
A Notation426

For N,K ≥ 2, let RN denote N -dimensional Euclidean space equipped with the usual Euclidean427

norm ∥ · ∥ and let RN
+ denote the non-negative orthant. Let 0 = [0, . . . , 0]⊤ and 1 = [1, . . . , 1]⊤428

respectively denote the vectors of zeros and ones, whose dimensions should be clear from context.429

Let RN×K denote the set of N ×K real-valued matrices. Let ∥ · ∥F denote the Frobenius norm and430

∥ · ∥op denote the operator norm. Let O(N) denote the set of N ×N orthogonal matrices. Let SN431

(resp. SN+ , SN++) denote the set of N ×N symmetric (resp. positive semidefinite, positive definite)432

matrices. Let IN denote the N ×N identity matrix.433

Given vectors u,v ∈ RN , let u◦v = [u1v1, . . . , uNvN ]⊤ ∈ RN denote the Hadamard (elementwise)434

product of u and v. Let diag(u) denote the N × N diagonal matrix whose (i, i)th entry is ui, for435

i = 1, . . . , N . Given a matrix M ∈ RN×N , we also let diag(M) denote the N -dimensional vector436

whose ith entry is Mii.437

B Separation of timescales for the gain and synaptic weight updates438

In this section, we consider an algorithm where we directly optimize the objective in equation 3. In439

particular, for each context c, we first optimize over the gains g and then take a gradient descent step440

with respect to W.441

We first compute the gains using the formula for the optimal gains derived in [25, equation 18]:442

g =
[
(W⊤W)◦2

]†
diag

(
W⊤C1/2

ss (c)W −W⊤W
)
.

We then update the synaptic weights by taking the following gradient descent step:443

∆wi = Es∼p(s|c)
[
ηw(rr

⊤wigi −wigi)
]
= ηw

(
M(W,g)−1Css(c)M(W,g)−1 − IN

)
wigi,

where M(W,g) := αIN +Wdiag(g)W⊤. Combining these updates yields Algorithm 2, which444

takes context-dependent covariance matrices Css(c) as its input.445

Algorithm 2: Adaptive whitening via synaptic plasticity and gain modulation
1: Input: Covariance matrices Css(1),Css(2), . . .
2: Initialize: W ∈ RN×K ; ηw > 0
3: for c = 1, 2, . . . do
4: g←

[
(W⊤W)◦2

]†
diag

(
W⊤C

1/2
ss (c)W −W⊤W

)
5: G← diag(g)
6: W←W + ηw

((
WGW⊤)−1

Css(c)
(
WGW⊤)−1

WG−WG
)

7: end for

C Adaptive whitening of natural images446

In this section, we elaborate on the converged structure of WT using natural image patches. To better447

visualize the relationship between the learned columns of W and sinusoidal basis functions (e.g.448

DCT), we focus on 1-dimensional image patches (rows of pixels). The results are similar with 2D449

image patches.450

It is well known that eigenvectors of natural images are well-approximated by sinusoidal basis451

functions [e.g. the DCT; 33; 34]. Using the same images from the main text [32], we generated 56452

contexts by sampling 16× 1 pixel patches from separate images, with 2E4 samples each. We train453

Algorithm 2 with K = N = 16, ηw = 5E-2, and random W0 ∈ O(16) on a training set of X of the454

images, presented uniformly at random T = 1E5 times. Fig C.1A,B shows that WT approximates455

the principal components of the aggregated context-dependent covariance, Ec∼p(c)[Css(c)], which456

are closely aligned with the DCT. To show that this structure is inherent in the spatial statistics of457

natural images, we generated control contexts, Css(c), by forming covariance matrices with matching458

1



Figure C.1: Control experiment accompanying Sec. 5.2. A) WT learned from natural image patches.
B) Basis vectors from A displayed as line plots, compared to the 1D DCT, and principal components
of Ec∼p(c)[Css(c)]. C) Control condition. WT learned from spectrally-matched image patches with
random eigenvectors.

eigenspectra, but each with random and distinct eigenvectors. This destroys the structure induced by459

natural image statistics. Consequently, the learned vectors in WT are no longer sinusoidal (Fig C.1C).460

As a result, whitening error with WT is much higher on the training set, with 0.3± 0.02 error (mean461

± standard error over 10 random initializations; Eq. 6) on natural image contexts and 2.7± 0.1 on462

the control contexts. While for the natural images, a basis approximating the DCT was sufficient to463

adaptively whiten all contexts in the ensemble, this is not the case for the generated control contexts.464

Finally, we find that as K increases from K = 1 to K = 16, the basis vectors in WT progressively465

learn higher frequency components of the DCT (Fig. C.2). This is a sensible solution, due to the466

ℓ2 reconstruction error of our objective, and the 1/f spectral content of natural image statistics.467

With more flexibility, as K increases past N (i.e. the overcomplete regime), the network continues468

to improve its whitening error (Fig. C.3A) by learning a basis, WT , that can account for within-469

context information that is insufficiently captured by the DCT (Fig. C.3B). Taken together, our model470

successfully learns a basis WT that exploits the spatial structure present in natural images.471

Figure C.2: As K increases, columns of W progressively learn higher frequency components of the
DCT.

D Modifications for increased biological realism472

In this section, we modify Algorithm 1 to be more biologically realistic.473

2



Figure C.3: A) Error on training and test set as a function of K. B) In the overcomplete regime, the
network converges to a WT that helps to improve error compared to the the K ≤ N regime.

D.1 Enforcing unit norm basis vectors474

In our algorithm, there is no constraint on the magnitude of the column vectors of W. We can enforce475

a unit norm (here measured using the Euclidean norm) constraint by adding Lagrange multipliers to476

the objective in equation 3:477

min
W∈RN×K

max
m∈RK

Ec∼p(c)

[
min
g∈RK

Es∼p(s|c) [g (W,g, r, s)]

]
, (D.1)

where478

g(W,g, r, s) = ℓ(W,g, r, s) +

K∑
i=1

mi(∥wi∥2 − 1).

Taking partial derivatives with respect to wi and mi results in the updates:479

∆wi = ηw(nir− (gi +mi)wi)

∆mi = ∥wi∥2 − 1.

Furthermore, since the weights are constrained to have unit norm, we can replace ∥wi∥2 with 1 in480

the gain update:481

∆gi = ηg(z
2
i − 1).

D.2 Decoupling the feedforward and feedback weights482

We replace the primary neuron-to-interneuron weight matrix W⊤ (resp. interneuron-to-primary483

neuron weight matrix −W) with Wrn (resp. −Wnr). In this case, the update rules are484

Wrn ←Wrn + ηw
(
ntr

⊤
t − diag(g +m)Wrn

)
Wnr ←Wnr + ηw

(
rtn

⊤
t −Wnrdiag(g +m)

)
.

Let Wrn,t and Wnr,t denote the values of the weights Wrn and Wnr, respectively, after t = 0, 1, . . .485

iterates. Then for all t = 0, 1, . . . ,486

W⊤
rn,t −Wnr,t =

(
W⊤

rn,0 −Wnr,0

)
(IN − ηwdiag(g +m))

t
.

Thus, if gi +mi ∈ (0, 2η−1
w ) for all i (e.g., by enforcing non-negative gi,mi and choosing ηw > 0487

sufficiently small), then the difference decays exponentially in t and the feedforward and feedback488

weights are asymptotically symmetric.489

3



D.3 Sign-constraining the synaptic weights and gains490

The synaptic weight matrix W and gains vector g are not sign-constrained in Algorithm 1, which is491

not consistent with biological evidence. We can modify the algorithm to enforce the sign constraints492

by rectifying the weights and gains at each step. Here [·]+ denote the elementwise rectification493

operation. This results in the updates494

g← [g + ηg(z ◦ z− 1)]+

Wrn ←
[
Wrn + ηw

(
ntr

⊤
t − diag(g +m)Wrn

)]
+

Wnr ←
[
Wnr + ηw

(
rtn

⊤
t −Wnrdiag(g +m)

)]
+
.

D.4 Online algorithm with improved biological realism495

Combining these modifications yields our more biologically realistic multi-timescale online algorithm,496

Algorithm 3.497

Algorithm 3: Biologically realistic multi-timescale adaptive whitening

1: Input: s1, s2, · · · ∈ RN

2: Initialize: Wnr ∈ RN×K ; Wrn ∈ RK×N ; m,g ∈ RK ; ηr, ηm > 0; ηg ≫ ηw > 0
3: for t = 1, 2, . . . do
4: rt ← 0
5: while not converged do
6: zt ←Wrnrt ; // interneuron inputs
7: nt ← g ◦ zt ; // gain-modulated interneuron outputs
8: rt ← rt + ηr (st −Wnrnt − αrt) ; // recurrent neural dynamics
9: end while

10: m←m+ ηm(diag(WrnWnr)− 1) ; // weight normalization update
11: g← [g + ηg (zt ◦ zt − 1)]+ ; // gains update
12: Wrn ←

[
Wrn + ηw

(
ntr

⊤
t − diag(g +m)Wrn

)]
+

; // synaptic weights update
13: Wnr ←

[
Wnr + ηw

(
rtn

⊤
t −Wnrdiag(g +m)

)]
+

14: end for

4


	Introduction
	Adaptive symmetric whitening
	Adaptive whitening in neural circuits: a matrix factorization perspective
	Objective for adaptive whitening via synaptic plasticity
	Objective for adaptive whitening via gain modulation
	Unified objective for adaptive whitening via synaptic plasticity and gain modulation

	Multi-timescale adaptive whitening algorithm and circuit implementation
	Numerical experiments
	Synthetic dataset
	Natural images dataset

	Discussion
	Notation
	Separation of timescales for the gain and synaptic weight updates
	Adaptive whitening of natural images
	Modifications for increased biological realism
	Enforcing unit norm basis vectors
	Decoupling the feedforward and feedback weights
	Sign-constraining the synaptic weights and gains
	Online algorithm with improved biological realism


