
Appendix

Table of Contents
A Extended Background 16

A.1 Continuous noise diffusion . 16
A.2 Categorical noise diffusion . 17

B Methodological Details 17
B.1 Infilling algorithm . 17
B.2 Hidden State Langevin Sampling . 18

C Infilling / NOS Guidance 19
C.1 Infilling experiment . 19
C.2 MCMC comparison . 19
C.3 PPLM details . 19
C.4 Model Architecture and Training . 20
C.5 Hyperparameter settings . 20
C.6 Density plots . 22

D LaMBO-2 23
D.1 Intro to Multi-Objective Bayesian Optimization 23
D.2 Discrete EHVI . 24
D.3 Architecture and Hyperparameters . 24
D.4 Training Data, Class Imbalance, and Label Smoothing 25
D.5 Baselining LaMBO-2 Against Unguided Sequence and Structure-Based Diversifi-

cation: . 26
D.6 Are Saliency Maps Reliable? . 27
D.7 Wetlab Validation . 28

A Extended Background

In this section we provide full descriptions of the diffusion processes introduced in Sec. 3.

A.1 Continuous noise diffusion

The forward process is defined by noise variances �. We use the cosine variance schedule from Nichol
and Dhariwal [55]. For convenience we further define

↵t “ 1 ´ �t, ↵̄t “
tπ

i

↵i

The forward process is defined by the conditional distributions

ppxt|xt´1q “ N pxt;
a
1 ´ �txt´1,�tIq

ppxt|x0q “ N pxt;
?
↵̄tx0, p1 ´ ↵̄tqIq

ppxt|wq “ N pxt;
?
↵̄tU✓w, p1 ´ ↵̄tqIq

16

This is a sample string

This is a [MASK] string

This [MASK] a [MASK] [MASK]

[MASK] [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] R
ev

er
se

pr
oc

es
s

Fo
rw

ar
d

pr
oc

es
s

Figure 8: Illustration of a string gradually corrupted by [MASK] tokens.

where U✓ is an embedding matrix. The reverse process is defined by

⇡pxq “ N p0, Iq
ppxt´1|xt, x0q “ N

`
xt´1;µt,�

2

t I
˘

µt “
?
↵̄t´1�t

1 ´ ↵̄t
x0 `

?
↵tp1 ´ ↵̄t´1q
1 ´ ↵̄t

xt

�
2

t “ 1 ´ ↵̄t´1

1 ´ ↵̄t
�t

p✓pw|xtq “ Softmaxp�✓px0qq
p✓pxt´1|xtq “

ÿ

ŵ

ppxt´1|xt, x0 “ U✓ŵqp✓pŵ|xtq

A.2 Categorical noise diffusion

Following Austin et al. [4] we define the MLM style categorical diffusion using transition matrices

rQtsij “

$
&

%

1 if i “ j “ m

↵t if j “ m, i ‰ m

1 ´ ↵t if i “ j ‰ m

and Q̄t “ Q1Q2...Qt for noise schedule ↵t P r0, 1s (see Figure 8 for an illustration). These transition
matrices correspond to categorical conditional distributions

ppwt|wt´1q “ Catpwt; p “ wt´1Qtq
ppwt|w0q “ Catpwt; p “ w0Q̄tq

The reverse process is defined by

⇡pwq “ 1rw “ [MASK]Ls

ppwt´1|wt, w0q “ Cat
ˆ
wt´1; p “ wtQ

J
t d w0Q̄

J
t´1

w0Q̄tw
J
t

˙

p✓pw0|wtq “ Softmaxp�✓pwtqq
p✓pwt´1|wtq “

ÿ

ŵ0

ppwt´1|wt, ŵ0qp✓pŵ0|wtq

B Methodological Details

B.1 Infilling algorithm

We sample infills using the procedure in Algorithm 1. The infill mask P is constructed by setting
the index of conserved residue equal to 1, in this case at every residue that is not included in set of
CDR regions being infilled. We use the same algorithm to perform the guided infilling in Subsec. 5.2,
where it is extended with a guidance Langevin sampling step.

17

Algorithm 1 Infilling with categorical denoising diffusion model
Inputs: Denoiser p✓pŵ|xt, tq, corruption process ppxt|x0q, infilling mask P , and seed sequence s

Returns: Sample from p̃pwq “ p✓pw|P, sq exppfpwqq
xT „ ppxT q
sT „ ppsT |sq
xT – pI ´ P

J
P qxT ` P

J
sT

for t “ T, . . . , 1 do
ppxt´1|xtq – ∞

ŵ ppxt´1|xt, ŵqp✓pŵ|xt, tq
xt „ ppxt´1|xtq
st „ ppst|sq
xt – pI ´ P

J
P qxt ` P

J
st

end
w „ p✓pw|x0q
return w

B.2 Hidden State Langevin Sampling

Design of molecules or images with generative models is often posed as the problem of sampling
from a posterior distribution ppx|aq given the unconditional distribution ppxq and attribute model
ppa|xq. Indeed, reinforcement learning, the design of good actions in an environment, can also be
framed as posterior sampling where ppa|xq is the probability that a given state or state-action pair
is optimal [46]. Methods that employ posterior sampling of this form are often call “plug-and-play”
because ppa|xq and ppxq need not share parameters and therefore users can mix and match different
instantiations [54, 17, 34, 26]

The most common way to sample from the posterior ppx|aq 9 ppa|xqppxq is through Langevin
sampling on the unnormalized joint density p̃pa, xq “ ppa|xqppxq, with sampling steps

x
i`1 “ x

i ` ⌘r log p̃pa, xq `
a
2⌘z

i
, z

i „ N p0, Iq
“ x

i ` ⌘ pr log ppa|xq ` r log ppxqq `
a
2⌘z

i
, z

i „ N p0, Iq
When we work with generative models over continuous random variables that permit a likelihood
(e.g. normalizing flows), score function (e.g. diffusions), or energy (e.g. EBMs) r log ppxq has a
natural interpretation and sampling can be performed with essentially vanilla Langevin sampling.
In other cases where only a denoising function over continuous variables is available, authors have
proposed approximate samplers using an approximation of the score function [54].

When we instead hope to sample from a posterior over discrete random variables constructing an
analogy to the score function r log ppxq is challenging, and prior work adopts a different approach of
regularizing the conditional sampling distribution ppw|aq with unconditional sampling ppwq in order
to maintain high likelihood [17]. In autoregressive models, ppwq is broken down using the chain rule,
ppwt|w†tq and thus the appropriate regularization is

KLpppwt|w†tq || ppwt|w†t, aqq (6)

In our case, the distribution ppwq is factorized by the transition distributions ppwt|wt´1q (or their
continuous analogies in token embedding space), and we hope to sample from the perturbed transition

p̃pwt´1|wtq “ p✓pwt´1|wtq exppv✓pwtqq
The correct regularization term in our case is thus

KLpppwt´1|wtq || ppwt´1|wt, aqq
To put the pieces together, we first recognize that the denoising model p✓pw0|wtq can be broken down
into an language model head, H✓, and trunk, T✓, with

ht “ T✓pwtq
p✓pw0|wtq “ H✓pw0|htq

We can then perform Langevin sampling on the hidden representations, initializing with ht, as shown
in Algorithm 2. In the experiments above we set �3 “ 0, as we saw no noticable benefit from adding
additional stochasticity. Importantly, sampling from ppwt´1|wtq already introduces randomness into
the reverse process.

18

Algorithm 2 Guided diffusion sampler
Inputs: Denoiser p✓pŵ|xt, tq “ rT✓, H✓s, value function v✓, and weights �1,�2, �3

Returns: Sample from p̃pwq “ ppwq exppfpwqq
wT “ [MASK]L
for t “ T, . . . , 1 do

ppwt´1|wtq – ∞
ŵ ppwt´1|wt, ŵqp✓pŵ|wtq

h
0 – T✓pwtq

for i “ 0, . . . ,K ´ 1 do
z
i „ N p0, Iq

ph – ∞
ŵ ppwt´1|wt, ŵqH✓pŵ|hiq

h
i`1 – h

i ` �1rhv✓phiq ` �2rhKLpppwt´1|wtq||phq ` �3z
i

end
wt´1 „ H✓phKq

end
return w0

C Infilling / NOS Guidance

All of our diffusion models are train on all paired heavy and light chain sequences from OAS [56]
(pOAS) combined with all sequences from SAbDab [25], aligned with ANARCI [24].

C.1 Infilling experiment

For our trained diffusion models, we use Algorithm 1 without guidance, generating P based on
the indicated CDRs, using chothia numbering for consistency with DiffAb. For the baselines, we
constructed wrapper scripts to convert the chosen CDR ids into each method’s native format.

C.2 MCMC comparison

Following Verkuil et al. [78], we construct a Markov chain using uniform random mutations to map a

0 5000 10000 15000 20000
6amSling 6teSs

3.0

3.2

3.4

3.6

E
ne
rg
y

Figure 9: (left) Comparing
convergence in sampling us-
ing a Metropolis Hastings-
adjusted MCMC [78] against
NOS models. Diffusion mod-
els (ours) accelerate sampling
by two orders of magnitude
while converging to similar en-
ergy values.

sequence w to a mutated sequence w
1, using the following

Metropolis-Hastings correction:

ppaccept w1|wq “ min

ˆ
1,

expp´Epw1q{T q
expp´Epwq{T q

˙
,

where T ° 0 is a temperature hyperparameter. While this method
has appealing theoretical properties, obtaining good samples from
this Markov chain in practice requires hundreds of thousands of
steps of burn-in.

In our experiment (Figure 9), we define the energy, E, by combining
sequence level probabilities assigned by IgLM with a beta sheets
objective function trained on IgLM’s representations. We construct
the energy as

Epwq “ pIGLMpwq ` �v✓pwq,
We tune � to generate sequences with approximately 40% beta sheets.
We also tune the NOS � parameter (Eq. 4) to produce approximately
40% beta sheets.

C.3 PPLM details

In order to generate full (heavy and light chain) optimized antibodies with PPLM and IgLM, we
train two separate value function models on IgLM’s aggregated hidden representations, one for heavy
chain sequences and one for light chain sequences. IgLM uses special tokens for both the chain
identity and the species identity of each sequences, and we pass in appropriate corresponding tokens
when calculating the hidden representations for each model. To determine the correct species token
for each sequence, we use the predicted species returned by ANARCI [24]. Our value function is a

19

simple one-layer feed-forward neural network trained on top of the mean-aggregated representations
for the corresponding chain identity.

To sample using PPLM, we overwrite the forward pass of the huggingface decoder used by IgLM to
include a Langevin sampling step over the current hidden representations. We perform K gradient
steps to update the current hidden representation h1 by descending on the objective

�KLrppŵ|h1q || ppŵ|hqs ´ vph1q
where h is the original hidden representation output by the model’s encoder, and ⌘ and � are the step
size and regularization strength respectively. We ran optimization with both vanilla gradient descent
and AdaGrad [23] and found AdaGrad to be more robust to poor specifications of the step size. For
the results in Sec. 5, we draw samples and present results for all of the hyperparameter settings in
Table 1

� 0, 0.001, 0.01, 0.1, 1.0
⌘ 0.5, 0.8, 1.1, 1.4, 1.7, 2.
K 5, 10

optimizer SGD, AdaGrad

Table 1: Hyperparameter settings used for PPLM. � controls the strength of the regularization. Large
values prevent sampling values that differ significantly from the unguided model. ⌘ controls the size
of steps taken in the latent space. Larger step sizes, when not too large, can increase the distance
traveled in the latent space and the extent to which sampling can yield samples with high values of
the objective.

One critical difference between controllable autoregressive models and controllable diffusions is the
ability to resample previously sampled values. Procedures that allow for resampling are often called
“iterative refinement” procedures because they can produce increasingly plausible generations by
refining the model’s previous output at each step in an iterative procedure. Because there are many
potential differences between our NOS models and PPLM, including but not limited to the nature
of iterative refinement, we performed an additional experiment to assess the impact of adapting a
discrete diffusion to perform autoregressive sampling. Autoregressive models can themselves be
thought of as diffusions with an idiosyncratic corruption process that masks out all tokens to the right
of the last sampled token. As in our discrete corruption process, the prior is also a sequence of all
mask tokens. Using this insight, we can run our trained discrete diffusions in autoregressive mode
by contriving the sampling noise schedule to be autoregressive and recover an approximation of the
timestep post-hoc from the percentage of masks at each step in autoregressive sampling.

Figure 10 shows the difference in objective values and likelihood for samples obtained by running
the model in typical diffusion mode (iterative refinement) or in contrived autoregressive mode. We
can see that on the beta sheets objective, iterative refinement has a noticeable positive impact on the
objective values of the sample. This effect is also present in the SASA objective, but to a much more
limited extent. We speculate that the iterative refinement facet of NOS is helpful for outperforming
other methods but not completely sufficient.

C.4 Model Architecture and Training

The gaussian and categorical diffusions are trained with the bert-small transformer backbone intro-
duced by Bhargava et al. [8]. We use a cosine noise schedule for both diffusions and train for 100
epochs with a batch size of 64, optimizing with AdamW using an initial learning rate of 5e-3 with
a linear warmup. The value function is a feed-forward neural network with one hidden layer. The
value function is trained jointly with the denoiser by alternating optimization steps, with 5 steps on
the generative objective for each step on the discriminative objective. We train the models for 100
epochs in total.

C.5 Hyperparameter settings

For each guided sampling experiment with NOS, we sample using many different hyperparameter
combinations in order to generate both conservative and aggressive optimization of the value function.

20

−500 −400
ProtGPT Log LLkelLhooG

0.15

0.20

0.25

%
 %
et
a
S
he
et
s

−500 −450 −400 −350
3rotG3T Log LLkelLhooG

11000

12000

S
A
S
A

AutRregressive Iterative ReIinement

Figure 10: We compare samples from running our guided discrete diffusion (NOS-D) with diffusion
style sampling versus autoregressive style sampling. We find that using an iterative refinement
procedure does lead to consistent improvements in the objective value, though not to an extent that
would suggest iterative refinement is sufficient for strong sampling performance.

The full hyperparameter settings for both objectives (beta sheets and SASA) and both corruption
types (NOS-D and NOS-C) are shown in Table 2. In Table 2, there is an additional hyperparameter,
“guidance layer”, which we did not discuss at length in the main text of the paper. This parameter
dictates whether we perform guidance in the first layer of the neural network (the token embeddings),
as is standard in continuous diffusion models for discrete sequences, or the final layer of the neural
network (the layer before the final linear head). In either case, we can use the same gradient descent
objective and corruption process in each case and need only change the variable we propagate gradient
updates to. Table 2 shows the hyperparameters used in the just Figure 5.

To aid intuition for the effects of each hyperparameter, we show the sample densities that result from
each combination of � and ⌘ in Table 2 when guiding in the first (Figure 11) and last (Figure 12) layer
of the NOS-D and NOS-C models. We see that the most important parameter is �, which controls
how far samples tend to move from the seeds. We can also observe that guiding in the first hidden
state tends to perform better when sampling with NOS-C, while guiding in the final hidden state
tends to perform better with NOS-D.

DiGress comparison DiGress [79] is built on top of a model with one-hot encodings and discrete
corruptions. The guided sampling procedure can be described as follows (using the notation from our
submission): At each denoising step t, we use the one-hot encodings as a continuous variable and
construct a perturbation distribution from a learned discriminative model v̂ “ v✓pwtq,

p✓pv̂|wt´1q 9 expp´�xrwtv✓pwtq, wt´1yq
We then sample the next value from the base diffusion transition p✓pwt´1|wtq perturbed with
p✓pv̂|wt´1q,

wt´1 „ p✓pwt´1|wtqp✓pv̂|wt´1q
The key details for guided sampling can be found in the DiGress code repo, where we see that the
guided distribution is the normalized product of the original denoising distribution and the softmax of
the gradients scaled with �.

On a theoretical level, this guidance has noticeably different properties from NOS. For large �, the
perturbation ppwt|v̂q collapses to a one-hot on the token index with the largest gradient value. For
small values of �, ppwt|v̂q becomes a uniform distribution. Therefore � interpolates ppwt´1|wtq
between the original unguided distribution and a one-hot in the max gradient direction. NOS also
reduces to unguided infilling when � “ 0, but � ° 0 only modulates the direction of the gradient
update. The distance between the guided and unguided distribution is controlled by the number of
langevin steps and the step size hyperparameter ⌘. Digress amounts to a single update step applied
directly to the output token probabilities using a continuous relaxation of the one-hot encoded input,
whereas NOS performs a sequence of local updates to hidden states that are actually continuous.

In our comparison, the embeddings and corruptions of each model are chosen to be:

1. NOS-C [Gaussian corruptions + learned embeddings]

21

11000

12000

13000

͋

 0
.1

͏ 10.0 ͏ 1.0

GuLGance Layer fLrst

͏ 0.1 ͏ 0.01 ͏ 0.001

11000

12000

13000

͋

 0
.5

6
A
6
A

−600 −400

11000

12000

13000

͋

 1
.0

−600 −400 −600 −400
3rotG3T Log LLkelLhooG

−600 −400 −600 −400

126�'��2XUV� 126�&��2XUV�

Figure 11: Density plots for every combination of the regularization (�) and step-size (⌘) parameter,
when performing guidance in the first layer (token embeddings) of the neural network denoiser. We
observe that lambda has the strongest effect on trading off fitness under the objective with likelihood
or closeness to the seed sequences.

2. NOS-D [Discrete (mask) corruptions + learned embeddings]
3. DiGress [Discrete (mask) corruptions + fixed one-hot encodings]

All models use the same backbone transformer and regression heads, facilitating an apples-to-
apples comparison. For DiGress, we perform sampling for large range of scaling values � P
t1e5, 3e4, 1e4, 3e3, 1e3, 3e2, 1e2, 3e1, 1e1, 1e0, 1e´1, 1e´2, 1e´3u. For each model, � modulates
the degree to which the model prefers greedy sampling from the value function gradient.

� 0.001, 0.01, 0.1, 1.0, 10.0
⌘ 0.1, 0.5, 1.0
K 5, 10

guidance layer first, last
optimizer SGD, AdaGrad

Table 2: NOS guided sampling hyperparameter settings. � controls the regularization strength, con-
straining the plausibility of samples, ⌘, when chosen effectively, can effect the degree of optimization
that takes place on the hidden states. The guidance layer is the layer in the neural network over which
guidance is applied, the first being the token embeddings and the last being the final representations
before the linear head. The same values are used for both NOS-D and NOS-C.

� 0, 0.001, 0.01, 0.1, 1.0, 10.0
⌘ 1.0
K 10

optimizer AdaGrad

Table 3: Hyperparameter settings used in Sec. 5. The guidance layer for NOS-D is final, and the
guidance layer for NOS-C is last.

C.6 Density plots

Because pareto fronts present only a partial view of sampling outcomes (focusing on the best
case outcomes along each axis), we also include sample density plots to confirm that our methods
consistently yield samples with better trade-off between likelihood and fitness. Figure 13 shows

22

10000

11000

12000

͋

 0
.1

͏ 10.0 ͏ 1.0

GuLGance Layer last

͏ 0.1 ͏ 0.01 ͏ 0.001

10000

11000

12000

͋

 0
.5

6
A
6
A

−600 −400
10000

11000

12000

͋

 1
.0

−600 −400 −600 −400
ProtGPT Log LLkelLhooG

−600 −400 −600 −400

126�'��2XUV� 126�&��2XUV�

Figure 12: Density plots for every combination of the regularization (�) and step-size (⌘) parameter,
when performing guidance in the last layer (pre-logits layer) of the neural network denoiser. NOS-C
and NOS-D exhibit quite different performance as a function of guiding the first or final hidden
representation.

−600 −400

0.2

0.3

%
 %
et
D
6
he
et
s

R)DLIIusLRn

−600 −400

DLIIAb

−600 −400

IgL0

−600 −400

N26-D (2urs)

−600 −400

N26-C (2urs)

−600 −400

11000

12000

6
A
6
A

−600 −400 −600 −400
ProtGPT Log LLkelLhooG

−600 −400 −600 −400

R)DLffusLRn DLffAb PPLM NOS-D (Ours) NOS-C (Ours) Seeds

Figure 13: We compare sample densities for the methods presenting in Sec. 5, in order to augment the
limitations of simply showing pareto fronts. We see that NOS-C and NOS-D can both consistently
generate samples with favorable trade-offs while other methods tend to radically decrease likelihood
with little benefit to the value function or be relatively limited to the neighborhood around the seed
sequences.

density plots for NOS and baselines when optimizing each of the two objectives (percentage of beta
sheets and SASA). We find that DiffAb and IgLM samples tend to cluster around the starting seeds,
while RFDiffusion samples tend to generate more diverse samples under the objective, but often with
much lower likelihood than the seed sequences. By contrast, both NOS methods consistently improve
values of the objective without sacrificing likelihoods.

D LaMBO-2

D.1 Intro to Multi-Objective Bayesian Optimization

When there are multiple objectives of interest, a single best (i.e. strictly dominant) sequence x˚ may
not exist. Suppose there are k objectives, f : X Ñ Rk. The goal of multi-objective optimization

23

Algorithm 3 LaMBO-2: one guided discrete diffusion step
Inputs: Seed sequence w0, edit budget projection P , diffusion timestep t, corruption function cpw, tq,
constraint function upwq, encoder g✓pwq, value function v✓phq, decoder d✓phq, regularization strength
�, SGLD step-size ⌘ and temperature ⌧ .
Returns: Best feasible sample from SGLD chain with distribution p

1pxq9 ppxq exppf ˝ gpxqq
w

˚
, v

˚ “ w0, v✓ ˝ gpw0q (initialize optimal solution)
w

1
0

“ cpw0, tq (apply diffusion noise)
h

1
0

“ g✓pw1
0
q (initialize hidden state)

for i “ 1, . . . , I do
loss “ �KLrd✓ph1

i´1
q||d✓ph1

0
qs ´ p1 ´ �qv✓ph1

i´1
q

h
1
i “ h

1
i´1

´ P p⌘rh1loss ` ?
2⌘⌧"), " „ N p0, Iq (projected SGLD step)

wi „ d✓ph1
iq (decode hidden state)

if v˚ † v✓ ˝ g✓pwiq & upwiq then
w

˚ – wi

v
˚ – v✓ ˝ g✓pwiq

end
end
return w

˚
, v

˚

(MOO) is to identify the set of Pareto-optimal (i.e. non-dominated) solutions such that improving one
objective within the set leads to worsening another. We say that x dominates x1, or fpxq ° fpx1q,
if fjpxq • fjpx1q for all j P t1, . . . ,mu and fjpxq ° fjpx1q for some j. The set of non-dominated
solutions X ˚ is defined in terms of the Pareto frontier (PF) P˚,

X ‹ “ tx : fpxq P P‹u, where P‹ “ tfpxq : x P X , @ x1 P X s.t. fpx1q ° fpxqu. (7)

MOO algorithms typically aim to identify a finite approximation to X ‹ (which may be infinitely
large), within a reasonable number of iterations. One way to measure the quality of an approximate
PF P is to compute the hypervolume HVpP|rrefq of the polytope bounded by P Y trrefu, where
rref P Rm is a user-specified reference point.

uEHVIpx, f,Dq “ HVIpP 1
,P|rrefq “ rHVpP 1|rrefq ´ HVpP|rrefqs`, (8)

where P 1 “ P Y tf̂pxqu [27, 28, 18]. To decide where to query f next, we search for
argmaxx EruEHVIpx, f,Dqs, where the expectation is w.r.t. ppf |Dq.

D.2 Discrete EHVI

Although expression yield and binding affinity are both continuous measurements, we chose to
discretize them and model them as classification with a softmax likelihood (See Appendix D.4). As a
result we needed an extension of EHVI for discrete outcomes. Informally, EHVI is simply computing
the HVI for different realizations of f and marginalizing f using ppf |Dq. Instead of taking f to be
the latent function of some regression y “ fpwq ` ". " „ N p0,�2q, we instead take f to be the
logits of a categorical distribution, ppy “ i|w,Dq “ ≥

softmaxipfpwqqppf |Dqdf .

Let y “ ry1 ¨ ¨ ¨ yksJ. Given a set of baseline points B Ä AL we define P (Eq. 8) using the posterior
mean ŷpwq “ Ery|w,Ds, w P B. We model y1, . . . , yk as conditionally independent given some
shared hidden state h “ gdpwq, so ppy|h,Dq factorizes nicely. Finally we define P 1 “ P Y tyu and
take the expectation of Eq. 8 w.r.t. ppy|h,Dq. Since ppy|h,Dq is discrete and factorizes, we can
marginalize in closed form when K1 ˆ ¨ ¨ ¨ ˆ Kk is not too large, where Ki is the number of classes
corresponding to the discretization of the original continuous fi.

D.3 Architecture and Hyperparameters

The inputs of the LaMBO-2 model for antibody design are the variable heavy (VH) and variable
light (VL) regions of the antibody sequence as determined by Aho alignment with ANARCI, as well
as the (unaligned) antigen sequence. Note that the concatenation of the antigen to the input makes
the samples from the generative head conditional on the antigen as well as the unmasked portion
of the antibody sequence. The LaMBO-2 model jointly predicts antigen-conditional categorical

24

token distributions for corrupted positions and discriminative distributions over protein properties.
Discriminative predictions that should not depend on the antigen are made invariant through data
augmentation with random antigen sequences. See Algorithm 3 for an overview of a single guided
diffusion step with LaMBO-2.

Model Architecture: our architecture for this experiment is inspired by the one proposed by Stanton
et al. [73]. In particular we jointly a train an encoder shared between a generative discrete diffusion
head and discriminative heads which predict expression and affinity. Rather than use a deep kernel
GP, we simply ensemble 10 heads for each discriminative task to obtain uncertainty estimates. Like
Stanton et al. [73] for this experiment we use 1D CNN residual blocks (kernel width 9), with layer
normalization and sinusoidal position embeddings. The shared encoder was comprised of 4 residual
blocks, and each task head was comprised of 2 residual blocks followed by a linear layer, with the
exception of the generative head which was just a linear layer on top of the shared embeddings. Note
that in future work self-attention layers could be used instead of CNN layers, as was the case for
the pOAS experiments in Sec. 5. We set the embedding dimension to 32, and the latent channel
dimension to 256.

Training Hyperparameters: The LaMBO-2 model is both a jointly trained generative and discrimi-
native model, as well as a true multi-task model, which is necessary since measurements for various
protein properties are often missing from a substantial fraction of rows in real-world datasets. We
trained for 500K gradient updates using the Adam optimizer with ⌘ “ 1e-3, �0 “ 0.99,�1 “ 0.999.
At each gradient step we randomly sampled a task head and task minibatch (batch-size 121) and
updated the corresponding weights (including shared weights). We used a linear learning rate warmup
over 10K gradient updates, and decayed the learning rate to 1e-6 with a cosine schedule. We did not
regularize with weight decay or dropout.

Generation Hyperparameters: to generate the designs in Figure 7, we sampled 1K designs from a
pool of seed antibody sequences hand-selected by domain experts. For each seed we set the total edit
budget shared between chains to B “ 16. In this experiment each infilling method took 16 diffusion
steps, using an inverse linear noise schedule ↵t “ 1{p1 ` tq. Although the models were trained with
a standard cosine noise schedule, we found the inverse linear schedule gave better results in terms of
sample acquisition value at generation time. Within each diffusion step we took 64 Langevin steps,
with noise scale ⌧ “ 1e-2. For guided infills with uniformly distributed edit positions we set ⌧ “ 1e6.
For guided infills with saliency-informed edit position selection we set ⌧ “ 0.1. We set � “ 0.5 to
balance the tradeoff of sequence likelihood and value during guidance.

Generation Constraints: in addition to the edit budget locality constraint, our LaMBO-2 designs
were also constrained to meet certain sequence liabilities constraints:

• Canonical Cysteine Conservation: there are specific conserved cysteine residues in anti-
body sequences which play a crucial role in the formation of disulfide bridges. Disulfide
bridges are covalent bonds formed between two cysteine residues through oxidation of their
sulfur atoms. These bridges contribute to the overall structural stability and integrity of
antibodies.

• No Unpaired Cysteines: odd numbers of cysteines within individual chains (i.e. unpaired
cysteines) are generally undesirable since they can lead to non-native disulfide bonds
between different antibody molecules, which may disrupt assembly, folding, or function.

• No Glycosylation Motifs: A glycosylation motif is a specific amino acid sequence within a
protein that serves as a recognition site for the attachment of sugar molecules. The presence
of a glycosylation motif in a protein can affect its stability, solubility, activity, and function.
The addition of sugar molecules can alter the protein’s conformation, change its interactions
with other proteins or molecules, and affect its trafficking and localization within the cell.

D.4 Training Data, Class Imbalance, and Label Smoothing

Training Data: the expression task heads were trained on a dataset of 10K linear transfection
expression measurements, which was subsequently augmented to 160K rows by pairing the same
measurements with different random antigens to teach the model to ignore the antigen sequence
when predicting expression. The binding task heads were trained on a dataset of 10K SPR affinity
measurements for various antigens, which was then augmented to 12K rows by pairing binders with
different random antigens and imputing a non-binding label. This augmentation is important for

25

� � 	 � ��
������������

���

���

��	

���

��

��
��
���

� � � � 	
 � � � ��
�������������

� � � � � 	
 � � ��
�������������

�

���

���

��

���

����

��
��

�

Figure 14: An illustration of using quantization to address heavily imbalanced data. On the right we
show the original marginal label distribution in green, and the discretization boundaries as dotted
lines. The boundaries are defined by a minimal level of affinity to be considered a binder (pKD “ 4),
and pKD deciles computed from the remaining measurements.

training a pan-target affinity model, since experimental measurements of affinity to off-target antigens
are uncommon. Note that the expression and affinity data only partially overlapped, necessitating the
multi-task architecture described in Appendix D.3. The generative diffusion head was trained only on
binding antibody-antigen pairs in the SPR binding data.

We did not pretrain our LaMBO-2 models. It is likely that performance could be improved with
the right pretraining corpus, however it is unclear if datasets like pOAS are particularly useful for
pretraining antibody design models since most do not report antigen sequences and may not have the
right level of variability. In any case, it is very encouraging to see positive real-world results before
scaling in earnest.

Label Discretization. As noted above, biological data tends to be very imbalanced, and historical
experimental data even more so since there are strong selection effects imposed by the scientists
collecting the data. We chose to discretize continuous properties like expression yield and binding
affinity, making it easier to correct for class imbalance by upsampling minority classes. In Figure 14
we illustrate our discretization scheme. Any antibody-antigen pair with ´ logpKDq (pKD) less than
4 was assigned to the non-binding class 0. Then binders were assigned to classes 1 - 10 based on
which pKD decile (computed from binders only) they resided in. One consequence of this scheme is
increasing any objective value by one unit corresponds to moving up one decile in the empirical label
distribution.

Training Discriminators on Noisy Inputs: the benefits of discretization are not limited to addressing
class imbalance. Working with discretized labels also allowed a simple approach to training the
discriminator on corrupted inputs inspired by label smoothing [76]. We train the discriminators with
the same noise schedule as the diffusion model and the usual cross-entropy loss, using modified labels

yt “ ↵t ˚ y ` p1 ´ ↵tq{K ˚ 1,

where y is the one-hot encoded label and K is the number of classes. Informally, as ↵t Ñ 0 the
discriminator reverts to a uniform prior since the inputs are not distinguishable. Training on corrupted
inputs avoids evaluating the value gradient on out-of-distribution inputs during generation, and causes
the strength of the value gradient to grow as the diffusion progresses and the samples become more
defined.

D.5 Baselining LaMBO-2 Against Unguided Sequence and Structure-Based Diversification:

Structure-Based Diversification We have shown that we can effectively optimize antibodies for
predicted yield and affinity, and our method performs well compared to unguided sequence-based
infilling methods. We expand our evaluation for this task to include unguided infilling with DiffAb
and RFDiffusion of CDRs H2 and H3 of hu4D5 (i.e. the seed), a publicly released therapeutic
antibody that is ideally suited for structure-based methods since we have a ground truth crystal
structure of hu4D5 docked with its target ERBB2. While it is not feasible to validate the resulting
designs in vitro during the author response period, we can compare the AntiBERTy naturalness scores
and the acquisition value (log expected hypervolume improvement or log-EHVI) of the designs
relative to our guided infills (Fig. 15). To summarize, unguided structure-based infilling produces

26

high likelihood samples, but even when conditioned on the antigen the distribution shift toward better
predicted function is very slight.

���
�
����� ��	��� ��
��������

���� ���� ���� ���� ��	�
����������

�

��

��

��
���

�
� �	� ��� ��� ��� �
�����������������

���

���

��	

���

�
��
���

−50 −40 −30 −20 −10 0
Acquisition Value

0.000

0.025

0.050

0.075

0.100

De
ns
it

RFDiff w/o antigen
RFDiff w/ antigen

Figure 15: (left) we find that structure-based infills, particularly from DiffAb, tend to score consis-
tently well on naturalness. Guided infilling produces a much wider range of scores, but the mode is
very close to that of RFDiffusion. (middle) as assessed by the same model used to guide towards
higher yield and binding affinity. The guided infills have very high acquisition value, since they
were explicitly optimized for that outcome. Given 1024 samples each, DiffAb failed to produce
any sequences of higher expected value than the seed, and RFDiffusion produced only 7 marginally
improved designs. We also took the opportunity to assess the sensitivity of RFDiffusion to the antigen
by comparing infills generated using the antibody stucture only (right). While the effect is not large,
antigen information does produce a small shift in the distribution of acquisition values to the right.

Sequence Diversification This in silico evaluation compares two variants of LaMBO-2 (one using
NOS-C, the other NOS-D) against a competing method, walk-jump sampling (WJS), an unguided
smoothed discrete sampling algorithm proposed by Frey et al. [30]. Each method generated 1K
designs from the same set of seeds, and all methods were restricted to B “ 8 edits. LaMBO-2 chose
all edit positions automatically along the entire antibody sequence, whereas WJS was given manually
selected edit positions restricted to CDRs only. In the left two panels of Figure 7 we compare the
predicted expression yield, predicted binding affinity, and naturalness of the antibody designs, using
the metric proposed by . Comparing the Pareto frontiers obtained from each set of designs, we see
that while WJS excels at generating “natural” antibodies, it struggles to generate designs at the higher
end of the objective range. Conversely LaMBO-2 designs (particularly those generated with NOS-C)
have high predicted objective value but also lower naturalness scores. LaMBO-2 designs generated
with NOS-D strike a balance between the two extremes.

�����
�����������
����������� 	�

���� ���	 ��	� ��		
�����������

���

��	

	��

�	

����

�
��

���
��

��
��
��
�

���� ���� ����
�����������

�

	

��

�
��

���
���
��
��

Figure 16: We evaluate LaMBO-2 in the context of real-world antibody lead optimization. LaMBO-2
can use either NOS-C or NOS-D to generate design libraries with higher predicted objective value
than the unguided sampling baseline WJS [30], however intensive optimization comes at the cost of
reduced naturalness (panels left and center).

D.6 Are Saliency Maps Reliable?

There is substantial controversy regarding the reliability of input-gradient-based feature attribution
methods, specifically related to their ability to consistently highlight ground truth task-discriminative
features and ignore irrelevant features. For example, Hooker et al. [41] claim that random attribution
is competitive with input-gradient methods, and Casper et al. [11] claim that gradient-free attribution
outperforms input-gradient competitors. On the other hand, many papers claim that specific types

27

�����������������	 ����������

������� � ��������������
		�� � � � �� � � � � � �� � �����	��������	� � ��� � � � ������	������� � �	������	� �������	���	���
������� �	��������������
�

�

�

�

 � �������������
��� � �	��� � ��
�� � � � � � � ��������������� � � �� � � � � � � � � ��� ������������ � � �
���� � ������
�����	����� ���������� � �
�

�

��

Figure 17: Binding affinity feature attributions for hu4D5 produced by independent models trained
with different input corruptions. While the attributions do not match exactly, there is substantial
agreement on the importance of CDRH3 (top panel) and CDRL1. Some importance is also assigned to
various framework regions, which could be related to the fitness of different antibody germlines. We
emphasize that these models were trained solely on aligned sequences, with no additional positional
information.

of regularization can improve the performance of input-gradient attribution, including adversarial
training [66], mask denoising [6], and model curvature penalties [72].

A thorough investigation of these claims is beyond the scope of this work, however we have found
that saliency maps produced by independent models trained with different corruption processes seem
to consistently highlight specific regions of the antibody sequence (Figure 17). It is also worth noting
that most of the related literature evaluates feature attribution in the offline setting. In LaMBO-2
feature attributions are used online to intervene on the data collection process (specifically where
to introduce changes in the antibody sequences). If LaMBO-2 changes a position that does not
affect function it is reasonable to conjecture that input-gradient attributions would adjust accordingly
after the model is retrained for the next round. Further investigation into feature attribution in
decision-making contexts (as opposed to post hoc interpretability) is an exciting direction for future
work.

D.7 Wetlab Validation

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0
Edit Di tance from Seed

0.05

0.10

0.15

0.20

0.25

0.30

yi
el
d
(m

g)

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0
Edit Di tance from Seed

−0.2

−0.1

0.0

0.1

Δ
yi
el
d
(m

g)

1.0 2.0 3.0 4.0 5.0 6.0 7.0
Edit Distance fr m Seed

6.0

6.5

7.0

7.5

8.0

8.5

-l
g1

0(
KD

) (
M
)

1.0 2.0 3.0 4.0 5.0 6.0 7.0
Edit Distance f om Seed

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

-Δ
lo

g1
0(

KD
) (

M
)

Figure 18: Here we show the experimentally validated yield (top) for all expressing designs and
affinity (bottom) for all binding designs as a function of edit-distance from the original seed. In the
right column we show the absolute measurement, and the left column shows the change relative to a
seed measurement in the same batch.

28

In this section we briefly summarize the experimental procedures used to validate LaMBO-2 designs
in vitro. Designed antibody sequences from LaMBO-2 were expressed and purified, and surface
plasmon resonance (SPR) measurements were used to determine binding affinity. See Figure 18 for a
plot of design binding affinity vs. edit distance from seed antibody.

Plasmid Construction and Antibody Production: synthesized DNA of antibody variable domains
(Twist Biosciences) were cloned into mammalian expression vectors using Gibson assembly. The
whole vector was amplified using PrimeStar Max polymerase (Takeda). PCR products were trans-
fected transiently in 1mL Expi293 cell culture. Expression lasted 7 days before harvest. Antibodies
were affinity purified over a MAb Select SuRe resin (Cytiva), and their concentration was measured
by optical density at 280nM.

Binding Affinity Measurements: affinity of the antibodies towards their target antigen was measured
by surface plasmon resonance (SPR) at 37 °C on a Biacore 8K instrument (Cytiva) in HBS-EP+
buffer (10 mM Hepes, pH 7.4, 150 mM NaCl, 0.3mM EDTA and 0.05% vol/vol Surfactant P20).
Antibodies were captured on a Protein A chip and their target antigen were injected for 5 minutes and
allowed to dissociate for 10 minutes at 30ul/min. The surface was regenerated between cycles with
10 mM glycine pH 1.5. Affinity constants were obtained using Biacore Insight (Cytiva) using a 1:1
binding kinetics model.

29

	Introduction
	Related Work
	Background
	Methods
	NOS: diffusioN Optimized Sampling
	LaMBO-2: function-guided protein design

	Experiments
	Unguided antibody CDR infilling
	Optimizing antibodies for in silico objectives
	Antibody lead optimization: in silico evaluation
	Antibody lead optimization: in vitro evaluation

	Discussion
	Appendix
	 Appendix
	Extended Background
	Continuous noise diffusion
	Categorical noise diffusion

	Methodological Details
	Infilling algorithm
	Hidden State Langevin Sampling

	Infilling / NOS Guidance
	Infilling experiment
	MCMC comparison
	PPLM details
	Model Architecture and Training
	Hyperparameter settings
	Density plots

	LaMBO-2
	Intro to Multi-Objective Bayesian Optimization
	Discrete EHVI
	Architecture and Hyperparameters
	Training Data, Class Imbalance, and Label Smoothing
	Baselining LaMBO-2 Against Unguided Sequence and Structure-Based Diversification:
	Are Saliency Maps Reliable?
	Wetlab Validation

