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Abstract

This work proposes POMP, a prompt pre-training method for vision-language
models. Being memory and computation efficient, POMP enables the learned
prompt to condense semantic information for a rich set of visual concepts with over
twenty-thousand classes. Once pre-trained, the prompt with a strong transferable
ability can be directly plugged into a variety of visual recognition tasks including
image classification, semantic segmentation, and object detection, to boost recogni-
tion performances in a zero-shot manner. Empirical evaluation shows that POMP
achieves state-of-the-art performances on 21 datasets, e.g., 67.0% average accuracy
on 10 classification datasets (+3.1% compared to CoOp) and 84.4 hIoU on open-
vocabulary Pascal VOC segmentation (+6.9 compared to ZSSeg). Our code is
available at https://github.com/amazon-science/prompt-pretraining.

1 Introduction

It has been a new norm to formulate visual recognition tasks (e.g., image classification, object
detection, and semantic segmentation) as language-guided visual recognition or vision-and-language
problems [42, 19, 61]. In language-guided visual recognition, categories of images are represented
by natural language rather than discrete label IDs, and the semantics between images and their
corresponding textual descriptions are often aligned via a constrastive loss during training [42]. Model
inference also becomes an image-to-text matching problem, where text prompts like “a photo of a
[CLASSNAME]" are curated as text descriptions of images. By varying the [CLASSNAME] placeholder
and computing the similarity between text descriptions and images, we can identify the most suitable
class name and consider it as the predicted target class. A significant benefit of this language-guided
paradigm is that it supports open-vocabulary inference, that is, zero-shot recognition for arbitrary
categories that may not even have been seen during training, thanks to the flexibility in modifying the
class names in the textual prompt [42, 45].
As the context for class names, the text prompt plays a critical role in language-guided visual
recognition models. A good prompt should holistically express the semantics of visual categories to
better elicit the knowledge learned by vision-language models (VLMs) during pre-training. There are
two popular types of prompts: hard prompts (e.g., a photo of a [CLASSNAME]) and soft prompts.
Soft prompts are learnable token embeddings that can be fine-tuned given some input data, and have
been demonstrated to be more effective and stable on downstream tasks than hard prompts [65, 35, 63].
However, traditional prompt tuning methods usually fine-tune the soft prompt on task-specific datasets
with a limited number of class labels, making it difficult to generalize to novel classes and across
tasks [45, 2]. For example, when transferred between the two downstream datasets of Flowers102 [40]
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and DTD [9], the soft prompt fine-tuned on DTD only achieves 33.4% accuracy on Flowers102,
significantly lower than the 61.8% accuracy of a hand-crafted prompt on Flowers102, demonstrating
a severe overfitting issue [49].
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Figure 1: POMP outperforms previous state-of-the-
art models on a broad range of visual recognition
tasks and datasets.

In this work, we aim to learn a universal soft
prompt that covers a broad set of visual concepts
while being task-agnostic. Specifically, we pro-
pose PrOMpt Pre-training (POMP), a method
for scaling up prompt learning on the ImageNet-
21K dataset, which has over twenty-thousand
classes organized by the WordNet [37] hierarchy.
The set of classes in ImageNet-21K includes
general and long-tail visual categories of various
semantic granularities, which have been proven
to provide better downstream results for large
models [30, 14]. Pre-training on this large-scale
dataset helps condense semantic information
into the soft prompt for universal visual discrim-
ination. Once pre-trained, this universal prompt
(i) can be easily applied to downstream datasets
to improve model performance in zero-shot set-
tings; (ii) is compatible with both region-level
and pixel-level visual patterns, making it useful
for various vision tasks such as object detection
and semantic segmentation.
However, pre-training prompt with such a massive class set is challenging due to generally prohibitive
computational costs. During prompt pre-training, the activation of the whole text encoder needs
to be kept independently for every class and the memory consumption increases proportionally to
the number of classes. In short, pre-training prompts on ImageNet-21K requires over 300 GB GPU
memory with traditional methods like CoOp [65]. In POMP, we solve this issue with a simple class
sampling strategy, local contrast, which reduces the GPU memory requirement dramatically to less
than 16 GB. Moreover, we propose a local correction strategy to reduce the bias caused by class
sampling and improve the generalization of the pre-trained prompt.
Experimental results in Figure 1 show that POMP outperforms previous state-of-the-art (SOTA)
models on a broad range of visual recognition tasks and datasets. Specifically, compared to zeroshot
CLIP [42], POMP improves the accuracy on ImageNet-21K by a gain of +2.9%. It also achieves an
average accuracy of 67.0% when transferred to 10 downstream image classification datasets, which is
3.1% higher than CoOp [65]. For semantic segmentation, POMP achieves 39.1 hIoU on open-vocab
COCO Stuff and 84.4 hIoU on open-vocab Pascal VOC, outperforming ZSSeg [61] by +1.3 and
+6.9 hIoU, respectively. For object detection, POMP achieves 57.9 and 22.9 AP50 when transferred
from LVIS to COCO and Object365, surpassing Detic [67] by +1.9 and +0.8 AP50, respectively.

2 Related Work

2.1 Language-Guided Visual Recognition

Language-guided visual recognition usually leverages VLMs as foundation models. Representative
VLMs like CLIP [42] consist of an image encoder and a text encoder, which are used to encode
image-text pairs into a joint feature space for learning the semantic alignment between vision and
language [7, 46]. After being pre-trained on large-scale image-text pairs, CLIP-like models [28, 62, 33]
are able to map images to their corresponding language descriptions, allowing visual recognition to
generalize in the wild. This language-driven modeling paradigm also facilitates other vision tasks,
including semantic segmentation [61, 32, 43, 13] and object detection [19, 15, 67]. These works
typically designed a two-stage framework: it first leverages the pre-trained proposal network to extract
features of specific visual patterns (e.g., segment mask and region) and then conducts classification in
the same matching style as CLIP. The class descriptions for matching are synthesized using prompts,
and in this work, we pre-train a soft prompt for VLMs on ImageNet-21K to further enhance their
zero-shot generalization ability.
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2.2 Prompt Tuning

In order to adapt VLMs to downstream tasks, recent research proposed a parameter-efficient tuning
method named prompt tuning. CoOp [65] first proposed to replace the hand-crafted prompt with
learnable vectors (also known as a soft prompt) for fine-tuning while freezing the entire pre-trained
parameters. VPT [12], on the contrary, moved the learnable vectors from the text side to the image
side, and proposed to concatenate the “visual soft prompt" and the patch sequence of an image as
the input for fine-tuning. Prompt tuning was also used in other visual recognition tasks, such as
object detection [15], semantic segmentation [43], and video recognition [39]. Over manual prompt
engineering, the soft prompt optimized with few-shot data has achieved significant performance
improvements, but only fitting one specific downstream dataset.
To enhance the generalization of the soft prompt to a wider range of unseen classes and datasets,
CoCoOp [66] modeled the context condition on input images. A recent work MaPLe [29] appended
the soft prompt to the hidden representations at each layer in both the text and image encoder. In
sharp contrast to previous approaches, we propose to pre-train a universal soft prompt on large-scale
datasets with massive visual categories. Such a pre-trained prompt is task-agnostic, allowing for
direct transfer to various downstream datasets without fine-tuning.

3 Method

We first review the process of classical prompt tuning for VLMs in § 3.1. To address the training
efficiency issue of previous methods, in § 3.2 we introduce our method of prompt pre-training (POMP)
that includes two key components: local contrast and local correction. Our pre-trained prompt can
then be transferred to downstream datasets and tasks in a zero-shot manner as discussed in § 3.3.

3.1 Preliminaries

Language-guided visual recognition models like CLIP formulate image classification as an image-text
matching problem, where the goal is to select the correct textual class name from a predefined class
set for the image query. Following [65, 29], we consider CLIP as our vision-language foundation
model, for its simplicity in design and wide applicability. CLIP consists of an image encoder fI and a
text encoder fT . Given a visual recognition dataset D with a class set of N class names C = {ci}Ni=1,
CLIP manually devises a hard prompt to synthesize textual descriptions ti for each class name ci, e.g.,
ti =“a photo of a [ci]". Then each class description is fed into the text encoder to generate the
normalized class feature wi = fT (ti)/‖fT (ti)‖2 ∈ Rd, where d is the dimension of the feature. The
concatenation of N class features [w1, · · · ,wN ] ∈ RN×d can be considered as the class weight of a
linear classifier for classifying an image. Given an input image x, the image encoder is used to extract
its visual feature x = fI(x)/‖fI(x)‖2 ∈ Rd. Finally, CLIP calculates the similarity between x and
all the class features, then predicts the class with the highest similarity as the target class.
To address the inefficient expressiveness of the manual prompt, previous research like CoOp [65]
proposed to parameterize the manual prompt as a soft prompt Θ, and fine-tune it to fit down-
stream datasets. The soft prompt is made up of a sequence of learnable token embeddings
Θ = [θ1,θ2, · · · ,θM ] ∈ RM×e, where M is a hyperparameter specifying the length of the soft
prompt and e is the dimension of the token embedding. The token embeddings of each class name
ci are further appended to the soft prompt Θ to generate the class feature w

(Θ)
i , and the prediction

probability for the ground-truth class y is denotes as

P (y | x;Θ) =
exp(x>w

(Θ)
y /τ)∑N

i=1 exp(x
>w

(Θ)
i /τ)

, (1)

where x>wi represents the similarity score and τ is a temperature parameter. The parameters of the
soft prompt are updated by minimizing the cross-entropy loss [65]:

L(Θ) = E
(x,y)∈D

[− logP (y | x;Θ)] . (2)

The gradient of L(Θ) is represented as:

∇Θ

(
− logP (y | x;Θ)

)
=

1

τ

[
−∇Θ(x>w(Θ)

y ) +

N∑
i=1

P (yi | x;Θ)∇Θ(x>w
(Θ)
i )

]
. (3)

3



Prompt

animal

…
person

artifact

animal

…
person

artifact

animal

…
person

artifact

Text
Encoder

Prompt

bus

train
…

Prompt Pre-Training (Stage 1)

skier

runner
…

cat

lion
…

Image
Encoder

Image
Encoder

Region
Proposal
Network

Mask
Proposal
Network

Text
Encoder

Class Features Image Feature

Contrastive
Loss

Massive Class Names

Image Feature

Zero-Shot Transfer (Stage 2)

Region Feature

Mask Feature

Classification

Detection

Segmentation

Classify

CLS Classes

DET Classes

SEG Classes

Classify

Classify

Class Features

Classification

Learnable Frozen

…
…

…
…

Figure 2: Overview of POMP. POMP pre-trains a soft
prompt ( :learnable) on the ImgaNet-21K dataset with
massive classes, and then directly transfers the learned
prompt ( :frozen) to downstream datasets of image clas-
sification (CLS), object detection (DET), and semantic
segmentation (SEG) tasks. For DET and SEG, the region
and mask proposal networks require pre-training with
POMP prompt on detection and segmentation source data,
respectively (See Appendix B).
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It can be decomposed into positive reinforcement for the ground-truth class and negative reinforcement
for every class, which are the first and the second terms inside the square brackets of (3), respectively.
Note that both the image encoder and the text encoder are frozen during the prompt tuning process,
which allows adapting the soft prompt efficiently to downstream data with very few learnable
parameters. Methods along this direction of soft prompt learning include CoCoOp [66] and
MaPLe [29]. However, most previous works fine-tune task-specific prompts, which limits their
versatility and generalization [49].

3.2 POMP: Prompt Pre-Training

Now we present our task-agnostic prompt pre-training method: POMP. Once pre-trained, the learned
prompt can be directly used for downstream tasks without fine-tuning (see Figure 2). As introduced
in § 1, we propose to pre-train the soft prompt on the ImageNet-21K dataset for universal visual
discrimination. Although the prompt tuning methods such as COOP and CoCoOp are parameter-
efficient, they still incur computationally prohibitive training costs when applied to large-scale datasets
with massive number of classes. Recall that the learnable parameters Θ are embedded in the text
input, while the loss is calculated at the output layer of the text encoder. For every class description,
we need to allocate nearly 15MB of GPU memory to preserve the state of the entire frozen encoder
(Transformer-base [53] with 12 layers), and propagate the gradient back through the last layer to the
first layer, to update the soft prompt Θ. Accordingly, the computational and caching cost of prompt
tuning is proportional to the number of classes N . As shown in Figure 3, for general large-scale
datasets like ImageNet-21K with more than twenty-thousand classes, traditional tuning methods will
allocate 21K ×15MB (more than 300 GB) of GPU memory, which is generally prohibitive.
To enable prompt tuning on massive classes and acquire the capability of global visual discrimination,
we introduce a training-efficient algorithm called POMP, which reduces the GPU memory and training
time of prompt tuning dramatically. POMP has two major components: local contrast and local
correction. The former decreases the number of classes for contrastive learning through negative
class sampling, and the latter reduces the bias caused by local contrast by adjusting the similarity
scores of negative classes. We detail these two components in the following.
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3.2.1 Local Contrast

Discriminating all classes during contrastive learning is the source of training inefficiency. In order to
alleviate this problem, we propose to narrow the scope of contrastive learning from global to local, and
only require the model to identify the ground-truth class of the input image from a subset of the full
class set. The class subset is sampled at each training step, allowing the model to discriminate within
an ever-changing set of categories, and gradually restoring the relationship among all categories.
Specifically, given an input image, we sampleK classes (K is much smaller than the total number of
classes, N ), including the ground-truth class y andK − 1 negative classes. We use a straightforward
yet effective proposal distribution of uniform distribution for negative class sampling, where every
negative class has an equal probability, i.e., p = 1/(N − 1), of being sampled. We also explore
alternative types of proposal distribution, such as frequency-based and similarity-based distributions.
However, our experiments reveal that POMP with the simple uniform distribution considers both
common and rare classes, as well as easy and difficult classes, resulting to the best performance.
Please refer to Appendix E.1 for details.
After sampling, we denote the set of the negative classes asN , with |N | = K − 1. By using the local
contrast, we can significantly reduce the training overhead to a fraction ofK/N of the original one.
Upon completion of training, we can use the full class set to compute the prediction probability of
each image. Overall, the motivation behind our local contrast is analogous to that in the NCE-based
contrastive learning frameworks [52, 57]. In these frameworks, the contrast is performed by sampling
a batch of instances due to computational limitations and computing the loss within the batch as an
empirical estimation for the expected contrastive loss [25, 1, 22, 51, 68].

3.2.2 Local Correction

Given that the local contrast component necessitates a reduced number of negative classes, the
negative reinforcement in the vanilla gradient in (3) is diminished toK/N . As a result, the prompt
optimization direction is inevitably biased due to the absence of other negative classes. To mitigate
this bias and enhance the model performance, we add a local correction termm to the logits of the
sampled negative classes x>w

(Θ)
i /τ (i 6= y), which serves as a margin [60, 45, 69] between the

positive and the negative logits. Accordingly, the final prediction probability of POMP is denoted as:

P̃ (y | x;Θ) =
exp(x>w

(Θ)
y /τ)

exp(x>w
(Θ)
y /τ) +

∑
i∼N

exp(x>w
(Θ)
i /τ +m)

. (4)

The local correction termm encourages the positive logit to be larger than the negative logits by a
certain margin, resulting in a more stringent decision boundary:

C+ : x>w(Θ)
y /τ ≥ x>w

(Θ)
i /τ +m, i 6= y.

Therefore, compared to the prediction probability without local correction, (4) makes the decision
boundary more robust against the unsampled negative classes and enforces the learning of more
discriminative class features [60]. This will improve model regularization and robustness across
datasets and domains (to be shown in § 4.4). Different from other margin-based losses that use a
fixed margin [11, 54], our marginm is designed to adaptively adjust itself based on the value ofK:

m = − log
(
(K − 1)/(N − 1)

)
. (5)

It is worth noting that m in (5) is a positive scalar. When K = N , all classes are included during
optimization, andm equals zero. In this case, (4) degenerates to the standard prediction probability
in (1). As the value of K decreases and the number of visible classes is reduced, the margin m
increases to create space for potential class features in the representation space. Our adaptive margin
outperforms the fixed margins (which are specified as hyper-parameters) for various K, allowing
models to maintain optimal performance under different computing budgets (to be shown in § 4.4).

3.3 Zero-Shot Transfer Learning

As shown in Figure 2, after pre-training, our POMP prompt can be used to synthesize class features
for classification with an arbitrary class set, supporting zero-shot inference on downstream datasets
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and tasks. In order to plug the POMP prompt into other visual tasks like semantic segmentation
and object detection, we adopt a two-stage framework. In stage one, we use a pre-trained proposal
network to generate a set of mask or region proposals. In stage two, we classify each proposal with
the class features generated by our POMP prompt. Experiments in § 4.3 will show that the POMP
prompt can handle both pixel-level and region-level visual patterns, leading to improved performance
in segmentation and detection tasks.

4 Experiments

4.1 POMP Prompt Pre-Training

We take CLIP (ViT/B-16) [42] as the backbone and conduct prompt pre-training on the ImageNet-21K
dataset. The number of training samples for each class is 16 (16 shots), and the prompt length is 16.
We sample 1,000 classes at each training step, i.e.,K = 1000 in (4). See Appendix A for details.

4.2 End Task Setups and Implementation Details

To evaluate the generalization of the pre-trained prompt, we directly transfer it to downstream tasks and
datasets. Appendix C lists the details of all the datasets. We follow previous works [58, 61, 19, 67] to
designate data belonging to two class sets as source data and target data, respectively. The proposal
networks are pre-trained on the source data with the source class set, while conducting zero-shot
evaluation on the target data with the target class set. There are two protocols for the source-target
data split. The first is the open-vocabulary protocol, where the class set of one dataset is divided
into two disjoint groups for the source and target data. The second protocol is the cross-dataset
protocol, in which the source and target data are from two independent datasets with potentially
overlapping class sets. See Appendix B for implementation details.

4.3 Results and Analysis

4.3.1 Prompt Pre-Training on ImageNet-21K

Table 1: Performance on the ImageNet-21K test
set. ZeroshotCLIP and Prompt Ensemble in the
top block conduct zero-shot inference. CoOp and
MaPLe, indicated in gray in the middle block,
are trained on the ImageNet-1K dataset due to
prohibitive GPU memory consumption if trained
on ImageNet-21K. The remaining methods in the
bottom block are trained on ImageNet-21K.

Method ResNet50 ViT-B/32 ViT-B/16
ZeroshotCLIP [42] 17.5 19.8 21.8
Prompt Ensemble [42] 18.8 20.9 23.5
CoOp [65] 16.6 18.1 20.8
MaPLe [29] - 21.6 24.2
Linear Probing [42] 6.5 18.2 20.9
VPT [12] - 21.8 24.8
POMP (Ours) 20.2 22.2 25.3

Table 1 shows the results of POMP prompt on the
ImageNet-21K test set after pre-training. The
traditional prompt learning methods (e.g., CoOp
and MaPLe) are trained on the ImageNet-1K
dataset due to their prohibitive computational
cost if trained on ImageNet-21K (more than 300
GB of GPU memory). On the contrary, our
POMP prompt, pre-trained on ImageNet-21K
using less than 16GB of GPU memory, achieves
the highest accuracy of 25.3% based on the CLIP
(ViT-B/16) backbone, which surpasses Zeroshot-
CLIP by 3.5% and Linear Probe by 4.4%. The
VPT method, which uses visual prompts on the
image side, does not require training overhead
proportional to the number of classes, making
it applicable to the ImageNet-21K dataset. VPT
prepends independent learnable vectors to the
hidden states of each layer in the visual back-
bone, surpassing linear probing and the previous
prompt tuning methods. However, its performance based on ViT-B/16 is still 0.5% worse than
ours, demonstrating that our POMP prompt can better distinguish a large number of general visual
categories. In addition, our method is agnostic to the backbone architectures like ResNet and ViT,
and the improvement is consistent.

Cross-dataset and Cross-domain Image Classification. Our POMP prompt, which has been
pre-trained on a large number of classes, demonstrates a strong generalization ability. As shown in
Table 2, POMP achieves the highest average accuracy of 67.0% when transferred to 10 downstream
image classification datasets, outperforming CoOp by 3.1% and surpassing the previous SOTA in
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Table 2: Cross-dataset and cross-domain evaluation for image classification. The backbone is
ViT/B-16. Overall, POMP achieves the highest average accuracy, indicating better generalization.

Target (cross-dataset) Target (cross-domain)

Ca
lte
ch
10
1

O
xf
or
dP
et
s

St
an
fo
rd
Ca

rs

Fl
ow

er
s1
02

Fo
od
10
1

A
irc
ra
ft

SU
N
39
7

D
TD

Eu
ro
SA

T

U
CF

10
1

Av
er

ag
e

Im
ag
eN

et
V
2

Im
ag
eN

et
-S

Im
ag
eN

et
-A

Im
ag
eN

et
-R

Av
er

ag
e

hard prompt 93.3 88.2 65.6 67.4 85.3 23.7 62.6 44.3 42.0 65.1 63.7 60.9 46.1 47.8 74.0 57.2
CoOp [65] 93.7 89.1 64.5 68.7 85.3 18.5 64.2 41.9 46.4 66.6 63.9 64.2 48.0 49.7 75.2 59.3
CoCoOp [66] 94.4 90.1 65.3 71.9 86.1 22.9 67.4 45.7 45.4 68.2 65.7 64.1 48.8 50.6 76.2 59.9
LASP [5] 94.5 89.4 64.8 70.5 86.3 23.0 67.0 45.5 48.3 68.2 65.8 63.8 49.0 50.7 77.1 60.1
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POMP (Ours) 95.0 89.5 66.8 72.4 86.3 25.6 67.7 46.2 52.1 68.5 67.0 63.8 49.8 51.6 77.9 60.8

7/10 datasets. This is due to the fact that, after learning with enormous long-tail categories, POMP
can provide a more expressive context for fine-grained visual concepts such as specific objects
and scenes, resulting in improved performance on datasets like StanfordCars (+1.2%) and Aircraft
(+0.9%), as well as SUN397 (+0.7%) and EuroSAT (+4%). Furthermore, POMP is more robust
to domain shift and achieves a new SOTA with 60.8% accuracy on 4 out-of-domain variants of the
ImageNet dataset.

Table 3: Prompt tuning on ImageNet-1K. POMP
(K = 128) achieves comparable accuracy with
CoOp and CoCoOp, but using less than 19% GPU
memory and 50% training time.

Method Acc. (%) GPU Mem. (GB) Training Time (h)
CoOp 71.9 28.2 5.9
CoCoOp 70.1 28.3 27.5
POMP (K = 128) 71.2 5.3 2.7
POMP (K = 256) 71.4 8.8 3.3
POMP (K = 512) 71.6 15.9 4.2

Training Efficiency. POMP also achieves
comparable accuracy to the classical prompt
tuning methods when fine-tuning on specific
downstream datasets, but significantly reduces
the training cost. Table 3 shows the performance
of prompt tuning on ImageNet-1K, using a vi-
sual backbone of ViT-B/16 and 16 shots. The
epoch is 50 for CoOp and POMP, and 10 for
CoCoOp. CoOp generates all the 1000 class
features at each training step, which consumes
28 GB of memory and takes 5.9 hours to finish
the fine-tuning. The training time of CoCoOp is
even longer because it devises instance-specific prompts that require an independent forward pass
for each image. Compared to these baselines, POMP (K = 128) achieves competitive accuracy on
ImageNet-1K while using less than 19% of GPU memory and 50% of training time, demonstrating
its superiority.

4.3.2 Open-Vocabulary Semantic Segmentation

Table 4 shows the results of our method on open-vocabulary COCO Stuff and Pascal VOC. POMP
outperforms the previous state-of-the-art method, ZSSeg [61], with a higher hIoU of 39.1 and
mIoU-unseen of 38.2 on COCO Stuff. On Pascal VOC, the improvement of POMP is more significant
with +6.9 hIoU and +4.3 mIoU-unseen. Figure 4 illustrates qualitative results on open-vocabulary
COCO-Stuff, where POMP demonstrates a stronger ability to distinguish background categories
compared to ZSSeg. For example, in case (1), ZSSeg misclassifies the classes of playingfield as dirt,
while the POMP prompt with richer contextual semantics better expresses the difference between
regular land and the playingfield with specific textures, thus facilitating the matching of the visual
region with the ground-truth class.
POMP also demonstrates its generalization ability in cross-dataset settings. Taking standard COCO
Stuff as the source dataset for mask proposal network pre-training, POMP achieves 20.7 mIoU and
51.1 mIoU when transferred to the target datasets of ADE20K and PASCAL Context, respectively,
outperforming ZSSeg by +1.3 mIoU and +0.3 mIoU. Overall, POMP obtains remarkable gains over
previous works in all settings.

4.3.3 Open-Vocabulary Object Detection
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Table 4: Comparison with state-of-the-art meth-
ods on COCO Stuff dataset and Pascal VOC
dataset. POMP and ZSSeg share the same mask
proposal network and training strategy.

Method
Open-Vocab COCO Stuff Open-Vocab Pascal VOC

hIoU mIoU hIoU mIoU
seen unseen seen unseen

SPNet [58] 16.8 20.5 14.3 21.8 73.3 15.0
ZS3 [4] 15.0 34.7 9.5 28.7 77.3 17.7
CaGNet [20] 18.2 35.5 12.2 39.7 78.4 25.6
ZegFormer [13] 34.8 36.6 33.2 73.3 86.4 63.6
ZSSeg [61] 37.8 39.3 36.3 77.5 83.5 72.5
POMP (Ours) 39.1 39.9 38.2 84.4 93.6 76.8

Table 5: Cross-dataset evaluation for semantic
segmentation. The mask proposal network is
pre-trained on standard COCO Stuff.

Method
Source Dataset:

Standard COCO Stuff
Target Dataset:

ADE20K
Target Dataset:

PASCAL Context

mIoU fwIoU pACC mIoU fwIoU pACC mIoU fwIoU pACC
ZSSeg [61] 40.8 49.0 62.7 19.5 48.7 60.0 50.8 64.1 75.7
POMP (Ours) 41.1 49.2 62.9 20.7 51.5 63.7 51.1 65.4 76.1

ZSSeg
(Baseline)

dirt

tennis racket

person

cardboard

grass

grass

sheep

POMP
(Ours) tennis racket

person

playingfield

river

grass

sheep

plant-other

Ground
-truth tennis racket

person

playingfield

river

grass

sheep

plant-other

water-other

(1) (2)

Figure 4: Qualitative results on open-vocabulary
COCO-Stuff. Compared to ZSSeg, POMP cor-
rectly identifies the background category of
playingfield (left) and river (right).

Table 6: Cross-dataset evaluation for object detection. The region proposal network is pre-trained on
standard LVIS. POMP and Detic share the same region proposal network and training strategy.

Method Source Dataset: Standard LVIS Target Dataset: COCO Target Dataset: Objects365

AP AP50 AP75 APs APm APl AP AP50 AP75 APs APm APl AP AP50 AP75 APs APm APl
ViLD∗ [19] 27.5 41.8 29.3 20.6 35.9 43.4 34.1 52.3 36.5 21.6 38.9 46.1 11.5 17.8 12.3 4.2 11.1 17.8
DetPro [15] 28.4 42.9 30.3 21.0 36.7 44.1 34.9 53.8 37.4 22.5 39.6 46.3 12.1 18.8 12.9 4.5 11.5 18.6
Detic [67] 36.8 50.7 38.6 26.1 46.7 51.7 38.8 56.0 41.9 25.6 42.2 50.0 15.6 22.1 16.8 6.1 15.6 23.8
POMP (Ours) 37.2 51.1 39.3 26.5 47.2 52.6 40.3 57.9 43.6 28.3 43.9 50.6 16.1 22.9 17.3 6.2 16.3 24.7

Table 7: Comparison with previous SOTA on
LVIS dataset. APr is the main evaluation metric
for open-vocabulary object detection.

Method Detection Instance segmentation

APr APc APf AP APr APc APf AP

ViLD [19] 16.7 26.5 34.2 27.8 16.6 24.6 30.3 25.5
DetPro [15] 20.8 27.8 32.4 28.4 19.8 25.6 28.9 25.9
PromptDet [18] - - - - 21.4 23.3 29.3 25.3

Detic [67] 26.7 36.4 40.3 36.3 24.9 32.5 35.6 32.4
POMP (Ours) 26.8 36.4 40.4 36.2 25.2 33.0 35.6 32.7

We compare POMP with state-of-the-art meth-
ods on the open-vocabulary LVIS benchmarks
and report results in Table 7. POMP achieves
APr of 26.8 for object detection and 25.2 for
instance segmentation. See Appendix D for
qualitative results. Under the cross-dataset set-
ting, we pre-train the visual backbone on the
source dataset of standard LVIS, and evaluate
the recognition ability on COCO and Object365.
As shown in Table 6, compared to Detic, POMP
provides a gain of 1.9 AP50 on COCO and 0.8 AP50 on Object365, respectively.

4.4 Ablation Study

Table 8: Ablation on the local contrast and local
correction in POMP based on the CLIP (ViT/B-16).

Method ImageNet-21K Cross-dataset
(10 Avg.)

Cross-domain
(4 Avg.)

POMP (K = 100) 24.1 65.5 59.5
POMP (K = 500) 24.9 66.5 60.0
POMP (K = 1000) 25.3 67.0 60.8
- local correction 25.0 (-0.3) 65.8 (-1.2) 59.8 (-1.0)

We decouple the two components of local con-
trast and local correction in POMP, and conduct
an ablation study to examine their individual
contributions. Since removing the local contrast
component will lead to prohibitive training cost,
we investigate the impact of this component by
varying the number of sampled classes K. As
shown in Table 8, the performance of POMP
improves asK increases. As discussed in § 4.3.1
and Table 3, the local contrast component balances accuracy and cost by adjustingK.
On the other hand, as shown in Table 8, removing the local correction component from POMP
(K = 1000) results in a decline of 1.2 and 1.0 in the average accuracy of cross-dataset and
cross-domain transfer, respectively. This indicates that local correction significantly improves the
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POMP (w/o local correction)
65.8

POMP
67.0

MaPLe
66.3

+ local correction

Figure 5: `align and `uniform of POMP.
For both measures, lower numbers
are better. The color of circles and
the numbers in the boxes denote the
average cross-dataset accuracy over
10 datasets (higher is better).

(a) Aircraft. (b) UCF101.

Figure 6: Projection of image features (points), class features
of POMP (intersections of solid lines and sphere) and class
features of CoOp (intersections of light dash-dot lines and
sphere). Each color represents a class. Class features of
POMP have better alignment with centroids of the corre-
sponding images, and are distributed with better uniformity.

generalization of the pre-trained prompt. Furthermore, we analyze the impact of the adaptive
margin (5) in the local correction. We pre-train prompts on ImageNet-21K with varyingm values
(0, 0.5, 1, 1.5) and report the cross-dataset accuracy. Notably, our local correction method dynamically
sets m to 1.5 when K = 319, and m to 1 when K = 1000. The results are shown in Table 9.

Table 9: Ablation on the adaptive
marginm in the local correction.

m K=319 K=1000
0 65.2 65.8
0.5 65.7 66.1
1 66.2 67.0 (Ours)
1.5 66.5 (Ours) 66.4

When the number of sampled classes is relatively small
(K = 319), increasing the margin creates more space for
potential negative classes, thereby improves cross-dataset ac-
curacy. Conversely, for largeK values (e.g., 1000), imposing a
very large margin (m = 1.5) disrupts the natural class distribu-
tion and diminishes generalization ability. Overall, compared
to the fixed margins [11, 54], our adaptive margin decreases as
K increases, achieving optimal performance across different
computing budgets (controlled byK) and sparing the time for
extensive hyper-parameter search. See Appendix E for more ablation studies on the number of shots
and prompt length.

4.5 Understanding the Pre-trained Prompt

To better understand the pre-trained prompt, we analyze the feature space of POMP through the
properties of alignment and uniformity [56]. Intuitively, the image feature and its ground-truth
class feature are supposed to stay closed (alignment). Besides, all the class features should be
uniformly distributed to preserve maximal information and make the categories more distinguishable
(uniformity). We use the alignment and uniformity loss in the vision-and-language field [45, 63] for
representation probing. The alignment loss calculates the expected distance between features of an
image x and its ground truth class w

(Θ)
y :

`align , E
(x,y)∈D

∥∥∥x−w(Θ)
y

∥∥∥2 , (6)

while the uniformity loss measures how well the class features w(Θ) are uniformly distributed:

`uniform , log E
16i,j6N,

i 6=j

exp(−2‖w(Θ)
i −w

(Θ)
j ‖2). (7)

We visualize the alignment and uniformity measures of POMP and the previous SOTA, MaPLe,
in Figure 5. For both measures, lower numbers are better. The circle of POMP in the figure is
located in the lower left with the lightest color, indicating relatively smaller losses and the best
performance under the cross-dataset setting. Compared with the method without local correction,
POMP significantly reduces the uniformity loss at only a slight expense of alignment. In other words,
our pre-trained prompt not only ensures the alignment of the image and the ground-truth class, but
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also disperses the class features in the representation space, thereby improving the generalization
and robustness of the model. The visualization of the feature space in Figure 6 also verifies our
superiority. The endpoints of the POMP class features are closer to the centroids of the image features,
indicating better alignment and reduced `align loss (from 1.39 to 1.36 on Aircraft and from 1.41 to
1.36 on UCF101). Furthermore, the larger angles between the POMP class features demonstrate
better feature uniformity and reduced `uniform loss (from −0.66 to −0.81 on Aircraft and from −0.95
to −1.23 on UCF101) compared to CoOp.

5 Conclusion

We present POMP to pre-train a general soft prompt on ImageNet-21K for universal visual discrimina-
tion. The learned prompt can be easily plugged into various visual recognition datasets and tasks for
zero-shot inference. Experiments on open-vocabulary image classification, semantic segmentation,
and object detection show that POMP surpasses previous methods by a considerable margin.

Limitations

To facilitate future research, we analyze the limitations in our work and propose potential solutions.
(1) We present the local contrast and use the loss within a subsampled class set as an empirical
estimation for the expected contrastive loss within the full class set. However, the theoretical risk of
such an estimation is urged to be investigated. (2) ImageNet-21K comprises a vast number of classes
that are organized based on a semantic structure. By leveraging the hyponym and hypernym relations
provided by WordNet synsets, we can derive the parent class and a list of child classes for each class.
We believe that utilizing the semantic information holds the potential to further enhance performance.
(3) Despite the excellent performance exhibited by our pre-trained prompt, its interpretability poses a
significant challenge because the context vectors are optimized in a continuous space. We leave it as
future work.
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A Pre-training Details

We conduct prompt pre-training on the ImageNet-21K dataset (official winter 2021 released version2).
We follow the processing methods in [47], which involves cleaning invalid classes, allocating 50
images per class for a validation split, and crop-resizing all the images to 224 resolution. We conduct
all the experiments on 8×Nvidia V100 GPUs. For pre-training, the learnable vector is randomly
initialized by drawing from a zero-mean Gaussian distribution with a standard deviation equal to 0.02.
We use the SGD optimizer with an initial learning rate of 0.002, decayed by the cosine annealing rule.
The batch size is 32, and the maximum epoch is 20.
For the mask proposal network and region proposal network pre-training, we strictly follow the
settings of ZSSeg [61] and Detic [67], respectively. Specifically, we take MaskFormer [8] with
ResNet-101 [23] as the mask proposal network. We use an AdamW optimizer with the initial learning
rate of 1e-4, weight decay of 1e-4, a backbone multiplier of 0.1, and a poly learning rate policy
with a power of 0.9. Besides, we take CenterNet2 [68] detector with ImageNet-21k pre-trained
ResNet-50 [47] as the region proposal network. We use an Adam optimizer with learning rate 2e-4.
Other tricks like Federated Loss, repeat factor sampling, and large scale jittering are incorporated
to further improve the performance. As with Detic, we leverage both region-level and image-level
supervision. We always first train a converged base-class-only model (4× schedule) and fine-tune it
with additional image-labeled data for another 4× schedule.

B Setting for Segmentation and Detection

Table 10 outlines the settings for semantic segmentation and object detection. We further introduce
the settings in detail from three perspectives: backbone, data processing, and prompt.

Backbone. In general, we adopt a two-stage framework for these two tasks. At stage one, we use
a pre-trained proposal network to generate a set of mask or region proposals. At stage two, we classify
each proposal with the class features generated by our POMP prompt. For semantic segmentation,
our POMP shares the same visual backbone as ZSSeg [61], which uses a pre-trained MaskFormer [8]
with ResNet-101 [23] as default backbone to extract a set of binary masks. For object detection, our
POMP shares the same visual backbone with Detic [67], which takes CenterNet2 [68] detector with
ResNet-50 as its backbone, and leverages both region-level and image-level supervision.

Data Processing. We follow previous work [58, 61, 19, 67] to designate data belonging to two
class sets as source data and target data, respectively. The proposal networks are pre-trained on
the source data with the source class set, while conducting zero-shot evaluation on the target data
with the target class set. There are two protocols for the source-target data split. The first is the
open-vocabulary protocol, where the class set of one dataset is divided into two disjoint groups for
the source and target data, respectively. The second protocol is the cross-dataset protocol, in which
the source and target data are from two independent datasets with potentially overlapping class sets.
We introduce the details of class set splitting in the open-vocabulary protocol. COCO Stuff and
Pascal VOC 2012 are the two semantic segmentation datasets using the open-vocabulary protocol.
Following previous settings [58, 61], a total of 171 annotated classes in COCO Stuff are divided into
156 seen classes and 15 unseen classes. For Pascal VOC 2012, a total of 20 classes are divided into
15 seen classes and 5 unseen classes, and the provided augmented annotations are used. LVIS is the
object detection dataset using the open-vocabulary protocol. The standard LVIS dataset contains
object detection and instance segmentation labels for 1203 classes. The classes are divided into three
groups: frequent, common, and rare, based on the number of training images. According to previous
work [19], the data from the 866 frequent and common classes are considered the source data, while
those from the remaining 337 rare classes are the target data in testing. We note that Detic utilizes both
box-supervised data from LVIS as well as image-supervised data from ImageNet-21K that overlaps
with LVIS (997 classes, 277 of which are novel classes). This allows Detic to demonstrate transfer
not only from base to novel classes, but also from image-level to box-level recognition. Since Detic is
the closest existing method to ours that leverages ImageNet-21K, we chose it as a strong baseline and
followed its setup for fair comparison.

2https://image-net.org/
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Table 10: Settings for semantic segmentation and object detection.
Task Proposal Network Setting Source Data and Class Set

(for proposal network pre-training)
Target Data and Class Set
(for zero-shot evaluation)

Semantic
Segmentation

MaskFormer
(Mask Proposal Network)

Open-vocab COCO Stuff COCO Stuff (seen) COCO Stuff (unseen)

Open-vocab PASCAL VOC PASCAL VOC (seen) PASCAL VOC (unseen)

Cross-dataset COCO Stuff ADE20K / PASCAL Context

Object
Detection

CenterNet2 detector
(Region Proposal Network)

Open-vocab LVIS LVIS (frequent+common)
+ ImageNet-21K (overlaps with LVIS) LVIS (rare)

Cross-dataset LVIS
+ ImageNet-21K (overlaps with LVIS) COCO / Object365

Prompt. ZSSeg provides two kinds of prompts: hand-crafted prompts and learning-based prompts.
Hand-crafted prompts include single prompt, i.e., “a sculpture of a [CLASSNAME]”, as well as
ImageNet prompts [42] and ViLD prompts [19], which are used for prompt ensemble and consist of 80
and 14 hard prompts, respectively. The learning-based prompt is obtained by fine-tuning a randomly
initialized soft prompt on the source data. Accordingly, for a fair comparison, we conducted two sets
of experiments based on whether to use the source data for prompt fine-tuning. (1) The results of
ZSSeg with various hard-crafted prompts and the pre-trained POMP prompt without access to the
source data can be found in Table 13 in Appendix E.3. (2) The results of ZSSeg with learning-based
prompts initialized from random vectors and our pre-trained POMP prompt, both using source data
for further fine-tuning, can be found in Table 4 and Table 5 in § 4.3.2. Detic has also extensively
delved into intricate prompts, such as “a photo of a [CLASS] in the scene”. Moreover, it has
made endeavors to employ synonyms for each category. Nevertheless, its ultimate recommendation
is to use a simple yet effective prompt, i.e., “a [CLASSNAME]”, and all its released checkpoints are
based on this prompt. We strictly adhere to Detic’s best practice, the evaluation of Detic and POMP
in § 4.3.3 are both conducted without any further prompt tuning on the source data.

C Datasets

The details of the downstream datasets for image classification, semantic segmentation, and object
detection are shown in Table 11.

Image Classification. For cross-dataset image classification, we evaluate the performance of POMP
on 10 downstream datasets, including Caltech-101 [17], Oxford-Pets [41], Stanford Cars [31], Oxford-
Flowers102 [40], Food-101 [3], FGVC Aircraft [36], EuroSAT [24], SUN-397 [59], Describable
Textures (DTD) [9], UCF-101 [50]. We also conduct zero-shot evaluation on 4 out-of-domain datasets
derived from ImageNet [10], including ImageNetV2 [44], ImageNet-S [55], ImageNet-A [27], and
ImageNet-R [26], to evaluate the domain generalization capability of our method.

Semantic Segmentation. We perform open-vocab semantic segmentation on COCO Stuff [6] and
Pascal VOC 2012 [16]. Following previous notation and settings [58, 61], we split the class set
into seen and unseen classes, where data for seen classes is considered the source data and data for
unseen classes is considered the target data. The major measures for evaluation include mIoU and the
harmonic mean IoU (hIoU) among both seen and unseen classes [61]. The hIoU is defined as:

hIoU =
2×mIoUseen×mIoUunseen

mIoUseen +mIoUunseen

We also conduct cross-dataset evaluation, which takes the standard COCO Stuff dataset as the
source dataset for pre-training a mask proposal network, and then conducts zero-shot inference on
ADE20K [64] and PASCAL Context [38].

Object Detection. We evaluate the performance of POMP on the object detection dataset LVIS [21]
under the open-vocabulary setting proposed by [19]. The source data consists of box-level data
from LVIS’s 866 frequent and common classes, as well as image-level data from ImageNet-21K that
overlaps with LVIS. The target data for testing comprises the remaining 337 rare classes in LVIS.
We take APr, i.e., AP on rare classes, as the major measure. APf and APc, i.e., AP on frequent
and common classes, are also reported. In the cross-dataset setting, the region proposal network is
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Table 11: Datasets in our experiments.

Dataset Classes Train Size Test Size Metric
Datasets of Image Classification
Caltech-101 [17] 102 3,060 6,086 mean per-class accuracy
Oxford-IIIT Pets [41] 37 3,680 3,669 mean per-class accuracy
Stanford Cars [31] 196 8,144 8,041 accuracy
Oxford Flowers-102 [40] 102 2,040 6,149 mean per-class accuracy
Food-101 [3] 101 75,750 25,250 accuracy
FGVC Aircraft [36] 100 6,667 3,333 mean per-class accuracy
SUN-397 [59] 397 15,880 19,850 accuracy
Describable Textures (DTD) [9] 47 3,760 1,880 accuracy
EuroSAT [24] 10 10,000 5,000 accuracy
UCF-101 [50] 101 7,639 3,783 accuracy
ImageNetV2 [44] 1,000 10,000 10,000 accuracy
ImageNet-S [55] 1,000 50,889 50,889 accuracy
ImageNet-A [27] 200 7,500 7,500 accuracy
ImageNet-R [26] 200 30,000 30,000 accuracy
Datasets of Semantic Segmentation
COCO Stuff [6] 171 117K 5K mIoU (seen/unseen), hIoU
PASCAL VOC [16] 20 11,185 1,449 mIoU (seen/unseen), hIoU
ADE20K [64] 150 20K 3K mIoU, fwIoU, pACC
PASCAL Context [38] 59 10,103 9,637 mIoU, fwIoU, pACC
Datasets of Object Detection
LVIS [21] 1,203 100,170 19,822 APr, APc, APf , AP
COCO [34] 80 118K 5K AP, AP50, AP75, APs, APm, APl
Object365 [48] 365 600K 38K AP, AP50, AP75, APs, APm, APl

pre-trained on the source dataset, which includes standard LVIS and ImageNet-21K (overlapping with
LVIS). It is then directly used for inference on two target datasets: COCO [34] and Object365 [48].
We use AP, AP50, AP75, APs, APm, and APl the evaluation metrics.

D Qualitative Results for Semantic Segmentation and Object Detection

In this section, we provide more qualitative results of our POMP for semantic segmentation and object
detection. Figure 7 shows another three cases on open-vocabulary COCO-Stuff segmentation. POMP
demonstrates a stronger ability than ZSSeg in the recognition of background classes. In case (1),
POMP correctly identified the dirt and plant-other in the scene, instead of marking all these areas
as grass. In case (2) and (3), POMP recognizes the classes of clouds and tree, respectively, while
ZSSeg misclassifies them as sky-other and bush. However, POMP misses some objects of sheep
located at the edge in case (2) and neglects the object of branch in case (3), indicating it still has
insufficient recognition of small objects. For object detection, Figure 8 illustrates qualitative results
on LVIS images. Base and novel categories are shown in purple and green, respectively. POMP
identifies regions from the novel class without using the corresponding 1.2K detection annotations,
demonstrating its generalization in the wild.

E More Ablation Study

E.1 Ablation on Proposal Distribution

As introduced in § 3.2, we also investigate other types of proposal distribution for local contrast and
negative class sampling. The first is the frequency distribution Q(f), which samples the negative
class i based on the number of training samples belonging to this class. Note that the original
ImageNet-21K is class-imbalanced, i.e., the number of training samples belonging to common classes
is larger than those belonging to rare classes, which can roughly reflect the long-tail distribution of
object categories in nature. The frequency distribution will allow for more sampling of common
classes while suppressing the exposure of rare classes in prompt tuning. LetMi be the number of
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Figure 7: More qualitative results on open-vocabulary COCO-Stuff segmentation.

Figure 8: Qualitative results on LVIS images. Base and novel categories are shown in purple and
green colors respectively. We use a score threshold of 0.5 and show the most confident class for each
box.
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Table 12: Ablation on the sampling distribution in POMP based on CLIP (ViT/B-16) backbone.

Method ImageNet-21K Cross-dataset
(10 Avg.)

Cross-domain
(4 Avg.)

POMP (uniform distribution) 25.3 67.0 60.8
POMP (frequency distribution) 24.9 (-0.4) 66.2 (-0.8) 60.1 (-0.7)
POMP (similarity distribution) 23.6 (-1.7) 64.2 (-2.8) 59.2 (-1.6)

training samples belonging to the negative class i, the frequency distribution is defined as:

Q
(f)
i =

Mi∑N
j=1Mj

. (8)

The second is the similarity distribution Q(s), which aims to sample more hard negative classes.
Hard negative classes are those that have a higher similarity between their features and the features
of the input images, and are more likely to be confused with the positive class. Accordingly, in the
similarity distribution, the likelihood of a negative class being sampled increases as the similarity
between its feature and the image feature increases. To achieve this, we pre-encode features of all
classes represented by a hand-crafted prompt (i.e., “a photo of a [CLASSNAME]”). The feature of
class i is denoted as wi. The likelihood of sampling a negative class is determined by the similarity
between the class feature wi and the image feature x:

Q
(s)
i (x) =

exp(x>wi/τ)∑N
j=1 exp(x

>wj/τ)
. (9)

Table 12 illustrates the performance of different proposal distributions. Compared to the uniform
distribution, using the frequency distribution for sampling leads to degraded performance, particularly
in cross-dataset and cross-domain settings, due to reduced sampling of rare categories. This highlights
the importance of a large number of long-tail categories in the ImageNet-21K dataset for the
generalization of the soft prompt. Additionally, the performance of the similarity distribution is also
not as strong as that of the uniform distribution. The reason for this may be that as the soft prompt
evolves, the features of hard negative classes change. However, the negative features used in (9) are
obtained from the hard prompt, creating a fixed proposal distribution that is unable to adapt to these
changes, potentially causing the soft prompt to converge to a local optimum. In contrast, POMP with
the simple uniform distribution considers both common and rare classes, as well as easy and difficult
classes, leading to the best performance for both the soft prompt and class features.

E.2 Ablation on #shot and Prompt Length

We further conduct ablation on the number of pre-training instances per class (#shot) and the prompt
length to analyze their influence on the generalization ability of POMP. The left panel in Figure 9
illustrates the results of #shot. The green curve represents the average accuracy of 10 datasets under
the cross-dataset evaluation, while the purple curve represents the avergaed accuracy of 4 datasets
under the cross-domain evaluation. Overall, the performance of POMP improves as #shot increases.
We find that POMP can achieve decent cross-dataset and cross-domain accuracy even with #shot=1.
This is due to the huge number of classes in ImageNet-21K. Even if there are only one instance per
class, the overall amount of data (21K instances for 21K classes) is enough for training a soft prompt
with only 0.012 M learnable parameters.
The right panel in the figure shows the results of the prompt length. The soft prompt of length 16
achieves 65.0% accuracy across datasets, which is lower than the soft prompt of length 4 with 67.0%
cross-dataset accuracy. It indicates that the prompt with too large lengths impairs its generalization,
which consistent with the findings from previous work [66, 29].

E.3 Ablation on Prompt Types for Semantic Segmentation

We perform an ablation study on prompt types for cross-dataset semantic segmentation to further
demonstrate the superior generalization ability of our prompt on downstream tasks. Specifically, we
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Figure 9: Ablation study on #shot and prompt length. When varying #shot, the prompt length is 4,
and when varying the prompt length, #shot is 16.

Table 13: Cross-dataset evaluation for semantic segmentation. All methods share the same visual
backbone with ZSSeg, but use different prompts.

Method
Source Dataset:

Standard COCO Stuff
Target Dataset:

ADE20K
Target Dataset:

PASCAL Context

mIoU fwIoU mACC pACC mIoU fwIoU mACC pACC mIoU fwIoU mACC pACC

ZSSeg (single prompt) 40.5 47.8 53.5 61.7 17.8 44.0 31.0 52.9 51.8 64.6 69.9 74.3
ZSSeg (ImageNet prompts) 40.9 48.4 54.7 62.3 17.7 46.5 31.8 57.1 52.0 64.7 70.3 75.4
ZSSeg (ViLD prompts) 40.9 48.6 54.2 62.3 20.2 49.1 33.4 60.7 51.8 63.8 69.6 73.8
ZSSeg (POMP prompt, ours) 41.2 49.0 54.7 62.6 20.6 49.3 35.0 61.7 52.4 65.3 70.6 76.4

take ZSSeg as the backbone and evaluate the performance of four types of prompts, as described in
Appendix B. As shown in Table 13, ZSSeg with our POMP prompt achieves the highest performance
on the three datasets. It is noteworthy that, despite using 80 hard prompts for ImageNet prompts and
14 for ViLD prompts for prompt ensemble, their performance was consistently worse than our POMP
with just one soft prompt, highlighting the effectiveness of our method.
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