956 0.3716 0.3795 0.3847* 0.3997 0.3684 0.3812 0.3859*
HR 0.4374 0.4227 0.4273 0.4326* 0.4395 0.4203 0.4257 0.4312*

Unlearn@5 NDCG 0.3934 0.3709 0.3762 0.3815* 0.3976 0.3677 0.3799 0.3841*
HR 0.4359 0.4222 0.4232 0.4297* 0.4387 0.4201 0.4233 0.4295*

Unlearn@10 NDCG 0.3905 0.3702 0.3734 0.3786* 0.3953 0.3669 0.3793 0.3836*
HR 0.4353 0.4205 0.4183 0.4245* 0.4362 0.4186 0.4221 0.4267*

ML-1M DMF LightGCN
Retrain SISA RecEraser UltraRE Retrain SISA RecEraser UltraRE

Learn NDCG 0.4382 0.3956 0.3973 0.4042* 0.4437 0.3941 0.4171 0.4241*
HR 0.5402 0.5141 0.5134 0.5183* 0.5493 0.4672 0.5160 0.5217*

Unlearn@5 NDCG 0.4398 0.3937 0.3965 0.4031* 0.4403 0.3908 0.4138 0.4189*
HR 0.5411 0.5125 0.5129 0.5179* 0.5464 0.4543 0.5140 0.5206*

Unlearn@10 NDCG 0.4391 0.3914 0.3963 0.4013* 0.4396 0.3912 0.4129 0.4181*
HR 0.5411 0.5108 0.5127 0.5184* 0.5421 0.4495 0.5090 0.5146*

ADM DMF LightGCN
Retrain SISA RecEraser UltraRE Retrain SISA RecEraser UltraRE

Learn NDCG 0.4549 0.4063 0.4234 0.4294* 0.4603 0.4025 0.4281 0.4345*
HR 0.7914 0.7012 0.7230 0.7311* 0.7931 0.6912 0.7406 0.7472*

Unlearn@5 NDCG 0.4551 0.4021 0.4214 0.4273* 0.4594 0.3963 0.4251 0.4311*
HR 0.7915 0.6959 0.7202 0.7283* 0.7945 0.6851 0.7311 0.7403*

Unlearn@10 NDCG 0.4554 0.3973 0.4198 0.4262* 0.4595 0.4043 0.4239 0.4306*
HR 0.7916 0.6772 0.7222 0.7298* 0.7936 0.6781 0.7192 0.7255*

significantly reduced. iii) Our proposed UltraRE demonstrates superior performance compared to
the SOTA recommendation unlearning framework, i.e., RecEraser. On average, our model achieved
an improvement in recommendation metrics of 1.31%, 1.26%, and 1.26%, on ML-100k, ML-1M and
ADM respectively. The improved results can be attributed to UltraRE’s ability to generate better
clustering outcomes while meeting the balance requirement; and iv) Strong performance during the
learning process serves as a reliable indicator of strong performance during unlearning.

5.2.3 Ablation Study

To fully understand the effectiveness of our proposed UltraRE, we conduct ablation studies regarding
the main modifications during stages I (non-overlapping division) and III (model combination), as
well as varying numbers of shards.

OBC BRD BKM KM

ML-100K ML-1M ADM
0

500

1000

1500

In
er

tia

Figure 4: Effect of division (Stage I)

Effect of Division. In stage I, we propose a novel division
algorithm, named Optimal Balanced Clustering (OBC). We
conduct an ablation study to compare OBC with Balanced
Random Division (BRD, used in SISA [4]), Balanced k-means
(BKM, used in RecEraser [7]) and k-means (KM). Although
KM causes the issue of imbalance in clustering, it can still be
a valuable baseline for evaluating division performance. We
use inertia in Eq (1) to evaluate division performance. A lower inertia value indicates better division
performance. We present the results obtained with k = 10 in Figure 4. From it, we observe that
i) Among balanced grouping algorithms, our proposed OBC significantly outperforms BKM (by
46.32% on average) and BRD (by 22.01% on average); ii) OBC also achieves comparable inertia to
KM, indicating that OBC achieves balanced grouping without compromising sample similarity, and
iii) BRD even outperforms BKM. This indicates that the usage of a priority list in BKM leads to a
significant degradation in division performance, making it worse than random division.
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Figure 5: Effect of combination (Stage III).

Effect of Combination. In stage III, we sim-
plify the choice of the model combiner. To
validate our choice, we compare our logistic
regression (LR) based combiner with Average
combiner (AVG which is used in SISA [4]) and
Attention combiner (ATT which is used in Re-
cEraser [7]). As shown in Figure 5, model-based
combiners, i.e., LR and ATT, outperform AVG
by a significant margin. On average, AVG’s per-
formance is decreased by 3.53% on DMF and
6.51% on LightGCN. Among model-based combiners, LR can achieve comparable performance with
ATT while substantially reducing the model complexity.
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Figure 6: Effect of shard number (ML-1M).

Effect of Shard Number. To demonstrate the
robustness of UltraRE, we empirically study
the effect of shard number and compare it with
the SOTA recommendation unlearning frame-
work RecEraser. We investigate the number of
shards S in {10, 20, 50}. As shown in Figure 6,
UltraRE yields consistent improvements over
RecEraser regarding both unlearning efficiency
(time) and model utility (NDCG@10). More-
over, as the shard number increases, UltraRE
exhibits greater efficiency enhancement over RecEraser. This is because a larger shard number
reduces the time taken in stage II, thereby highlighting the efficiency of UltraRE in stages I and III.

6 Conclusion

In this paper, we refine the SOTA exact unlearning framework, i.e., ensemble retraining framework,
in recommendation tasks. Our proposed UltraRE breaks away from the prior work’s intuition
on preserving collaboration [7, 8, 26]. Instead, it is guided by the theoretical analysis of error
decomposition in ensemble systems. Among the three stages in the ensemble retraining framework,
our modifications mainly lie in stages I (non-overlapping division) and III (model combination).
In stage I, we proposed an optimal balanced clustering algorithm that can achieve an adaptive
equilibrium between sample similarity and shard balance. In stage III, we simplify the complexity of
the model combiner without increasing the combination loss. Extensive experiments on three real-
world recommendation datasets demonstrate that UltraRE can not only greatly enhance unlearning
efficiency, but also outperform the SOTA unlearning models in terms of model utility.

7 Broader Impacts and Limitations

Recommendation unlearning can have various implications on society, including addressing issues
related to privacy, fairness, bias, and manipulation. UltraRE can also be generalized to other
unlearning tasks and is especially adept in association-sensitive tasks, e.g., graph learning. A common
limitation of the ensemble retraining framework is the absence of experiments on large-scale datasets
with a large shard number [4, 7, 8, 26]. As shown in Section 5.2.1, the major time of unlearning is
spent on stage II, which cannot fully demonstrate the efficiency of the ensemble retraining framework.
We manage to investigate the effect of large shard number in Section 5.2.3.
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A Theoretical Validation of Balanced Division

Supposing there is no prior knowledge regarding the distribution of unlearning requests, it is optimal to presume
that users submit requests with equal probability. Under this condition, a balanced division in the ensemble
retraining framework can achieve maximum unlearning efficiency.

Proof. Let hi denote the training overhead of shard Si, which is in proportion to the shard size, i.e., the number
of samples in the shard. Since the users submit unlearning requests with equal probability, the probability of a
request located in shard Si is Pi = hi/Z where Z =

∑
j hj . Thus, the expectation of retraining overhead when

dealing with an unlearning request is

E(H) =

k∑
i=1

Pi · hi =
1

Z

k∑
i=1

h2
i . (6)

According to Cauchy-Schwarz Inequality [2], for n random variables xi, we can get a lower bound of
∑

i x
2
i as:

n∑
i=1

x2
i ≥

(
∑n

i=1 xi)
2

n
. (7)

Taking it into (6), we have

E(H) =
1

Z

k∑
i=1

h2
i ≥ Z

k
. (8)

We can easily find that setting hi = Z/k achieves this lower bound, which indicates that a balanced division
achieves the maximum unlearning efficiency.

B Sinkhorn Algorithm

In this section, we provide the details of optimizing the objective of the optimal balanced clustering algorithm.
Firstly, we smooth the objective with an entropic regularization term:

min
w∈Γ

[
k∑

j=1

N∑
i=1

wij · ‖xi − µj‖
2
2 + ε ·

k∑
j=1

N∑
i=1

wij · (log(wij)− 1)

]
s.t. ‖w‖1=1,w�0,

∑
i wij=

1
k
,
∑

j wij=
1
N

. (9)

We rewrite Eq (9) with Lagrange multipliers as

max
f ,g

min
w

J =

{
k∑

j=1

N∑
i=1

wijcij + ε ·
k∑

j=1

N∑
i=1

wij · (log(wij)− 1)−
k∑

j=1

fj

[(
N∑
i=1

wij

)
− 1

k

]

−
N∑
i=1

gi

[(
k∑

j=1

wij

)
− 1

N

]}
, cij = ‖xi − µj‖

2
2. (10)

Taking the differentiation w.r.t. wij on Eq (10), we have

∂J
∂wij

= 0 ⇒ cij + ε log(wij)− fj − gi = 0. (11)

To update our variables, we first fix gi and update fj with

f
(t+1)
j = ε

{
log

(
1

k

)
− log

[
N∑
i=1

exp

(
g
(t)
i − cij

ε

)]}
. (12)

Then we fix fj and update gi with

g
(t+1)
i = ε

{
log

(
1

N

)
− log

[
k∑

j=1

exp

(
f
(t)
j − cij

ε

)]}
. (13)

In summary, we can iteratively update fj and gi until we obtain the final solutions.
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Table 4: Running time of the learning process on ML-10M.

ML-10M DMF LightGCN
RecEraser UltraRE RecEraser UltraRE

Stage I 872.53m 259.18s 879.06m 257.83s
Stage II 213.55s 208.44s 860.12s 852.32s
Stage III 83.74s 67.26s 384.50s 376.57s

Total 877.48m 534.88s 899.80m 1,486.72s

C Additional Experiments on the Large-scale dataset

As illustrated in Section 7, current experiments do not sufficiently demonstrate the efficiency enhancement of
UltraRE, because the majority of time is spent during stage II (independent training) while the enhancements
occur in stages I (non-overlapping division) and III (model combination). Thus, following [7], we further conduct
experiments on ML-10M (the largest dataset used in [7]) with 50 shards (a large shard number), and report the
results in Table 4. From it, we observe that UltraRE significantly improves efficiency compared to RecEraser.
Specifically, in stages I and III, UltraRE demonstrates average efficiency enhancements of 20,227.87% and
13.30% respectively. Note that, in the large-scale dataset, our proposed clustering algorithm (OBC) outperforms
the BKM used in RecEraser, reducing clustering time from several hours to just a few minutes (in stage I,
872.53m/879.06m vs 259.18s/257.83s). The experimental results demonstrate higher efficiency improvements
when compared to the results reported in the main text, providing additional evidence of the substantial efficiency
enhancements achieved by our method.
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