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Abstract

Capturing semantic information is crucial for accurate long-range time series
forecasting, which involves modeling global and local correlations, as well as dis-
covering long- and short-term repetitive patterns. Previous works have partially ad-
dressed these issues separately, but have not been able to address all of them simul-
taneously. Meanwhile, their time and memory complexities are still not sufficiently
low for long-range forecasting. To address the challenge of capturing different types
of semantic information, we propose a novel Water-wave Information Transmission
(WIT) framework. This framework captures both long- and short-term repetitive
patterns through bi-granular information transmission. It also models global and
local correlations by recursively fusing and selecting information using Horizontal
Vertical Gated Selective Unit (HVGSU). In addition, to improve the computing
efficiency, we propose a generic Recurrent Acceleration Network (RAN) which
reduces the time complexity to O(

√
L) while maintaining the memory complexity

at O(L). Our proposed method, called Water-wave Information Transmission
and Recurrent Acceleration Network (WITRAN), outperforms the state-of-the-art
methods by 5.80% and 14.28% on long-range and ultra-long-range time series
forecasting tasks respectively, as demonstrated by experiments on four benchmark
datasets. The code is available at: https://github.com/Water2sea/WITRAN.

1 Introduction

Time series forecasting is a valuable tool across diverse fields, such as energy, traffic, weather and so
on. Compared with short-range time series forecasting, long-range forecasting offers the advantage
of providing individuals with ample time to prepare and make informed decisions. For instance,
accurate long-range traffic and weather forecasts enable individuals to plan their travel arrangements
and attire accordingly. To improve the accuracy of such forecasting, it is essential to utilize longer
historical sequences as input for the forecasting models [Liu et al., 2021, Zeng et al., 2023].

Previous studies [Wu et al., 2023, Nie et al., 2023] have highlighted the importance of capturing
semantic information in long-range time series to achieve accurate predictions. However, the semantic
information in long-range time series is diverse, so how to analyze and capture it becomes a major
challenge. Specifically, semantic information includes two main aspects: (1) Global and local
correlations. The local semantic information usually contains short-range changes within the data,
while the global semantic information reflects the long-range trends present in the time series [Wang
et al., 2023], which can be referred to as global-local semantic information. (2) Long- and short-
term repetitive patterns. Time series often exhibit repetitive patterns at different timescales [Lai
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et al., 2018, Liu et al., 2021], such as hourly or daily cycles, which can be identified as periodic
semantic information. Furthermore, it is crucial to model both aspects of semantic information
simultaneously and ensure that the modeling approach remains computationally efficient, avoiding
excessive complexity.

Unfortunately, although the existing state-of-the-art methods have shown great performance, they
encounter difficulties in addressing the aforementioned challenges simultaneously. Specifically,
CNN-based methods [Bai et al., 2018, Franceschi et al., 2019, Sen et al., 2019, Wu et al., 2023,
Wang et al., 2023] have linear complexity with respect to the sequence length L, but they are either
limited by the size of the convolution receptive field [Wang et al., 2023] or constrained by the 1D
input sequence [Wu et al., 2023], making it difficult to capture both important semantic information
simultaneously. Transformer-based methods can be broadly classified into two categories based
on whether the point-wise attention is used or not. The used ones [Vaswani et al., 2017, Zhou et al.,
2021, 2022a] capture correlations between points in the sequence, yet face challenges in capturing
hidden semantic information directly from point-wise input tokens [Nie et al., 2023, Wu et al.,
2023]. The others [Li et al., 2019, Wu et al., 2021, Liu et al., 2021] struggles either with achieving
sufficiently low computational complexity or with effectively capturing periodic semantic information.
Other methods [Zhou et al., 2022b, Zeng et al., 2023] also exhibit limitations in capturing semantic
information mentioned above. Further details can be found in Section 2.

RNN-based methods [Hochreiter and Schmidhuber, 1997, Chung et al., 2014, Rangapuram et al.,
2018, Salinas et al., 2020] have significant advantages in capturing global and local semantic informa-
tion through their recurrent structure, as shown in Figure 1(a), while maintaining linear complexity.
However, they suffer from gradient vanishing/exploding [Pascanu et al., 2013] and information for-
getting issues (refer to Appendix B for more details), making them less suitable for direct application
in long-range forecasting tasks. Fortunately, it has been proven that by splitting the information
transmissions into patches between a few adjacent time steps and processing them individually, it is
possible to maintain both global and local semantic information [Nie et al., 2023, Wu et al., 2023].
This insight is highly inspiring, as it suggests that by dividing the inputs of RNNs into numerous sub-
series and processing them separately, we can effectively address the significant limitation mentioned
earlier, without compromising the efficiency of long-range forecasting.
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Figure 1: Information transmission process diagram of different forecasting models.
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Based on the aforementioned insights, we propose a novel framework called Water-wave Information
Transmission and Recurrent Acceleration Network (WITRAN) which comprises two key compo-
nents: The Water-wave Information Transmission (WIT) framework and the Recurrent Acceleration
Network (RAN). The overall information transmission process of WITRAN is illustrated in Fig-
ure 1(i). Firstly, to capture the periodic semantic information of long- and short-term, we rearrange
the input sequences according to their natural period, as shown in Figure 2(a). This rearrangement
allows for information transmission in two directions, resembling the propagation of water-wave
energy, as shown in Figure 2(b). The horizontal red arrows indicate the intra-periodic informa-
tion transmission along the time steps, while the vertical blue arrows indicate the inter-periodic
information transmission. Secondly, to preserve the characteristics of long- and short-term periodic
semantic information, we propose a novel Horizontal Vertical Gated Selective Unit (HVGSU) which
incorporates Gated Selective Cells (GSCs) separately in both directions. To capture the correlation
between periodic semantic information of both directions at each time step, we design fusion and
selection operations in GSC. With a recurrent structure, HVGSU progressively captures more local
semantic information until it encompasses the global semantic information. Thirdly, to improve
efficiency, we propose the Recurrent Acceleration Network (RAN), which enables parallel processing
of information transmission in both directions. Notably, RAN maintains a memory complexity of
O(L) while reducing the time complexity to O(

√
L). In addition, RAN could serve as a universal

framework for integrating other models to facilitate information fusion and transmission. In summary,
our main contributions are as follows:

• We propose a Water-wave Information Transmission and Recurrent Acceleration Network
(WITRAN), which represents a novel paradigm in information transmission by enabling
bi-granular flows. We provide a comprehensive comparison of WITRAN with previous
methods in Figure 1 to highlight its uniqueness. Furthermore, in order to compare the
differences between WITRAN and the model (a)-(h) in Figure 1 more clearly, we have
prepared Table 1 to highlight the advantages of WITRAN.

• We propose a novel Horizontal Vertical Gated Selective Unit (HVGSU) which captures long-
and short-term periodic semantic information by using Gated Selective Cell (GSC) indepen-
dently in both directions, preserving the characteristics of periodic semantic information.
The fusion and selection in GSC can model the correlations of long- and short-term periodic
semantic information. Furthermore, utilizing a recurrent structure with HVGSU facilitates
the gradual capture of semantic information from local to global within a sequence.

• We present a Recurrent Acceleration Network (RAN) which is a generic acceleration
framework that significantly reduces the time complexity to O(

√
L) while maintaining

the memory complexity of O(L). We summarize the complexities of different methods in
Table 2, demonstrating the superior efficiency of our method.

• We conduct extensive experiments on four benchmark datasets across various fields (energy,
traffic and weather). The empirical studies demonstrate the remarkable performance of
WITRAN, which achieves relative improvements of 5.80% and 14.28% in long-range and
ultra-long-range forecasting respectively. In addition, the introduction of the generic RAN
framework greatly improves the computational efficiency.

Table 1: Advantages of WITRAN compared to other methods.

Advantages (a) RNN (b) CNN (c) Full Attention (d) LogTrans (e) Pyraformer (f) MICN (g) PatchTST (h) TimesNet (i) WITRAN (ours)

Non point-wise semantic information capture ! ! % ! ! ! ! ! !

Special design to capture long-term repetitive patterns % % % % ! % % ! !

Efficiently (1 or 2 layers) model global correlations !(1) % !(1) % % !(2) !(2) % !(1)

Well solve the gradient vanishing/exploding problem of RNN % − − − − − − − !

Table 2: Complexity of forecasting models in training. L is the sequence length, and S is the stride in
the PatchTST model.

Methods RNN CNN Transformer LogTrans Informer Autoformer Pyraformer FEDformer FiLM PatchTST MICN WITRAN (ours)

Time O(L) O(L) O(L2) O(L log L) O(L log L) O(L log L) O(L) O(L) O(L) O((L/S)2) O(L) O(
√
L)

Memory O(L) O(L) O(L2) O(L2) O(L log L) O(L log L) O(L) O(L) O(L) O((L/S)2) O(L) O(L)
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Figure 2: Input rearrangement and water-wave information transmission.

2 Related Work

Time series forecasting methods can be broadly categorized into statistical methods and neural
network methods. Neural network methods, in turn, can be further classified into several subcategories
based on the specific techniques employed, including RNN-based, CNN-based, Transformer-based,
and other Deep Neural Networks (DNNs) by the methods used.

Statistical Methods with major representatives include ARIMA [Box and Jenkins, 1968],
Prophet [Taylor and Letham, 2018], and Holt Winter [Athanasopoulos and Hyndman, 2020]. How-
ever, the inherent variability and complexity of real-world time series often render these methods
inadequate, as they are built on hypotheses that may not align well with the characteristics of such
data. As a result, the performance of these statistical methods tends to be limited.

RNN-based Methods [Hochreiter and Schmidhuber, 1997, Chung et al., 2014, Rangapuram et al.,
2018, Salinas et al., 2020] possess the inherent advantage of capturing semantic information in time
series data through their recurrent structure, which mimics the natural information transmission
process of time series. This allows them to progressively capture semantic information from local
to global contexts. These methods exhibit linear time and memory complexity, enabling efficient
processing of time series data with a sequence length of L. However, when dealing with longer
sequences, the problems of gradient vanishing/exploding [Pascanu et al., 2013] and information
forgetting (see Appendix B for more details) further limit it.

CNN-based methods [Bai et al., 2018, Franceschi et al., 2019, Sen et al., 2019, Wu et al., 2023,
Wang et al., 2023] are adept at capturing local semantic information through the application of
convolutional kernels, while maintaining linear time and memory complexity. However, on the one
hand, most of these methods face challenges in capturing comprehensive global information due to
the limited receptive field of individual convolutional layers, which make the training process more
difficult and overhead [Wang et al., 2023]. On the other hand, it is difficult to directly capture long-
and short-term repetitive patterns on 1D inputs. MICN [Wang et al., 2023] adopted downsampling
1D convolutions and isometric convolutions combined with a multi-branch framework, which can
effectively solve the former problem, but still suffers from the latter one. TimesNet [Wu et al., 2023]
transforms 1D inputs into 2D space, leveraging a parameter-efficient inception block to capture intra-
and inter-period variations. However, it solves the latter problem while still facing the former one.

Transformer-based methods have shown advancements in time series forecasting, with two
main categories. The first category uses point-wise attention mechanisms, such as Vanilla Trans-
former [Vaswani et al., 2017], Informer [Zhou et al., 2021], and FEDformer [Zhou et al., 2022a],
while facing challenges in extracting sufficient semantic information from individual time points.
The second category employs non point-wise dot product techniques, including LogTrans [Li et al.,
2019], Autoformer [Wu et al., 2021], Pyraformer [Liu et al., 2021] and PatchTST [Nie et al., 2023].
They reduce computational complexities to a certain degree, yet face difficulties in incorporating
the long-term correlations in time-series. For a detailed description of these methods, please refer
to Appendix A. Furthermore, it is worth noting that the majority of the aforementioned methods
fail to achieve lower complexity than RNN-based methods. For a comprehensive comparison of the
theoretical time and memory complexity, as well as experimental results, please refer to Appendix C.

Other DNN methods have also demonstrated promising performance. For example, FiLM [Zhou
et al., 2022b] utilizes Legendre Polynomials and Fourier projection methods to capture historical in-
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formation, eliminate noise, and expedite computations using low-rank approximation. DLinear [Zeng
et al., 2023] has showcased impressive outcomes by employing simple linear operations. Nevertheless,
both approaches encounter difficulties in capturing various repeating patterns present in the sequence.

3 The WITRAN Model

The time series forecasting task involves predicting future values Y ∈ RP×cout for P time steps
based on the historical input sequences X = {x1, x2, . . . , xH} ∈ RH×cin of H time steps, where
cin and cout represent the number of input and output features respectively. In order to integrate
enough historical information for analysis, it is necessary for H to have a sufficient size [Liu et al.,
2021, Zeng et al., 2023]. Furthermore, capturing semantic information from the historical input is
crucial for accurate forecasting, which includes modeling global and local correlations, as well as
discovering long- and short-term repetitive patterns. However, how to address them simultaneously
is a major challenge. With these in mind, we propose WITRAN, a novel information transmission
framework akin to the propagation of water waves. WITRAN captures both long- and short-term
periodic semantic information, as well as global-local semantic information simultaneously during
information transmission. Moreover, WITRAN reduces time complexity while maintaining linear
memory complexity. The overall structure of WITRAN is depicted in Figure 3.
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Figure 3: Overall structure of WITRAN.

3.1 Input Module

To facilitate the analysis of long- and short-term repetitive patterns, inspired by TimesNet [Wu et al.,
2023], we first rearrange the sequence from 1D to 2D based on its natural period, as illustrated
by Figure 2(a). Importantly, our approach involves analyzing the natural period of time series and
setting appropriate hyperparameters to determine the input rearrangement, rather than using Fast
Fourier Transform (FFT) to learn multiple adaptive periods of inputs in TimesNet. Consequently, our
method is much simpler. Additionally, in order to minimize the distribution shift in datasets, we draw
inspiration from NLinear [Zeng et al., 2023] and employ an adaptive learning approach to determine
whether to perform simple normalization. The input module can be described as follows:

X1D =

{
X ,norm = 0

X − xH , norm = 1

X2D = Rearrange([X1D, TFen]),

(1)

here, X1D ∈ RH×cin represents the original input sequences, xH ∈ Rcin represents the input at
the last time step of the original sequence, TFen ∈ RH×ctime represents the temporal contextual
features of original input sequence (e.g., HourOfDay, DayOfWeek, DayOfMonth and DayOfYear),
where ctime is the dimension of time features. X2D ∈ RR×C×(cin+ctime) represents the inputs after
rearrangement, where R denotes the total number of horizontal rows and C denotes the vertical
columns. norm is an adaptive parameter for different tasks. [·] represents the concat operation and
Rearrange represents the rearrange operation, with reference to Figure 2(a).
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3.2 Horizontal Vertical Gated Selective Unit

To capture long- and short-term periodic semantic information and reserve their characteristics,
we propose a novel Horizontal Vertical Gated Selective Unit (HVGSU) which consists of Gated
Selective Cells (GSCs) in two directions. To capture the correlation at each time step between periodic
semantic information of both directions, we design the specific operations in GSC. Furthermore,
HVGSU is capable of capturing both global and local information via a recurrent structure. In this
subsection, we will provide a detailed introduction to them.

HVGSU As depicted in Figure 3, the process of HVGSU via a recurrent structure is:

Hhor, Hver, Out = HVGSU(X2D), (2)

where Hhor ∈ RL×R×dmodel and Hver ∈ RL×C×dmodel represent the horizontal and the vertical
output hidden state of HVGSU separately. L is the depth of the model, and Out ∈ RR×C×dmodel

denotes the output information of the last layer.

In greater detail, the cellular structure of HVGSU is shown in Figure 4(b), which consists of GSCs
in two directions to capture the periodic semantic information of long- and short-term. The cell
operations for row r (1 ≤ r ≤ R) and column c (1 ≤ c ≤ C) in layer l (1 ≤ l ≤ L) can be
formalized as:

hhor
r, c, l = GSChor(inputr, c, l, h

hor
r, c−1, l, h

ver
r−1, c, l)

hver
r, c, l = GSCver(inputr, c, l, h

ver
r−1, c, l, h

hor
r, c−1, l)

or, c, l = [hhor
r, c, l, h

ver
r, c, l],

(3)

here, inputr, c, l ∈ Rdin . When l = 1, inputr, c, l = xr, c ∈ Rcin+ctime represents the input for the
first layer, and when l > 1, inputr, c, l = or, c, l−1 ∈ R2×dmodel represents the input for subsequent
layers. hhor

r, c−1, l and hver
r−1, c, l ∈ Rdmodel represent the horizontal and vertical hidden state inputs

of the current cell. Note that when r = 1, hver
r−1, c, l is replaced by an all-zero tensor of the same

size, and the same is true for hhor
r, c−1, l when c = 1. [·] represents the concatenation operation and

or, c, l ∈ R2×dmodel represents the output of the current cell.
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Figure 4: The structure of our method.

GSC Inspired by the two popular RNN-based models, LSTM [Hochreiter and Schmidhuber, 1997]
and GRU [Chung et al., 2014] (for more details, see Appendix A), we propose a Gated Selective
Cell (GSC) to fuse and select information. Its structure is shown in Figure 4(a), which comprises
two gates: the selection gate, and the output gate. The fused information consists of input and
principal-subordinate hidden states, and the selection gate determines the retention of the original
principal information and the addition of the fused information. Finally, the output gate determines
the final output information of the cell. The different colored arrows in Figure 4(a) represent different
semantic information transfer processes. The black arrow represents the input, the red arrows
represent the process of transmitting principal hidden state information, the blue arrow represents the
subordinate hidden state, and the purple arrows represent the process by which fused information of
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principal-subordinate hidden states is transmitted. The formulations are given as follows:

St = σ(Ws[h
pri
t−1, h

sub
t−1, x] + bs)

Ot = σ(Wo[h
pri
t−1, h

sub
t−1, x] + bo)

hf = tanh(Wf [h
pri
t−1, h

sub
t−1, x] + bf )

h̃pri
t−1 = (1− St)⊙ hpri

t−1 + St ⊙ hf

hpri
t = tanh(h̃pri

t−1)⊙Ot,

(4)

where hpri
t−1 and hsub

t−1 ∈ Rdmodel represent the input principal and subordinate hidden state, x ∈ Rdin

represents the input. W∗ ∈ Rdmodel×(2dmodel+din) are weight matrices and b∗ ∈ Rdmodel are bias
vectors. St and Ot denote the selection gate and the output gate, ⊙ denotes an element-wise product,

σ(·) and tanh(·) denote the sigmoid and tanh activation function. hf and h̃pri
t−1 ∈ Rdmodel represent

the intermediate variables of the calculation. hpri
t represents the output hidden state.

3.3 Recurrent Acceleration Network

In traditional recurrent structure, for two adjacent time steps in series, the latter one always waits for
the former one until the information computation of the former one is completed. When the sequence
becomes longer, this becomes slower. Fortunately, in the WIT framework we designed, some of
the time step information can be computed in parallel. As shown in Figure 2(b), after a point is
calculated, the right point in its horizontal direction and the point below it in its vertical direction can
start calculation without waiting for each other. Therefore, we propose the Recurrent Acceleration
Network (RAN) as our accelerated framework, which enables parallel computation of data points
without waiting for each other, greatly improving the efficiency of information transmission in
HVGSU. We place parallelizable points in a slice, and the updated information transfer process is
shown in Figure 4(c). Each green box in Figure 4(c) represents a slice, and the number of green boxes
is the number of times we need to recurrently compute. The meanings of the remaining markers are
the same as those in Figure 2. Under the RAN framework, the recurrent length has changed from
the sequence length L = R× C to R+ C − 1, while the complexity of R and C is O(

√
L). Thus,

we have reduced the time complexity to O(
√
L) via the RAN framework. It should be noted that

although we parallelly compute some data points, which may increase some memory, the complexity
of parallel computation, O(

√
L), is far less than the complexity of saving the output variables, O(L),

because we need to save the output information of each point in the sequence. Implementation source
code for RAN is given in Appendix D.

3.4 Forecasting Module

In the forecasting module, we address the issue of error accumulation in the auto-regressive structure
by drawing inspiration from Informer [Zhou et al., 2021] and Pyraformer [Liu et al., 2021], combining
both horizontal and vertical hidden states, and then making predictions through a fully connected
layer, as illustrated in Figure 3.

We utilize the last row of the horizontal hidden states as it contains sufficient global and latest short-
term semantic information from the historical sequence. In contrast, all columns of the vertical hidden
states, which capture different long-term semantic information, are all preserved. The combined
operation not only maximizes the retention of the various semantic information needed for predicting
the points, but also avoids excessive redundancy in order to obtain accurate predictions. This module
can be formalized as follows:

Hhor
rep = Repeat(hhor)

Hh−v = Reshape([Hhor
rep , Hver])

Ŷ = FC1(Hh−v)

Y = FC2(Reshape(Ŷ ) + TFEde),

(5)

where TFEde ∈ RP×dmodel represents time features encoding of the forecasting points separately.
hhor ∈ RL×1×dmodel represents the last row hidden state in Hhor. Repeat(·) is for repeat operation and
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Hhor
rep ∈ RL×C×dmodel represents the hidden state after the repeat operation. Hh−v ∈ RC×(L∗2dmodel)

is the vector of horizontal and vertical combination after reshape operation. FC1 and FC2 represent
two fully connected layers respectively. Ŷ ∈ RC×(Rde∗dmodel) represents the intermediate variables of
the calculation and Rde × C = P . Y represents the output of this module, and it is worth noting that
we need to utilize the adaptive parameter norm for denormalization, when norm = 1, Y = Y + xH .

4 Experiment

Datasets To evaluate the proposed WITRAN, we conducted extensive experiments on four widely
recognized real-world benchmark datasets for long-range and ultra-long-range forecasting. These
datasets cover energy, traffic, and weather domains. We split all datasets into training, validation and
test set in chronological order by the ratio of 6:2:2. More details about the datasets and implementation
are described in Appendix E and Appendix F.

Baselines In light of the underperformance produced by classical models such as ARIMA and
simple RNN/CNN models, as evidenced by [Zhou et al., 2021] and [Wu et al., 2021], and the subpar
performance exhibited by certain Transformer-based models like LogTrans [Li et al., 2019] and
Reformer [Kitaev et al., 2020], as shown in [Wu et al., 2023] and [Wang et al., 2023], our study
primarily incorporates six transformer-based models: PatchTST [Nie et al., 2023], FEDformer [Zhou
et al., 2022a], Pyraformer [Liu et al., 2021], Autoformer[Zhou et al., 2022a], Informer [Zhou
et al., 2021], Vanilla Transformer [Vaswani et al., 2017], and four non-transformer-based methods:
MICN [Wang et al., 2023], TimesNet [Wu et al., 2023], DLinear [Zhou et al., 2022b], FiLM [Zhou
et al., 2022b]. Please refer to Appendix A and Appendix H for more details of the baselines and
implementation.

4.1 Experimental Results

For a better comparison, we adopted the experimental setup of Pyraformer [Liu et al., 2021] for
long-range and ultra-long-range series forecasting. In addition, channel-independence is crucial for
multivariate time series prediction [Nie et al., 2023], so it is necessary to verify the performance of
models on a single channel to ensure their effectiveness across all channels in multivariate time series
prediction. In this paper, experiments were conducted on a single channel. Note that in order to fairly
compare the performance of each model, we set up the search space so that each model can perform
optimally on each task. For further details, please refer to Appendix F.

Long-range Forecasting Results We conducted five tasks on each dataset for long-range prediction,
and the results are shown in Table 3. Taking the task setting 168-336 on the left side of the Table 3 as
an example, it indicates that the input length is 168 and the prediction length is 336. Notably, our
proposed WITRAN achieves state-of-the-art performance, surpassing the previous best method with
an average MSE reduction of 5.803%. Specifically, WITRAN exhibits an average MSE reduction
of 10.246% for ECL, 3.879% for traffic, 2.519% for ETTh1, 4.431% for ETTh2, and 7.939% for
weather. Additionally, we note that the competition among the baselines is intense due to their best
performance on each task, but none of them consistently performs well across all tasks. In contrast,
WITRAN demonstrates its robust competitiveness across various tasks and datasets. In addition,
we can find that in most cases, a longer input length yields greater improvement with the same
prediction length. All findings above collectively highlight WITRAN’s efficacy in addressing diverse
time-series forecasting tasks in real-world applications. Further results and showcases are presented
in Appendix H and Appendix J.

Ultra-long-range Forecasting Results We also show the three tasks for ultra-long-range prediction
results on each dataset in Table 4. The tasks on the left side of the table hold the same interpretation
as above. Notably, WITRAN achieves an 14.275% averaged MSE reduction. More specifically,
WITRAN demonstrates an average MSE reduction of 39.916% for ECL, 3.122% for traffic, 14.837%
for ETTh1, 2.441% for ETTh2, and 11.062% for weather. In particular, our method showcases
substantial improvements of over 10% in ECL, ETTh1, and weather, reinforcing our ability to predict
ultra-long-range time series. And by comparing the results of ultra-long-range forecasting and long-
range Forecasting, we can find that our method is more competitive for ultra-long-range prediction,
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Table 3: Long-range forecasting results. A lower MSE or MAE indicates a better prediction. The
best results are highlighted in bold and the suboptimal results are underlined.

Methods WITRAN(Ours) MICN TimesNet PatchTST DLinear FiLM FEDformer Pyraformer Autoformer Informer Transformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
E

C
L

168-168 0.2397 0.3519 0.3168 0.4067 0.2825 0.3797 0.2980 0.3832 0.2605 0.3579 0.2587 0.3557 0.3028 0.4020 0.2651 0.3802 0.3496 0.4337 0.3779 0.4594 0.3036 0.4068
168-336 0.2607 0.3721 0.3002 0.4053 0.3505 0.4253 0.3840 0.4393 0.3080 0.3946 0.3062 0.3922 0.3522 0.4394 0.5392 0.5271 0.4733 0.5120 0.5037 0.5301 0.3583 0.4435
336-336 0.2517 0.3627 0.3092 0.4132 0.3702 0.4307 0.4377 0.4654 0.2740 0.3720 0.2722 0.3659 0.3378 0.4303 0.2994 0.4030 0.5153 0.5304 0.4591 0.4991 0.5771 0.5643
336-720 0.3084 0.4055 0.3820 0.4704 0.3879 0.4531 0.5502 0.5438 0.3208 0.4188 0.3171 0.4152 0.3813 0.4634 0.4856 0.5243 0.5045 0.5393 0.6545 0.5975 0.4368 0.4920
720-720 0.2478 0.3651 0.3463 0.4381 0.3537 0.4386 0.5927 0.5742 0.3203 0.4202 0.3158 0.4154 0.4023 0.4769 0.3115 0.4218 0.9639 0.7520 0.4850 0.5238 0.3992 0.4640

Tr
af

fic

168-168 0.1377 0.2051 0.2428 0.3543 0.1490 0.2293 0.1622 0.2320 0.1519 0.2195 0.1501 0.2143 0.2469 0.3479 0.2979 0.3815 0.2378 0.3490 0.3363 0.3994 1.5204 0.9594
168-336 0.1321 0.2059 0.2401 0.3514 0.1499 0.2356 0.1641 0.2364 0.1468 0.2210 0.1453 0.2165 0.2426 0.3449 0.5838 0.5652 0.2683 0.3803 0.5891 0.5608 0.6953 0.6015
336-336 0.1306 0.2054 0.2413 0.3549 0.1446 0.2300 0.1546 0.2332 0.1325 0.2114 0.1324 0.2104 0.2339 0.3365 0.4703 0.4964 0.2460 0.3567 0.5447 0.5384 0.8482 0.6424
336-720 0.1391 0.2175 0.2422 0.3513 0.1584 0.2440 0.1747 0.2536 0.1449 0.2252 0.1438 0.2229 0.2987 0.3976 0.5235 0.5292 0.2849 0.3956 1.2044 0.8254 0.7320 0.6233
720-720 0.1408 0.2191 0.2552 0.3709 0.1546 0.2410 0.1543 0.2441 0.1410 0.2241 0.1383 0.2208 0.2667 0.3685 0.4811 0.4962 0.2959 0.4045 1.2954 0.9205 1.1963 0.8271

E
T

T
h 1

168-168 0.1105 0.2589 0.1257 0.2803 0.1133 0.2612 0.1212 0.2704 0.1122 0.2605 0.1091 0.2558 0.1284 0.2826 0.1534 0.3287 0.1318 0.2872 0.1563 0.3299 0.1504 0.3257
168-336 0.1189 0.2714 0.1422 0.3006 0.1202 0.2732 0.1287 0.2808 0.1251 0.2794 0.1187 0.2708 0.1271 0.2810 0.1665 0.3419 0.1315 0.2878 0.1663 0.3335 0.1599 0.3324
336-336 0.1112 0.2638 0.1576 0.3159 0.1279 0.2846 0.1496 0.3039 0.1261 0.2803 0.1196 0.2738 0.1252 0.2794 0.1408 0.3087 0.1384 0.2959 0.1648 0.3291 0.1438 0.3121
336-720 0.1494 0.3092 0.2219 0.3729 0.1501 0.3127 0.2092 0.3659 0.1942 0.3462 0.1793 0.3335 0.1534 0.3178 0.3984 0.5202 0.1928 0.3450 0.1522 0.3203 0.1644 0.3304
720-720 0.1296 0.2868 0.2959 0.4402 0.1510 0.3118 0.2178 0.3694 0.1920 0.3435 0.1845 0.3379 0.1386 0.2995 0.1563 0.3253 0.2388 0.3869 0.1595 0.3259 0.1730 0.3414

E
T

T
h 2

168-168 0.2389 0.3813 0.2734 0.4162 0.2655 0.4051 0.2582 0.3983 0.2556 0.3944 0.2546 0.3942 0.2844 0.4285 0.2746 0.4080 0.2903 0.4326 0.3764 0.4863 0.3043 0.4365
168-336 0.2277 0.3778 0.3017 0.4429 0.2725 0.4163 0.3206 0.4515 0.2891 0.4256 0.2894 0.4263 0.2961 0.4355 0.2392 0.3834 0.4447 0.4964 0.3364 0.4583 0.3662 0.4671
336-336 0.2432 0.3922 0.3472 0.4796 0.3184 0.4431 0.3559 0.4779 0.2950 0.4329 0.2951 0.4347 0.2884 0.4314 0.2610 0.4010 0.2805 0.4255 0.3709 0.4785 0.3218 0.4412
336-720 0.2373 0.3888 0.4248 0.5268 0.2858 0.4253 0.4936 0.5592 0.4125 0.5136 0.4158 0.5162 0.3425 0.4656 0.2341 0.3818 0.3372 0.4625 0.3572 0.4675 0.3582 0.4629
720-720 0.2635 0.4018 0.3549 0.4805 0.2936 0.4238 0.5243 0.5745 0.3495 0.4749 0.4045 0.5105 0.3275 0.4534 0.2795 0.4151 0.4668 0.5477 0.3585 0.4699 0.3087 0.4320

W
ea

th
er

168-168 0.2050 0.3338 0.2231 0.3489 0.2420 0.3608 0.2469 0.3597 0.2421 0.3578 0.2426 0.3544 0.2583 0.3774 0.2144 0.3451 0.2670 0.3813 0.2639 0.3926 0.2200 0.3438
168-336 0.2197 0.3470 0.2663 0.3837 0.2821 0.3885 0.3040 0.4049 0.2918 0.3975 0.2981 0.3988 0.2909 0.4030 0.2594 0.3833 0.2990 0.4096 0.2798 0.4061 0.2230 0.3488
336-336 0.2163 0.3482 0.2701 0.3804 0.2684 0.3752 0.3149 0.4145 0.2905 0.3969 0.2943 0.3969 0.2791 0.3984 0.2310 0.3591 0.3066 0.4162 0.2898 0.4129 0.2308 0.3556
336-720 0.2054 0.3424 0.3086 0.4138 0.2930 0.4045 0.4358 0.4937 0.3897 0.4739 0.4096 0.4767 0.2648 0.3915 0.3241 0.4300 0.3468 0.4592 0.2483 0.3778 0.2334 0.3570
720-720 0.2008 0.3417 0.2828 0.3969 0.2967 0.4070 0.5701 0.5491 0.3724 0.4614 0.3999 0.4661 0.2416 0.3728 0.2378 0.3684 0.4309 0.5085 0.3545 0.4569 0.2463 0.3722

Table 4: Ultra-long-range forecasting results. A lower MSE or MAE indicates a better prediction.
The best results are highlighted in bold and the suboptimal results are underlined.

Methods WITRAN(Ours) MICN TimesNet PatchTST DLinear FiLM FEDformer Pyraformer Autoformer Informer Transformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
C

L 720-1440 0.2499 0.3727 1.0460 0.7765 0.6119 0.5962 0.8243 0.6704 0.4923 0.5473 0.4730 0.5336 0.4833 0.5393 0.3250 0.4332 1.4957 0.9533 0.5064 0.5317 0.4030 0.4797
1440-1440 0.2408 0.3680 2.2862 1.2207 0.5720 0.5712 0.9053 0.7328 0.5146 0.5615 0.4849 0.5429 0.5142 0.5571 0.4895 0.5280 1.7873 1.0283 0.7247 0.6292 0.5531 0.5524
1440-2880 0.3359 0.4383 2.8936 1.3717 0.7683 0.6846 1.1282 0.8087 0.8355 0.7193 0.6847 0.6493 3.9018 1.5276 0.4320 0.5161 1.2867 0.8878 0.6152 0.5953 0.5243 0.5460

Tr
af

fic 720-1440 0.1672 0.2449 0.2876 0.3916 0.1882 0.2656 0.1904 0.2685 0.1639 0.2412 0.1638 0.2448 0.2753 0.3650 0.4463 0.4609 0.3104 0.4095 0.7614 0.6469 0.9876 0.7445
1440-1440 0.1543 0.2325 0.2950 0.3923 0.1598 0.2388 0.1817 0.2764 0.1599 0.2411 0.1602 0.2437 0.2848 0.3681 0.4710 0.4916 0.2970 0.3999 0.7375 0.6414 0.7430 0.6492
1440-2880 0.1425 0.2333 0.2823 0.3874 0.1560 0.2409 0.2029 0.3100 0.1550 0.2472 0.1744 0.2693 0.2952 0.3844 0.5165 0.5305 0.3035 0.3982 0.9849 0.7618 0.6000 0.5877

E
T

T
h 1 720-1440 0.1331 0.2943 0.4640 0.5836 0.1391 0.3049 0.3708 0.4906 0.2952 0.4370 0.2949 0.4388 0.1768 0.3409 0.1666 0.3315 0.3298 0.4741 0.1378 0.3051 0.1905 0.3555

1440-1440 0.1304 0.2902 0.5650 0.6293 0.1801 0.3372 0.4475 0.5329 0.2200 0.3714 0.2294 0.3759 0.3574 0.4878 0.3487 0.4866 0.4531 0.5507 0.1430 0.3156 0.1972 0.3630
1440-2880 0.1850 0.3452 0.7591 0.7215 0.2732 0.4094 0.9617 0.8271 0.3773 0.4794 0.6834 0.7096 0.4269 0.5252 0.5857 0.6760 1.3566 0.9235 0.3177 0.4733 0.3495 0.4911

E
T

T
h 2 720-1440 0.2915 0.4289 0.4922 0.5649 0.4186 0.5092 0.9401 0.7680 0.5037 0.5645 0.7166 0.6628 0.3731 0.4827 0.2952 0.4336 0.5633 0.5996 0.4025 0.4991 0.3712 0.4805

1440-1440 0.2815 0.4220 0.5030 0.5644 0.4409 0.5218 0.7860 0.6704 0.5176 0.5734 0.7446 0.6590 0.3906 0.4951 0.2946 0.4316 0.8029 0.7140 0.3484 0.4786 0.3797 0.4818
1440-2880 0.3280 0.4585 0.5549 0.5886 1.5304 0.9026 2.0561 1.1595 0.5053 0.5584 3.2835 1.6030 1.7167 0.9698 0.3345 0.4544 4.1031 1.7198 0.3335 0.4482 0.3737 0.4787

W
ea

th
er 720-1440 0.1872 0.3312 0.3999 0.4848 0.2407 0.3694 0.5453 0.5631 0.4406 0.5264 0.6360 0.5997 0.2352 0.3733 0.6810 0.6352 0.8599 0.7064 0.2466 0.3849 0.2188 0.3512

1440-1440 0.1907 0.3366 0.2873 0.4201 0.2869 0.4033 0.5371 0.5559 0.3147 0.4417 0.6002 0.5880 0.2226 0.3609 0.2401 0.3777 0.9766 0.7739 0.2556 0.3969 0.2610 0.3823
1440-2880 0.1769 0.3257 0.3570 0.4810 0.2199 0.3563 0.9061 0.7220 0.3197 0.4533 1.2605 0.8805 0.2138 0.3599 0.1852 0.3332 1.7465 1.0962 0.2126 0.3600 0.1993 0.3436

underscoring WITRAN’s capability to capture semantic information in ultra-long historical input.
More results and showcases are provided in Appendix H and Appendix J.

4.2 Time and Memory Consumption

To assess the efficiency of our proposed WITRAN, we compared its time and memory consumption
with selected baselines that demonstrate superior performance. To fully evaluate the actual complexity
of our model and other models for the long range forecasting and ultra-long range forecasting tasks,
we set up two cases: 1) constant input length and varying prediction length, 2) constant prediction
length and varying input length. In both cases, we fixed the input length and output length at
720. Figure 5 illustrates the comparison, revealing that WITRAN achieves the lowest actual time
complexity and memory complexity. This section is described in more detail in Appendix I.

(a) Memory consumption (input length is fixed as 720) (b) Time consumption (input length is fixed as 720) (c) Memory consumption (output length is fixed as 720) (d) Time consumption (output length is fixed as 720)

Figure 5: Time and memory consumption. WIT is the framework that does not involve the RAN.

4.3 Ablation Study

The impact of RAN can be clearly observed in Figure 5. In addition, we conducted ablation studies
to measure the impact of HVGSU and GSC in WIT, and the combined operation of the last row of
horizontally hidden states and each column of vertically hidden states. Detailed results and discussions
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can be found in Appendix G. Here, we provide a concise summary of the key findings: 1) The fusion
and selection design of GSC enables both long- and short-term semantic information to be captured
for each historical input data points. 2) Setting up independent cells in both directions enables to
extract semantic information in the long- and short-term respectively. 3) The specially designed
combined operation can make fuller use of the captured local and global semantic information while
ensuring that the information is not redundant. 4) RAN offers advantages in terms of speed and space
complexity. The utilization of RAN eliminates the need to store excessive intermediate variables, as
shown in the previous section.

4.4 Robustness Analysis

We have followed MICN [Wang et al., 2023] and introduced a simple white noise injection to
demonstrate the robustness of our model. Specifically, we randomly select a proportion ε of data
from the original input sequence and apply random perturbations within the range [−2Xi, 2Xi] to
the selected data, where Xi denotes the original data. After the noise injection, the data is then used
for training, and the MSE and MAE metrics are recorded in Table 5.

Table 5: Robustness experiments of forecasting results. Different ε indicates different proportions
of noise injection. And WITRAN is used as the base model.

Tasks 168-168 168-336 336-336 336-720 720-720 720-1440 1440-1440 1440-2880

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
C

L

ε = 0% 0.2397 0.3519 0.2607 0.3721 0.2517 0.3627 0.3084 0.4055 0.2478 0.3651 0.2499 0.3727 0.2408 0.3680 0.3359 0.4383
ε = 1% 0.2420 0.3534 0.2630 0.3738 0.2516 0.3626 0.3078 0.4060 0.2345 0.3960 0.2502 0.3739 0.2395 0.3672 0.3372 0.4476
ε = 5% 0.2463 0.3573 0.2692 0.3788 0.2567 0.3652 0.3039 0.4046 0.2525 0.3703 0.2565 0.3786 0.2410 0.3687 0.3315 0.4408
ε = 10% 0.2543 0.3621 0.2726 0.3811 0.2702 0.3736 0.3098 0.4061 0.2569 0.3756 0.2674 0.3880 0.2444 0.3716 0.3366 0.4445

Tr
af

fic

ε = 0% 0.1377 0.2051 0.1321 0.2059 0.1306 0.2054 0.1391 0.2175 0.1408 0.2191 0.1672 0.2449 0.1543 0.2325 0.1425 0.2333
ε = 1% 0.1376 0.2063 0.1329 0.2083 0.1316 0.2074 0.1423 0.2218 0.1409 0.2218 0.1676 0.2466 0.1551 0.2372 0.1436 0.2360
ε = 5% 0.1370 0.2115 0.1362 0.2148 0.1323 0.2106 0.1432 0.2260 0.1416 0.2247 0.1699 0.2519 0.1572 0.2373 0.1519 0.2480
ε = 10% 0.1409 0.2164 0.1355 0.2193 0.1372 0.2200 0.1467 0.2325 0.1450 0.2291 0.1652 0.2475 0.1561 0.2383 0.1575 0.2580

E
T

T
h 1

ε = 0% 0.1105 0.2589 0.1189 0.2714 0.1112 0.2638 0.1494 0.3092 0.1296 0.2868 0.1331 0.2943 0.1304 0.2902 0.1850 0.3452
ε = 1% 0.1112 0.2596 0.1208 0.2726 0.1111 0.2637 0.1463 0.3035 0.1304 0.2885 0.1367 0.2978 0.1319 0.2907 0.1834 0.3484
ε = 5% 0.1135 0.2622 0.1221 0.2751 0.1199 0.2689 0.1527 0.3124 0.1304 0.2888 0.1336 0.2952 0.1359 0.2955 0.1801 0.3435
ε = 10% 0.1137 0.2628 0.1227 0.2757 0.1196 0.2688 0.1559 0.3148 0.1358 0.2952 0.1374 0.2994 0.1405 0.3015 0.1842 0.3479

E
T

T
h 2

ε = 0% 0.2389 0.3813 0.2277 0.3778 0.2432 0.3922 0.2373 0.3888 0.2635 0.4018 0.2915 0.4289 0.2815 0.4220 0.3280 0.4585
ε = 1% 0.2535 0.3904 0.2284 0.3777 0.2459 0.3942 0.2390 0.3902 0.2629 0.3902 0.3049 0.4358 0.2936 0.4297 0.3353 0.4642
ε = 5% 0.2364 0.3799 0.2379 0.3834 0.2563 0.4025 0.2501 0.3967 0.2661 0.4056 0.3207 0.4482 0.2935 0.4308 0.3307 0.4603
ε = 10% 0.2603 0.3959 0.2475 0.3902 0.2613 0.4054 0.2581 0.4022 0.2674 0.4053 0.3193 0.4481 0.2847 0.4237 0.3317 0.4612

W
ea

th
er ε = 0% 0.2050 0.3338 0.2197 0.3470 0.2163 0.3482 0.2054 0.3424 0.2008 0.3417 0.1872 0.3312 0.1907 0.3366 0.1769 0.3257

ε = 1% 0.2050 0.3343 0.2154 0.3470 0.2214 0.3522 0.2055 0.3419 0.2005 0.3419 0.1872 0.3313 0.1903 0.3361 0.1828 0.3327
ε = 5% 0.2057 0.3362 0.2241 0.3517 0.2268 0.3557 0.2058 0.3426 0.2008 0.3421 0.1867 0.3305 0.1897 0.3353 0.1831 0.3357
ε = 10% 0.2059 0.3369 0.2220 0.3484 0.2308 0.3595 0.2059 0.3438 0.2007 0.3418 0.1854 0.3290 0.1900 0.3370 0.1828 0.3336

It can be found that as the perturbation proportion increases, there is a slight increase in the MSE
and MAE metrics in terms of forecasting. It indicates that WITRAN demonstrates good robustness
when dealing with less noisy data (up to 10%), and it possesses a significant advantage in effectively
handling various abnormal data fluctuations.

5 Conclusions

In this paper, we propose WITRAN, a novel Water-wave Information Transmission framework and a
universal acceleration framework. WITRAN effectively captures both long- and short-term repetitive
patterns and global and local correlations with O(

√
L) time complexity and O(L) memory complexity.

The experimental results demonstrate the remarkable performance and efficiency of WITRAN.
However, this recurrent structure is still not optimally efficient for Python-based implementations
because of the information waiting between slices. Therefore, we plan to explore the integration
of WITRAN into an interface using C++, similar to the implementation of nn.GRU/nn.LSTM in
PyTorch in the future, to further improve its efficiency.

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities under
Grant No. 2022YJS142. Furthermore, we would like to express our gratitude to Shuo Wang and
Shuohao Lin for their valuable discussions and assistance.

10



References
Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dustdar. Pyraformer:

Low-complexity pyramidal attention for long-range time series modeling and forecasting. In International
conference on learning representations, 2021.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series forecasting? In
Proceedings of the AAAI conference on artificial intelligence, volume 37, pages 11121–11128, 2023.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet: Temporal
2d-variation modeling for general time series analysis. In The Eleventh International Conference on Learning
Representations, 2023.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64 words: Long-
term forecasting with transformers. In The Eleventh International Conference on Learning Representations,
2023.

Huiqiang Wang, Jian Peng, Feihu Huang, Jince Wang, Junhui Chen, and Yifei Xiao. Micn: Multi-scale local
and global context modeling for long-term series forecasting. In The Eleventh International Conference on
Learning Representations, 2023.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term temporal patterns
with deep neural networks. In The 41st international ACM SIGIR conference on research & development in
information retrieval, pages 95–104, 2018.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional and recurrent
networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi. Unsupervised scalable representation learning for
multivariate time series. Advances in neural information processing systems, 32, 2019.

Rajat Sen, Hsiang-Fu Yu, and Inderjit S Dhillon. Think globally, act locally: A deep neural network approach to
high-dimensional time series forecasting. Advances in neural information processing systems, 32, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. Informer:
Beyond efficient transformer for long sequence time-series forecasting. In Proceedings of the AAAI conference
on artificial intelligence, volume 35, pages 11106–11115, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency enhanced
decomposed transformer for long-term series forecasting. In International Conference on Machine Learning,
pages 27268–27286. PMLR, 2022a.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng Yan. Enhancing
the locality and breaking the memory bottleneck of transformer on time series forecasting. Advances in neural
information processing systems, 32, 2019.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers with
auto-correlation for long-term series forecasting. Advances in Neural Information Processing Systems, 34:
22419–22430, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Liang Sun, Tao Yao, Wotao Yin, Rong Jin, et al. Film: Frequency
improved legendre memory model for long-term time series forecasting. Advances in Neural Information
Processing Systems, 35:12677–12690, 2022b.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,
1997.

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Empirical evaluation of gated recurrent
neural networks on sequence modeling. In NIPS 2014 Workshop on Deep Learning, December 2014, 2014.

Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella, Yuyang Wang, and Tim
Januschowski. Deep state space models for time series forecasting. Advances in neural information processing
systems, 31, 2018.

David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic forecasting with
autoregressive recurrent networks. International Journal of Forecasting, 36(3):1181–1191, 2020.

11



Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural networks. In
International conference on machine learning, pages 1310–1318. Pmlr, 2013.

George EP Box and Gwilym M Jenkins. Some recent advances in forecasting and control. Journal of the Royal
Statistical Society. Series C (Applied Statistics), 17(2):91–109, 1968.

Sean J Taylor and Benjamin Letham. Forecasting at scale. The American Statistician, 72(1):37–45, 2018.

G Athanasopoulos and RJ Hyndman. Forecasting: principle and practice: O texts; 2018, 2020.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv preprint
arXiv:2001.04451, 2020.

Shiyu Chang, Yang Zhang, Wei Han, Mo Yu, Xiaoxiao Guo, Wei Tan, Xiaodong Cui, Michael Witbrock, Mark A
Hasegawa-Johnson, and Thomas S Huang. Dilated recurrent neural networks. Advances in neural information
processing systems, 30, 2017.

Zeping Yu and Gongshen Liu. Sliced recurrent neural networks. In Proceedings of the 27th International
Conference on Computational Linguistics, pages 2953–2964, 2018.

Lifeng Shen, Qianli Ma, and Sen Li. End-to-end time series imputation via residual short paths. In Asian
conference on machine learning, pages 248–263. PMLR, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32, 2019.

12



A A Brief Overview of RNN-Based and Transformer-Based Models

In this section, we will provide a brief overview of representative variants of RNN-based methods
(Appendix A.1) and Transformer-based methods (Appendix A.2). Detailed descriptions of other
methods can be found in Section 2.

A.1 RNN-based methods

LSTM [Hochreiter and Schmidhuber, 1997] and GRU [Chung et al., 2014] are two prominent
variants of RNN-based models. They have gained popularity in diverse domains, such as natural
language processing, speech recognition, and video analysis due to their ability to capture important
information. This subsection, we will provide a detailed introduction to LSTM and GRU.
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Figure 6: The structure of LSTM and GRU.

LSTM The structure of LSTM, shown in Figure 6(a), comprises three gates: the input gate, the
forget gate and the output gate. In addition, LSTM has two vectors: the hidden state and the cell
state, for recursively processing the information flow between different time steps. LSTM can be
formalized as follows:

f lstm
t = σ(W lstm

f [ht−1, x] + blstmf )

ilstmt = σ(W lstm
i [ht−1, x] + blstmi )

C̃t = tanh(W lstm
c [ht−1, x] + blstmc )

olstmt = σ(W lstm
o [ht−1, x] + blstmo )

Ct = f lstm
t ⊙ Ct−1 + ilstmt ⊙ C̃t

ht = olstmt ⊙ tanh(Ct),

(6)

where f lstm
t , ilstmt and olstmt represent the input gate, the forget gate, and the output gate. x ∈ Rdin

represents the input, and Ct−1, ht−1 ∈ Rdmodel represents the input cell state and the input hidden
state. W lstm

∗ ∈ Rdmodel×(dmodel+din) are weight matrices and blstm∗ ∈ Rdmodel are bias vectors. Ct and
ht denote the output cell state and the output hidden state; C̃t represents the intermediate variables of
the calculation; ⊙ denotes an element-wise product; σ(·) and tanh(·) denote the sigmoid and tanh
activation function.

GRU The structure of GRU, depicted in Figure 6(b), consists of two gates: the reset gate and the
update gate. Besides, GRU has one vector: the hidden state. It can be mathematically formulated as
follows:

rgrut = σ(W gru
r [ht−1, x] + bgrur )

ugru
t = σ(W gru

u [ht−1, x] + bgruu )

h̃gru
t = tanh(W gru

h [rgrut ⊙ ht−1, x] + bgruh )

ht = (1− ugru
t )⊙ ht−1 + ugru

t ⊙ h̃gru
t ,

(7)
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where rgrut and ugru
t represent the reset gate and the update gate. x ∈ Rdin represents the input,

and ht−1 ∈ Rdmodel represent the input hidden state. W gru
∗ ∈ Rdmodel×(dmodel+din) are weight

matrices and bgru∗ ∈ Rdmodel are bias vectors. ht denotes the output hidden state; h̃t

gru
represents the

intermediate variables of the calculation; ⊙ denotes an element-wise product; σ(·) and tanh(·) denote
the sigmoid and tanh activation function.

A.2 Transformer-based methods

In recent years, variants of Transformer have made significant progress in time series forecasting and
can be divided into two categories.

The first category captures the correlation between different time steps through point-wise attention
mechanisms. Vanilla Transformer [Vaswani et al., 2017] is able to effectively extract correlations
between any two-time steps through its self-attention mechanism, but its complexity is too high,
reaching O(L2). Informer [Zhou et al., 2021] proposes a ProbSparse self-attention with distilling
techniques, reducing the complexity to O(L log L). FEDformer [Zhou et al., 2022a] takes a different
approach by applying attention modules in the frequency domain through Fourier or wavelet transfor-
mations, achieving a complexity of O(L). Despite the performance and efficiency improvements
achieved by these representative methods, they face difficulties in extracting sufficient semantic
information from a single time point, which has been raised in previous works [Nie et al., 2023, Wu
et al., 2023].

The second category adopts non-dot-product techniques to extract correlation information. Log-
Trans [Li et al., 2019] effectively captures local information by leveraging LogSparse and convolu-
tional self-attention layers. However, it overlooks the long-term repetitive pattern of points among
subseries and exhibits a high complexity of O(L log L). Drawing from the traditional ideas of
time-series analysis, Autoformer [Wu et al., 2021] is able to capture long-range trends and short-
range changes in sequences through decomposition and auto-correlation mechanisms. However, its
complexity remains high at O(L log L). Pyraformer [Liu et al., 2021] initializes coarser-scale node
information in the pyramidal graph by capturing local and global correlations through convolution.
It then employs pyramidal attention to effectively capture long- and short-term repetitive patterns,
leading to significant performance improvements while reducing complexity to O(L). However,
Pyraformer still suffers from the limitation of the receptive field of the convolution kernel as discussed
earlier. PatchTST [Nie et al., 2023] captures local semantic information through patch, and further
reduces the complexity to O((L/S)2), where S represents the stride length. Nevertheless, it does not
consider the long-term repeated pattern among subseries.

Based on the above analysis, we find that most Transformer-based methods struggle to simultaneously
effectively model local and global correlations (global-local semantic information) and capture long-
and short-term repetitive patterns (periodic semantic information) in sequences. Furthermore, it
is worth noting that the majority of the aforementioned methods fail to achieve lower complexity
than RNN-based methods. For a comprehensive comparison of the theoretical time and memory
complexity, as well as experimental results, please refer to Appendix C.

B Inspiration and Our Approach

RNNs, such as LSTM and GRU, have a significant advantage in capturing semantic information due
to their recurrent structure, as discussed in Appendix A.1. Yet RNNs still have some drawbacks.
In addition to the well-known issues of gradient vanishing/exploding [Pascanu et al., 2013]. This
paper focuses on analyzing the information forgetting problem (Appendix B.2) and the difficulty
in parallelizing RNN (Appendix C). In this section, we will analyze RNNs using LSTM and GRU
as representatives, and introduce the inspiration we draw from during the process of designing our
model.

B.1 LSTM VS GRU

LSTM incorporates three gates (input gate, output gate, and forget gate), while GRU utilizes two
gates (reset gate and update gate). The complex gating mechanism of LSTM enables it to capture and
learn intricate patterns, making it effective for processing longer sequences. On the other hand, GRU
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performs well on shorter sequences and requires less computational and memory resources compared
to LSTM. It should be noted that, as shown in Equation 7, the computation of h̃t in GRU is dependent
on the completion of rt computation. This undoubtedly slows down the computation that involves
the input information x. Therefore, in terms of actual running time, GRU may not necessarily have
an advantage over LSTM, as detailed in Appendix C.2.

B.2 The information forgetting problem of RNNs

When Recurrent Neural Networks (RNNs) process sufficiently long sequences, the information
contained in the earlier parts of the sequence may be forgotten within the recurrent structure as it
passes through multiple cells. To verify this phenomenon, we conducted a concrete experiment. We
conducted a benchmark experiment using the ECL dataset, with a historical sequence length of 720
and a prediction horizon of 720, and the description of the ECL dataset can be found in Appendix E.

To eliminate the influence caused by the split of training, validation and test sets, we partitioned the
dataset with a fixed input sequence length of 720 and a prediction horizon of 720. Furthermore, we
conducted experiments with varying input sequence lengths using LSTM and GRU models. For
the experiments, we used the last m = {24, 48, 72, . . . , 696, 720} points near the prediction time as
input, and the results of these experiments are shown in Figure 7.

Figure 7: The issue of information forgetting in LSTM and GRU.

Observing Figure 7, on the one hand, we can see that when the input sequence length is relatively
short (not within the red box), the prediction performance of LSTM and GRU gradually improves as
sequence length increases. This indicates that longer input sequences can provide more contextual
information, which can enhance the model’s prediction performance and is consistent with previous
research findings [Liu et al., 2021, Zeng et al., 2023]. On the other hand, the part within the red
box indicates that when longer historical sequences are fed into LSTM and GRU, their prediction
performance does not continue to improve. This suggests that introducing earlier information does
not provide significant benefits for the models, which in turn confirms the problem of information
forgetting in RNNs.

B.3 Inspiration and WITRAN

Our proposed Water-wave Information Transmission (WIT) framework utilizes input rearrangement
to capture both long- and short-term repeating patterns in the sequence more directly and efficiently,
while avoiding the processing of excessively long sequences, as described in Section 3.1. This
successfully addresses the limitations of RNNs, such as the problems of exploding and vanishing
gradients, as well as information forgetting. Furthermore, through the design of Recurrent Accel-
eration Network (RAN), we enable parallel computation of the entire sequence, as described in
Section 3.3. For a comprehensive understanding of RAN, we provide detailed code and analysis of
RAN in Appendix D. In this subsection, we focus on introducing the inspiration behind the important
components of WIT.

The specific structure of WIT has been detailed in Section 3.2. The inspiration behind the design
of Horizontal Vertical Gated Selective Unit (HVGSU) and Gated Selective Cell (GSC) comes from
the advantages of LSTM and GRU. HVGSU serves two major purposes: 1) capturing both long-
and short-term periodic semantic information in the sequence, and 2) modeling these two types
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of periodic semantic information simultaneously for each time step. To achieve these objectives,
two separate GSCs are established in the HVGSU, each responsible for the fusion and selection of
long-term and short-term information in both directions.

For each GSC cell, to selectively incorporate fused information into the periodic semantic information
in each direction, we draw inspiration from the reset gate of GRU and design a selection gate to
control the retention of original information and the addition of new information. Furthermore, we are
inspired by the output gate of LSTM and design our output gate to output the updated information. To
reduce computational costs while maintaining sufficient learning capacity, we draw inspiration from
GRU and only utilize these two gates, resulting in smaller computational and memory overheads.
However, we address the problem of waiting for information to be computed between gate calculations
in GRU by parallelizing the gate calculation vectors with the input x, which greatly accelerated the
computation speed of the cell. In summary, we analyze and draw inspiration from the strengths of
LSTM and GRU, and incorporated them into the design of our GSC.

B.4 WITRAN VS other RNN-based models

There are also several other RNN models, such as DilatedRNN [Chang et al., 2017], SlicedRNN [Yu
and Liu, 2018], and RIMP-LSTM [Shen et al., 2018], which also have certain advantages in handling
sequences. To further compare the differences between WITRAN and these methods, we provide the
comparison in Table 6:

Table 6: Advantages of WITRAN compared to other RNN methods.

Advantages DilatedRNN SlicedRNN RIMP-LSTM WITRAN (ours)

Efficiently (1 layer) model global correlations !– !– !(1) !(1)

Special design to capture long-term repetitive patterns ! % % !

Using 1 layer to capture long- and short-term repetitive patterns simultaneously % % % !

Well solve the gradient vanishing/exploding problem of RNN ! ! ! !

(1) Efficiently (1 layer) model global correlations (a) When the dilations of DilatedRNN does
not include the value 1, multiple layers need to be constructed to extract global correlations. (b)
SlicedRNN improves efficiency to some extent by parallel processing of minimum subsequences, but
it still requires the introduction of multiple layers to capture the global correlations of the sequence.

(2) Special design to capture long-term repetitive patterns (a) SlicedRNN is unable to capture long-
term repetitive patterns among elements of sub-sequences. (b) Although RIMP-LSTM incorporates
Residual Paths and Residual Sum Unit designs, it still cannot effectively extract long-term repetitive
patterns.

(3) Using 1 layer to capture long- and short-term repetitive patterns simultaneously (a) Dilate-
dRNN can capture long- and short-term repetitive patterns, but it requires the use of multiple layers
to achieve this. (b) SlicedRNN and RIMP-LSTM are not particularly adept at handling long-term
repetitive patterns, as mentioned in (2).

(4) Well solve the gradient vanishing/exploding problem of RNN (a) In DilatedRNN [Chang et al.,
2017], it states and provides formal proof that reducing the length of information paths between time
steps can prevent the issues of gradient vanishing/exploding. DilatedRNN, SlicedRNN, and WITRAN
tackle this problem by reducing the length of information transmission paths. (b) RIMP-LSTM
addresses this issue by the designs of Residual Paths and Residual Sum Units.

C Time and Memory Consumption of RNNs and Transformer

In this section, we derive the complexities of LSTM, GRU and Vanilla Transformer respectively, and
analyze their actual running speeds and memory usage through experiments.

C.1 The theoretical computational complexity

The structure diagrams of LSTM and GRU are shown in Figure 6, while the structure of Vanilla
Transformer can be found in paper [Vaswani et al., 2017]. Assuming the sequence length is L, the
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input dimension is din and the hidden layer dimension is dmodel, and considering the case where each
model has only one layer, the derivation process is as follows:

GRU GRU includes two gates and three matrix multiplication operations, as mentioned in Ap-
pendix A.1. Each matrix multiplication operation has a complexity of dmodel × (dmodel + din),
although there are also ⊙ operations in GRU, and the complexity of element-wise multiplication is
dmodel, which is much smaller than the complexity of matrix multiplication operation. Therefore,
the complexity of one GRU unit can be simplified as 3 × dmodel × (dmodel + din). When GRU
processes the entire sequence, it needs to perform L sequential computations, therefore, the overall
computational complexity can be summarized as: 3× L× dmodel × (dmodel + din).

LSTM LSTM includes three gates and four matrix multiplication operations, as mentioned in
Appendix A.1. Similar to GRU, the computational complexity of LSTM can also be summarized as:
4× L× dmodel × (dmodel + din).

Transformer Taking the single-head attention mechanism in Transformer as an example, in the
calculation of the attention mechanism, the each linear transformations of Query(Q), Key(K) and
V alue(V ) require matrix multiplication operation of size dmodel × dmodel. In the calculation of the
attention weights, the Q and transpose of K are multiplied together, and since the size of Q and
K are L × dmodel, the complexity of computing the attention weights is L × dmodel × L, and the
size of attention weights is L× L. Similarly, when we multiply the attention weights with V in the
computation, the complexity is L× L× dmodel. The output from the attention matrix multiplication
is further linearly transformed, and thus requires an additional dmodel × dmodel complexity. To
summarize, the overall complexity of the single-headed attention computation in Transformer can be
expressed as: 1) Linear transformations of Q, K and V : 3× L× dmodel × dmodel. 2) Calculation of
attention weights: L×dmodel×L. 3) Matrix multiplication of attention weights and V : L×L×dmodel.
4) Linear transformation of the output: L× dmodel × dmodel. The total complexity of the single-
headed attention computation in Transformer is 3× L× dmodel × dmodel + L× dmodel × L+ L×
L× dmodel + L× dmodel × dmodel = 4× L× dmodel

2 + 2× L2 × dmodel. It should be noted that
the complexity improvements in Transformer-based methods only apply to the L2 regularization
term, as the linear transformations are necessary for any Transformer-based model. In addition,
assuming the dimension of the Feed-Forward Networks (FFN) in Transformer is dff , the first layer
of the fully connected network has a complexity of L × dmodel × dff , while the second layer has
a complexity of L× dff × dff , and the total complexity of FFN is L× dmodel × dff + L× dff

2. It
should be noted that the input and output transformations in Transformer still require a certain level
of complexity. On the hand, as it needs to transform the input data from dimension din to dimension
dmodel, the input transformation in Transformer requires at least a L× din × dmodel complexity. On
the other hand, as it needs to transform the input data from dimension dff to dimension dmodel, the
output transformation requires a L× dff × dmodel complexity. Therefore, the overall complexity of
Transformer can be summarized as: L× din × dmodel + 4×L× dmodel

2 + 2×L2 × dmodel +L×
dmodel × dff + L× dff

2 + L× dff × dmodel. It should be noted that in most cases for Transformer,
dff is larger than dmodel.

Summary In time series prediction tasks, the input dimension din is usually much smaller than
the model dimension dmodel. Based on the analysis conducted earlier, we can observe that the
computational complexity of the encoder part of most Transformer-based methods is generally higher
than that of LSTM and GRU. This is because Transformer includes many complex operations such as
matrix multiplication and linear transformation. Although there have been improvements made to
the attention mechanism, these modifications only affect a small portion of the overall complexity
which remains high. Therefore, compared to LSTM and GRU, the computational complexity of
Transformer is higher.

C.2 The practical time and memory consumption

In practical situations, LSTM can perform computations in parallel without the need to wait for
information from all four matrix operations. On the other hand, in GRU, the first two matrix operations
can be parallelized, but the third matrix operation has a dependency on the completion of the previous
operations, as mentioned in Appendix A.1. Therefore, the actual runtime of GRU may be longer than
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Algorithm 1 GRU based on Python

import torch
import torch.nn as nn
import torch.nn.functional as F

class Manual_GRU(nn.Module):
def __init__(self, input_size, hidden_size, dropout):

super(Manual_GRU, self).__init__()
self.hidden_size = hidden_size
self.dropout = dropout
self.gates = nn.Linear(input_size+hidden_size, hidden_size*2)
self.hidden_transform = nn.Linear(input_size+hidden_size, hidden_size)
self.sigmoid = nn.Sigmoid()
self.tanh = nn.Tanh()
for param in self.parameters():

if param.dim() > 1:
nn.init.xavier_uniform_(param)

def forward(self, x):
batch_size = x.size(0)
seq_len = x.size(1)
h = torch.zeros(batch_size, self.hidden_size).to(x.device)
y_list = []
for i in range(seq_len):

update_gate, reset_gate = self.gates(torch.cat([x[:, i, :], h], dim=−1)).chunk(2, −1)
update_gate, reset_gate = (self.sigmoid(gate) for gate in (update_gate, reset_gate))
candidate_hidden = self.tanh(self.hidden_transform(torch.cat([x[:, i, :], reset_gate * h], dim=−1)

))
h = (1−update_gate) * h + update_gate * candidate_hidden
y_list.append(h)

output = F.dropout(torch.stack(y_list, dim=1), self.dropout, self.training)
return output, h

that of LSTM. To verify this, we compared the processing time and memory usage of a single-layer
LSTM and a single-layer GRU on sequences of the same length using Python implementation, as
shown in Figure 8.

(a) Memory consumption (task is fixed as 720-720) (b) Time consumption (task is fixed as 720-720) (c) Memory consumption (output length is fixed as 720) (d) Time consumption (output length is fixed as 720)

Figure 8: Time and memory consumption of RNNs and Transformer.

Transformer has the advantage of parallelizing the computation of correlations for a sequence of
length L, which greatly improves its speed compared to GRU/LSTM. It is important to note that this
comparison is not entirely fair, as Transformer can parallelize at the sequence level, whereas RNNs
can parallelize at the batch level. Each approach has its own strengths and is suited for different
scenarios.

To ensure a fair comparison of runtime and memory usage, it is important to consider the conditions
under which the models are compared. Following the experimental setup in FiLM [Zhou et al.,
2022b], we can ensure that the hidden state dimension and batch size of the models being compared
are the same. This allows us to evaluate whether the models can be trained on devices with low
memory capacity. For time evaluation, we need to ensure that the hidden state dimension is the
same and the memory utilization is similar, so that memory resources are not wasted. In terms
of time comparison between Transformer and GRU/LSTM, although GRU/LSTM are slower than
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Transformer under the same batch conditions in Python implementation, they can still speed up their
parallel processing by increasing batch size while ensuring similar memory usage to Transformer.
At the same time, because the computation process of GRU and LSTM is much simpler than that
of Transformer, they can be more easily implemented in C++ and integrated into PyTorch’s library
as nn.GRU/nn.LSTM, which is faster. For comparison, we compared the memory and time costs of
these five methods, as shown in Figure 8. The Python implementation of GRU and LSTM code is
shown in Algorithm 1 and Algorithm 2.

Algorithm 2 LSTM based on Python

import torch
import torch.nn as nn
import torch.nn.functional as F

class Manual_LSTM(nn.Module):
def __init__(self, input_size, hidden_size, dropout):

super(Manual_LSTM, self).__init__()
self.hidden_size = hidden_size
self.dropout = dropout
self.gates = nn.Linear(input_size+hidden_size, hidden_size * 4)
self.sigmoid = nn.Sigmoid()
self.tanh = nn.Tanh()
for param in self.parameters():

if param.dim() > 1:
nn.init.xavier_uniform_(param)

def forward(self, x):
batch_size = x.size(0)
seq_len = x.size(1)
h, c = (torch.zeros(batch_size, self.hidden_size).to(x.device) for _ in range(2))
y_list = []
for i in range(seq_len):

forget_gate, input_gate, output_gate, candidate_cell = self.gates(torch.cat([x[:, i, :], h], dim=−1))
.chunk(4, −1)

forget_gate, input_gate, output_gate = (self.sigmoid(g)
for g in (forget_gate, input_gate, output_gate))

c = forget_gate * c + input_gate * self.tanh(candidate_cell)
h = output_gate * self.tanh(c)
y_list.append(h)

output = F.dropout(torch.stack(y_list, dim=1), self.dropout, self.training)
return output, h, c

D The Design Process and Implementation Code of Recurrent Acceleration
Network (RAN)

In this section, we will provide a detailed explanation of the implementation approach (Appendix D.1)
and specific code of RAN (Appendix D.2).

D.1 Implementation approach of RAN

In Section 3.3, we introduced the Recurrent Acceleration Network (RAN) as part of our overall
approach. However, we encountered a challenge when the number of rows processed by RAN
is smaller than the number of columns. In such cases, if the number of slices processed exceeds
the number of rows, the intermediate variables of the slices become fully occupied. To ensure the
continuity of operations, it becomes necessary to continuously shift and reset these variables. However,
we found that this reset operation was time-consuming and hindered the expected acceleration benefits
of RAN. To overcome this issue, we made a simple adjustment by setting the size of the slice to the
maximum value of the rows and columns. While this may introduce additional space complexity,
it maintains the length of the slice and eliminates the need for a reset operation. As a result, the
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processing time is significantly reduced. The comparison diagram between RAN-min and RAN-max
is shown in Figure 9.

Zero

(a) RAN-min (b) RAN-max (in WITRAN)

Figure 9: The figure shows two designs of RANs side by side. The left one represents the case where
the number of slices is the minimum value between the number of rows and columns, while the right
one represents the case where the number of slices is the maximum value between the number of
rows and columns.

D.2 Specific code of RAN

The specific code of RAN can be found in Algorithm 3. Due to its long content, we place it at the end
of the Appendix.

E Dataset Details

In this section, we will provide a detailed introduction of the datasets used in this paper. (1)
Electricity2 (ECL) contains the hourly electricity consumption of 321 customers from 2012 to
2014. (2) ETT [Zhou et al., 2021] contains the load and oil temperature, which was recorded every
15 minutes between July 2016 and July 2018 from electricity transformers. (3) Traffic3 contains
the hourly data the road occupancy rates measured by different sensors on San Francisco Bay
area freeways, collected from California Department of Transportation. (4) Weather4 contains 21
meteorological indicators (such as air temperature, humidity, etc.) and was recorded every 10 minutes
for 2020 whole year. They are all split into the training set, validation set and test set by the ratio of
6:2:2 during modeling.

Due to the different original acquisition granularities of each dataset, in order to ensure that they
contain the same semantic information on the same task, in this paper, our experiments are conducted
by aggregating them into one hour. Table 7 summarizes all the features of the four benchmark
datasets. The target value of ETT is ’oil temperature (OT)’, the target value of ECL is ’MT_320’, the
target value of Traffic is ’Node_862’ and the target value of Weather is ’wet_bulb’.

Table 7: The details of datasets.

Dataset Sample Length Dimension Usage Frequency Recorded Frequency

ETT 17420 8 1h 15min
ECL 26304 322 1h 1h

Traffic 17544 863 1h 1h
Weather 35064 22 1h 10min

2https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
3http://pems.dot.ca.gov
4https://www.bgc-jena.mpg.de/wetter/
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F Experiment Setup Details

Our method and all the baseline methods are trained with the L2 loss, using the ADAM [Kingma and
Ba, 2014] optimizer with an initial learning rate of 10-3. Batch size is set to 32. The training process
is early stopped after 5 epochs if there is no loss degradation on the validation set and the max epochs
is 25. We save all the models with the lowest loss on the validation set for the final testing.

To ensure a fair comparison of each model’s performance, we set the same search space for the
common parameters included in each model. This ensures that each model can achieve its best
performance under the same conditions for comparison, with the seed set to 2023.

Regarding the private parameters of each model, we set the corresponding search space according to
the specific descriptions given in their respective papers. In addition, it should be emphasized that
the performance of Pyraformer shown in this paper is the best between the two prediction designs
of the model, the performance of FEDformer shown here is the best between FEDformer-w and
FEDformer-f, the performance of DLinear shown here is the best among DLinear, NLinear and
Linear, and the performance of MICN is the best between MICN-regre and MICN-mean.

The mean square error (MSE) and mean absolute error (MAE) are used as metrics. All experiments
are repeated 5 times and the mean of the metrics is reported as the final results in Table 3 and Table 4.

All the deep learning networks are implemented using PyTorch [Paszke et al., 2019] and conducted
on NVIDIA RTX A4000 16GB GPUs.

The search space for the common parameters is as follows: (1) dmodel is set to {32, 64, 128, 256,
512, 1024}. (2) elayer and dlayer are set to {1, 2, 3}. (3) nhead is set to {1, 2, 4, 8} and dff is four
times as large as dmodel. Regarding the private parameters of our model, norm is set to {0, 1} and C
represents the period is set to {12, 24, 48} and it is required that the length H of the input sequence
is divisible by C. Furthermore, it is important to note that adjustments should be made to C for
different tasks to ensure its ability to adequately represent the period.

G Ablation Study

In Section 4.3, we presented the results of our ablation experiments to demonstrate the effectiveness
of each component in the Water-wave Information Transmission (WIT) framework. We design
five variant methods and evaluate their performance on four datasets. The experimental results are
summarized in Table 8, and we will provide a detailed analysis of these results in this section. It is
important to note that the role of the Recurrent Acceleration Network (RAN) is primarily to improve
computational efficiency, as demonstrated in Section 4.2, and it does not significantly impact the
model’s accuracy. Therefore, our focus in this section will be on discussing the design and role of the
WIT framework.

G.1 Impact of forecasting module

Our proposed forecasting module is also a part of the model design, and its goal is to effectively
capture periodic semantic information and global-local semantic information obtained through the
Water-wave Information Transmission (WIT) framework. Our specific design has been described
in detail in Section 3.4. To verify that we can fully utilize the relevant information by combining
operations for pairwise prediction, we changed the combination prediction method of this module to
a simple way of first concatenating the horizontal hidden state and the vertical hidden state, and then
using the fully connected prediction module for prediction. We named this variant WITRAN-FC.

The comparison of results between WITRAN and WITRAN-FC in Table 8 shows that when we
remove the combining operations for pairwise prediction and replace it with ordinary concatenation
and fully connected operations, even though the same information is used, WITRAN-FC has difficulty
discovering the most relevant long-term periodic semantic information for each prediction point. This
demonstrates the effectiveness of the combining operations for pairwise prediction in the forecasting
module.
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Table 8: Results of the ablation study on long-range and ultra-long-range forecasting tasks. A
lower MSE or MAE indicates a better prediction. The best results are highlighted in bold.

Methods WITRAN WITRAN-FC WITRAN-2DLSTM WITRAN-2DGRU WITRAN-LSTM WITRAN-GRU

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
E

C
L

168-168 0.2397 0.3519 0.3005 0.4029 0.2662 0.3736 0.2578 0.3677 0.2749 0.3800 0.2536 0.3640
168-336 0.2607 0.3721 0.3425 0.4355 0.3027 0.3996 0.2916 0.3924 0.3164 0.4087 0.2872 0.3863
336-336 0.2517 0.3627 0.3242 0.4232 0.2916 0.3896 0.2826 0.3851 0.3151 0.4066 0.2811 0.3805
336-720 0.3084 0.4055 0.3566 0.4523 0.3279 0.4262 0.3172 0.4187 0.3435 0.4350 0.3123 0.4153
720-720 0.2478 0.3651 0.4544 0.4972 0.3120 0.4184 0.2948 0.4060 0.3362 0.4325 0.2912 0.4009

720-1440 0.2499 0.3727 0.4732 0.5277 0.3426 0.4505 0.3337 0.4440 0.3517 0.4540 0.3296 0.4414
1440-1440 0.2408 0.3680 0.6433 0.6172 0.3954 0.4876 0.3822 0.4819 0.4164 0.5006 0.3864 0.4843
1440-2880 0.3359 0.4383 0.7406 0.6906 0.5936 0.6215 0.5680 0.6077 0.5583 0.6005 0.5859 0.6173

Tr
af

fic

168-168 0.1377 0.2051 0.1541 0.2382 0.1918 0.2811 0.1824 0.2699 0.2065 0.2935 0.1846 0.2666
168-336 0.1321 0.2059 0.1572 0.2503 0.2070 0.2975 0.1945 0.2837 0.2201 0.3058 0.2059 0.2887
336-336 0.1306 0.2054 0.1549 0.2455 0.1923 0.2846 0.1808 0.2732 0.2029 0.2935 0.1840 0.2715
336-720 0.1391 0.2175 0.1725 0.2611 0.2087 0.3000 0.2042 0.2958 0.2197 0.3080 0.2072 0.2940
720-720 0.1408 0.2191 0.1722 0.2622 0.2157 0.3048 0.2097 0.2997 0.2242 0.3123 0.2150 0.3023

720-1440 0.1672 0.2449 0.2178 0.2979 0.2404 0.3178 0.2450 0.3245 0.2586 0.3346 0.2501 0.3264
1440-1440 0.1543 0.2325 0.2150 0.2954 0.2343 0.3148 0.2340 0.3151 0.2406 0.3199 0.2469 0.3249
1440-2880 0.1425 0.2333 0.2072 0.3082 0.2060 0.3081 0.2134 0.3182 0.2113 0.3116 0.2129 0.3162

E
T

T
h 1

168-168 0.1105 0.2589 0.1143 0.2649 0.1132 0.2624 0.1120 0.2622 0.1141 0.2642 0.1141 0.2643
168-336 0.1189 0.2714 0.1211 0.2753 0.1160 0.2694 0.1172 0.2710 0.1191 0.2733 0.1173 0.2708
336-336 0.1112 0.2638 0.1167 0.2715 0.1125 0.2668 0.1125 0.2668 0.1147 0.2696 0.1138 0.2676
336-720 0.1494 0.3092 0.1347 0.2933 0.1317 0.2905 0.1314 0.2902 0.1310 0.2902 0.1317 0.2906
720-720 0.1296 0.2868 0.1515 0.3109 0.1438 0.3037 0.1436 0.3034 0.1450 0.3048 0.1513 0.3111

720-1440 0.1331 0.2943 0.1807 0.3378 0.1759 0.3361 0.1764 0.3375 0.1766 0.3361 0.1791 0.3391
1440-1440 0.1304 0.2902 0.2627 0.4096 0.1861 0.3439 0.2063 0.3616 0.1969 0.3562 0.2123 0.3656
1440-2880 0.1850 0.3452 0.2655 0.4134 0.2485 0.3998 0.2463 0.3925 0.2444 0.3923 0.2486 0.3962

E
T

T
h 2

168-168 0.2389 0.3813 0.2507 0.3859 0.2577 0.4012 0.2567 0.3998 0.2593 0.4013 0.2556 0.3980
168-336 0.2277 0.3778 0.2377 0.3896 0.2791 0.4193 0.2791 0.4193 0.2818 0.4211 0.2690 0.4108
336-336 0.2432 0.3922 0.2928 0.4273 0.2614 0.4085 0.2621 0.4084 0.2680 0.4130 0.2604 0.4058
336-720 0.2373 0.3888 0.2948 0.4355 0.3051 0.4434 0.2815 0.4253 0.3113 0.4458 0.2798 0.4239
720-720 0.2635 0.4018 0.3243 0.4548 0.2990 0.4369 0.2848 0.4283 0.3096 0.4428 0.2832 0.4262

720-1440 0.2915 0.4289 0.3212 0.4598 0.3308 0.4659 0.3396 0.4723 0.3241 0.4617 0.3446 0.4759
1440-1440 0.2815 0.4220 0.4162 0.5145 0.3950 0.4962 0.4214 0.5144 0.4199 0.5132 0.4243 0.5193
1440-2880 0.3280 0.4585 0.5532 0.5959 0.6846 0.6639 0.6554 0.6530 0.6581 0.6531 0.7473 0.7006

W
ea

th
er

168-168 0.2050 0.3338 0.2066 0.3324 0.2180 0.3419 0.2199 0.3437 0.2194 0.3435 0.2211 0.3462
168-336 0.2197 0.3470 0.2200 0.3585 0.2580 0.3789 0.2723 0.3871 0.2596 0.3794 0.2668 0.3843
336-336 0.2163 0.3482 0.2259 0.3586 0.2472 0.3730 0.2613 0.3816 0.2462 0.3726 0.2501 0.3732
336-720 0.2054 0.3424 0.2125 0.3497 0.2497 0.3840 0.2775 0.4004 0.2473 0.3796 0.2859 0.4099
720-720 0.2008 0.3417 0.2104 0.3458 0.2564 0.3843 0.2861 0.4030 0.2633 0.3873 0.2772 0.3990

720-1440 0.1872 0.3312 0.1984 0.3397 0.2301 0.3676 0.2853 0.4156 0.2376 0.3751 0.2737 0.4063
1440-1440 0.1907 0.3366 0.2084 0.3507 0.2419 0.3832 0.2671 0.4070 0.2454 0.3847 0.2631 0.4013
1440-2880 0.1769 0.3257 0.2148 0.3570 0.2308 0.3735 0.2460 0.3887 0.2317 0.3736 0.2305 0.3751

G.2 Impact of information fusion and selection

As information fusion and selection are completed together in the Gated Selective Cell (GSC) we
designed, we need to verify the effectiveness of GSC, that is, the effectiveness of information
fusion and selection. Here, we replaced the cells in the two directions of Horizontal Vertical Gated
Selective Unit (HVGSU) with LSTM and GRU respectively, and named them WITRAN-2DLSTM
and WITRAN-2DGRU. It should be noted that since the information between the LSTM/GRU cell in
the two directions is not fused at this time, the information in the last row of the horizontal direction
cannot contain global information, so we cannot use the proposed forecasting module for application,
but only use the FC method mentioned in the previous subsection for prediction. It should be noted
that the comparison between WITRAN-2DLSTM/WITRAN-2DGRU and WITRAN-FC reflects the
impact of information redundancy on experimental performance, while the comparison between
WITRAN-2DLSTM/WITRAN-2DGRU and WITRAN reflects the impact of information fusion and
selection on experimental performance.

The comparison of results between WITRAN-2DLSTM/WITRAN-2DGRU and WITRAN-FC in
Table 8 demonstrates that too much information redundancy may be detrimental to the model’s
prediction performance, because for WITRAN-FC, the horizontal hidden states it receives contain
more information as they go further down, and they also contain all the information in the horizontal
direction above them. The same applies to the vertical direction, where the further to the right
the hidden state is, the more information it contains. Furthermore, the information captured by
WITRAN-2DLSTM and WITRAN-2DGRU is independent among different horizontal rows and
among different vertical columns, and the semantic information between horizontal and vertical
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hidden state are different. Therefore, WITRAN-2DLSTM and WITRAN-2DGRU are not heavily
influenced by redundant information. In addition, the comparison of results between WITRAN and
WITRAN-2DLSTM/WITRAN-2DGRU shows that information fusion and selection can effectively
extract relevant information, which demonstrates the necessity of the GSC design in WIT.

G.3 Impact of bi-granular information transmission

In the WITRAN we designed, information can be propagated in two directions, and because the
time granularity of sequence propagation in these two directions is different, their periodic semantic
information is different. In order to verify the effectiveness of the two independent GSCs set up
in HVGSU to capture long- and short-term periodic semantic information, we replaced the cells in
the two directions of WITRAN-2DLSTM/WITRAN-2DGRU with a single LSTM/GRU cell, and
uniformly used the hidden state information of one point to transmit information in both directions. It
should be noted that at this time, the information propagated horizontally and vertically by the model
is completely the same. Sure, we can name the current models as WITRAN-LSTM/WITRAN-GRU.

The comparison of results between WITRAN-2DLSTM/WITRAN-2DGRU and WITRAN-
LSTM/WITRAN-GRU in Table 8 demonstrates that failing to distinguish between long- and short-
term periodic semantic information can have a significant negative impact on the performance of
prediction tasks.

G.4 Summary

In this section, we focused on the importance of each building module of WIT. During the experi-
ments, we gradually removed the building blocks we designed, and it was clear that the performance
decreased significantly. This fully demonstrates the rationality and effectiveness of the WIT frame-
work we designed. Specifically, the summary of WIT is as follows: (1) The fusion and selection
design of GSC enables both long- and short-term semantic information to be captured for each
historical input data point. (2) Setting up independent cells in both directions enables to extract
semantic information in the long- and short-term respectively. (3) The specially designed combined
operation is able to make fuller use of the captured local and global semantic information while
ensuring that the information is not redundant.

H Experiment Error Bars

We saved all models and used the model with the lowest validation loss for the final testing. We
repeated this process 5 times and calculated the error bars for all models to compare their robustness
on long-range and ultra-long-range tasks, as shown in Table 9. It can be seen from Table 9 that the
overall performance of the proposed WITRAN is better than other state-of-the-art baseline models,
indicating the effectiveness of our approach.

I Model Analysis

In this section, we will analyze the parameter sensitivity (Appendix I.1) of our proposed model and
provide a detailed explanation (Appendix I.2) of the time and memory consumption in Section 4.2.

I.1 Parameter sensitivity

Regarding the private parameters of our model, norm is set to {0, 1} and C represents the period
is set to {12, 24, 48} and it is required that the length H of the input sequence is divisible by C.
In this subsection, we will explain the choices of these parameters and their impact on the model’s
predictions.

The impact of norm For different prediction tasks on different datasets, we determined the value
of norm through validation set. To verify that the value of norm conforms to the distribution of the
datasets, we conducted experiments on the distribution of the training and validation sets for different
prediction tasks, the results and the value of norm are shown in Table 10. We noticed that although
there may be a significant difference in the mean values of the data between the training and validation
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Table 9: MSE and MAE with error bars (Mean and STD) for WITRAN and all the baseline methods
for long-range and ultra-long-range forecasting. All experiments are repeated 5 times.

Datasets ECL Traffic ETTh1 ETTh2 Weather

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
W

IT
R

A
N

(o
ur

s)
168-168 0.2397±0.00859 0.3519±0.00601 0.1377±0.00231 0.2051±0.00300 0.1105±0.00082 0.2589±0.00128 0.2389±0.00615 0.3813±0.00566 0.2050±0.00428 0.3338±0.00483
168-336 0.2607±0.00926 0.3721±0.00783 0.1321±0.00327 0.2059±0.00359 0.1189±0.00325 0.2714±0.00439 0.2277±0.00805 0.3778±0.00772 0.2197±0.00629 0.3470±0.00328
336-336 0.2517±0.00946 0.3627±0.00824 0.1306±0.00080 0.2054±0.00161 0.1112±0.00161 0.2638±0.00221 0.2432±0.00303 0.3922±0.00470 0.2163±0.00520 0.3482±0.00910
336-720 0.3084±0.01255 0.4055±0.00807 0.1391±0.00019 0.2175±0.00202 0.1494±0.01004 0.3092±0.01220 0.2373±0.00815 0.3888±0.00558 0.2054±0.00322 0.3424±0.00328
720-720 0.2478±0.02129 0.3651±0.01580 0.1408±0.00109 0.2191±0.00018 0.1296±0.00220 0.2868±0.00265 0.2635±0.01346 0.4018±0.00935 0.2008±0.00374 0.3417±0.00159

720-1440 0.2499±0.00779 0.3727±0.00097 0.1672±0.00389 0.2449±0.00746 0.1331±0.00273 0.2943±0.00342 0.2915±0.02237 0.4289±0.01468 0.1872±0.00281 0.3312±0.00442
1440-1440 0.2408±0.01817 0.3680±0.01533 0.1543±0.00570 0.2325±0.00944 0.1304±0.00425 0.2902±0.00503 0.2815±0.01771 0.4220±0.01177 0.1907±0.00622 0.3366±0.00648
1440-2880 0.3359±0.01107 0.4383±0.00809 0.1425±0.00461 0.2333±0.00745 0.1850±0.01106 0.3452±0.01388 0.3280±0.04586 0.4585±0.03506 0.1769±0.00270 0.3257±0.00212

M
IC

N

168-168 0.3168±0.01684 0.4067±0.01116 0.2428±0.00416 0.3543±0.00511 0.1257±0.01332 0.2803±0.01514 0.2734±0.01795 0.4162±0.01662 0.2231±0.00219 0.3489±0.00404
168-336 0.3002±0.00979 0.4053±0.00853 0.2401±0.00537 0.3514±0.00657 0.1422±0.02929 0.3006±0.03410 0.3017±0.04440 0.4429±0.03426 0.2663±0.00330 0.3837±0.00602
336-336 0.3092±0.00621 0.4132±0.00590 0.2413±0.00863 0.3549±0.00901 0.1576±0.03357 0.3159±0.03352 0.3472±0.05168 0.4796±0.03738 0.2701±0.00708 0.3804±0.00650
336-720 0.3820±0.01996 0.4704±0.01565 0.2422±0.00545 0.3513±0.00292 0.2219±0.05068 0.3729±0.04821 0.4248±0.04274 0.5268±0.02923 0.3086±0.00548 0.4138±0.00974
720-720 0.3463±0.01609 0.4381±0.00853 0.2552±0.01039 0.3709±0.01432 0.2959±0.07568 0.4402±0.06838 0.3549±0.03558 0.4805±0.02590 0.2828±0.00451 0.3969±0.00339

720-1440 1.0460±0.18834 0.7765±0.07715 0.2876±0.00409 0.3916±0.00354 0.4640±0.04845 0.5836±0.03802 0.4922±0.05114 0.5649±0.03187 0.3999±0.03417 0.4848±0.02302
1440-1440 2.2862±0.36532 1.2207±0.13085 0.2950±0.00611 0.3923±0.00630 0.5650±0.12064 0.6293±0.07367 0.5030±0.04996 0.5644±0.02600 0.2873±0.01038 0.4201±0.00799
1440-2880 2.8936±1.28817 1.3717±0.37787 0.2823±0.01489 0.3874±0.01046 0.7591±0.49493 0.7215±0.30100 0.5549±0.08677 0.5886±0.05173 0.3570±0.03915 0.4810±0.02942

Ti
m

es
N

et

168-168 0.2825±0.00960 0.3797±0.00798 0.1490±0.00412 0.2293±0.00686 0.1133±0.00253 0.2612±0.00377 0.2655±0.01248 0.4051±0.01202 0.2420±0.00614 0.3608±0.00466
168-336 0.3505±0.00624 0.4253±0.00428 0.1499±0.00136 0.2356±0.00298 0.1202±0.00237 0.2732±0.00359 0.2725±0.00610 0.4163±0.00564 0.2821±0.01949 0.3885±0.01692
336-336 0.3702±0.05183 0.4307±0.02897 0.1446±0.00408 0.2300±0.00499 0.1279±0.01137 0.2846±0.01151 0.3184±0.07475 0.4431±0.04618 0.2684±0.01958 0.3752±0.01685
336-720 0.3879±0.02491 0.4531±0.01278 0.1584±0.00141 0.2440±0.00275 0.1501±0.00999 0.3127±0.01039 0.2858±0.00846 0.4253±0.00492 0.2930±0.01619 0.4045±0.01427
720-720 0.3537±0.02613 0.4386±0.01932 0.1546±0.00393 0.2410±0.00160 0.1510±0.01739 0.3118±0.01866 0.2936±0.02218 0.4238±0.01457 0.2967±0.02166 0.4070±0.01439

720-1440 0.6119±0.12940 0.5962±0.06975 0.1882±0.05920 0.2656±0.05923 0.1391±0.00371 0.3049±0.00499 0.4186±0.05841 0.5092±0.03150 0.2407±0.00761 0.3694±0.00643
1440-1440 0.5720±0.14337 0.5712±0.07619 0.1598±0.01064 0.2388±0.01276 0.1801±0.01165 0.3372±0.01145 0.4409±0.07863 0.5218±0.04638 0.2869±0.01684 0.4033±0.01504
1440-2880 0.7683±0.06278 0.6846±0.02955 0.1560±0.00700 0.2409±0.00845 0.2732±0.02157 0.4094±0.01088 1.5304±0.84959 0.9026±0.32013 0.2199±0.02223 0.3563±0.01606

Pa
tc

hT
ST

168-168 0.2980±0.00339 0.3832±0.00341 0.1622±0.01189 0.2320±0.00878 0.1212±0.00480 0.2704±0.00375 0.2582±0.00722 0.3983±0.00598 0.2469±0.00797 0.3597±0.00569
168-336 0.3840±0.01674 0.4393±0.01441 0.1641±0.01070 0.2364±0.00646 0.1287±0.00488 0.2808±0.00483 0.3206±0.01683 0.4515±0.01199 0.3040±0.00457 0.4049±0.00439
336-336 0.4377±0.04995 0.4654±0.02878 0.1546±0.00478 0.2332±0.00351 0.1496±0.01338 0.3039±0.01289 0.3559±0.03962 0.4779±0.02546 0.3149±0.01735 0.4145±0.01288
336-720 0.5502±0.05453 0.5438±0.02876 0.1747±0.01107 0.2536±0.00686 0.2092±0.01996 0.3659±0.01425 0.4936±0.03701 0.5592±0.02042 0.4358±0.01861 0.4937±0.01341
720-720 0.5927±0.10039 0.5742±0.04460 0.1543±0.00528 0.2441±0.00599 0.2178±0.02162 0.3694±0.01528 0.5243±0.04377 0.5745±0.02768 0.5701±0.10231 0.5491±0.03951

720-1440 0.8243±0.06568 0.6704±0.02131 0.1904±0.01783 0.2685±0.01319 0.3708±0.08923 0.4906±0.06185 0.9401±0.19202 0.7680±0.07649 0.5453±0.04814 0.5631±0.02233
1440-1440 0.9053±0.27275 0.7328±0.11057 0.1817±0.00859 0.2764±0.00909 0.4475±0.10894 0.5329±0.06986 0.7860±0.01219 0.6704±0.00613 0.5371±0.06814 0.5559±0.03300
1440-2880 1.1282±0.05767 0.8087±0.02547 0.2029±0.01118 0.3100±0.01305 0.9617±0.30428 0.8271±0.12771 2.0561±0.15722 1.1595±0.04848 0.9061±0.14939 0.7220±0.05635

D
lin

ea
r

168-168 0.2605±0.00138 0.3579±0.00117 0.1519±0.00017 0.2195±0.00023 0.1122±0.00081 0.2605±0.00106 0.2556±0.00080 0.3944±0.00091 0.2421±0.00302 0.3578±0.00240
168-336 0.3080±0.00167 0.3946±0.00149 0.1468±0.00012 0.2210±0.00017 0.1251±0.00086 0.2794±0.00101 0.2891±0.00143 0.4256±0.00082 0.2918±0.00149 0.3975±0.00112
336-336 0.2740±0.00539 0.3720±0.00491 0.1325±0.00035 0.2114±0.00053 0.1261±0.00103 0.2803±0.00130 0.2950±0.00116 0.4329±0.00099 0.2905±0.00198 0.3969±0.00170
336-720 0.3208±0.00328 0.4188±0.00280 0.1449±0.00126 0.2252±0.00135 0.1942±0.00074 0.3462±0.00067 0.4125±0.00304 0.5136±0.00225 0.3897±0.00344 0.4739±0.00166
720-720 0.3203±0.00199 0.4202±0.00150 0.1410±0.00065 0.2241±0.00069 0.1920±0.00181 0.3435±0.00205 0.3495±0.01694 0.4749±0.01135 0.3724±0.00649 0.4614±0.00467

720-1440 0.4923±0.01121 0.5473±0.00517 0.1639±0.00075 0.2412±0.00083 0.2952±0.00412 0.4370±0.00330 0.5037±0.03426 0.5645±0.01609 0.4406±0.00678 0.5264±0.00268
1440-1440 0.5146±0.01460 0.5615±0.00841 0.1599±0.00409 0.2411±0.00560 0.2200±0.00889 0.3714±0.00775 0.5176±0.02561 0.5734±0.01383 0.3147±0.01282 0.4417±0.00889
1440-2880 0.8355±0.01493 0.7193±0.00730 0.1550±0.00478 0.2472±0.00679 0.3773±0.02685 0.4794±0.01928 0.5053±0.04308 0.5584±0.02510 0.3197±0.00551 0.4533±0.00462

Fi
L

M

168-168 0.2587±0.00032 0.3557±0.00029 0.1501±0.00067 0.2143±0.00139 0.1091±0.00033 0.2558±0.00035 0.2546±0.00141 0.3942±0.00161 0.2426±0.00037 0.3544±0.00036
168-336 0.3062±0.00030 0.3922±0.00014 0.1453±0.00033 0.2165±0.00071 0.1187±0.00058 0.2708±0.00068 0.2894±0.00718 0.4263±0.00566 0.2981±0.00036 0.3988±0.00033
336-336 0.2722±0.00027 0.3659±0.00034 0.1324±0.00346 0.2104±0.00641 0.1196±0.00045 0.2738±0.00069 0.2951±0.00226 0.4347±0.00188 0.2943±0.00107 0.3969±0.00112
336-720 0.3171±0.00083 0.4152±0.00072 0.1438±0.00028 0.2229±0.00039 0.1793±0.00112 0.3335±0.00091 0.4158±0.01033 0.5162±0.00636 0.4096±0.00062 0.4767±0.00069
720-720 0.3158±0.00086 0.4154±0.00061 0.1383±0.00039 0.2208±0.00053 0.1845±0.00103 0.3379±0.00086 0.4045±0.00302 0.5105±0.00184 0.3999±0.00326 0.4661±0.00329

720-1440 0.4730±0.00086 0.5336±0.00046 0.1638±0.00089 0.2448±0.00100 0.2949±0.00327 0.4388±0.00289 0.7166±0.00912 0.6628±0.00477 0.6360±0.00325 0.5997±0.00232
1440-1440 0.4849±0.00169 0.5429±0.00048 0.1602±0.00327 0.2437±0.00506 0.2294±0.01020 0.3759±0.00827 0.7446±0.01672 0.6590±0.00733 0.6002±0.00341 0.5880±0.00276
1440-2880 0.6847±0.00543 0.6493±0.00310 0.1744±0.00361 0.2693±0.00556 0.6834±0.01115 0.7096±0.00431 3.2835±0.10801 1.6030±0.02952 1.2605±0.00135 0.8805±0.00301

FE
D

fo
rm

er

168-168 0.3028±0.01797 0.4020±0.01216 0.2469±0.02237 0.3479±0.02483 0.1284±0.00272 0.2826±0.00467 0.2844±0.01173 0.4285±0.01111 0.2583±0.00281 0.3774±0.00393
168-336 0.3522±0.01174 0.4394±0.00829 0.2426±0.00987 0.3449±0.01478 0.1271±0.00393 0.2810±0.00486 0.2961±0.00488 0.4355±0.00418 0.2909±0.00348 0.4030±0.00359
336-336 0.3378±0.00695 0.4303±0.00400 0.2339±0.01067 0.3365±0.01400 0.1252±0.00689 0.2794±0.00863 0.2884±0.01345 0.4314±0.01098 0.2791±0.00666 0.3984±0.00539
336-720 0.3813±0.00988 0.4634±0.00748 0.2987±0.03172 0.3976±0.02903 0.1534±0.01574 0.3178±0.01628 0.3425±0.02883 0.4656±0.02074 0.2648±0.00820 0.3915±0.01046
720-720 0.4023±0.03710 0.4769±0.02158 0.2667±0.02331 0.3685±0.02884 0.1386±0.00869 0.2995±0.01203 0.3275±0.01948 0.4534±0.01363 0.2416±0.00381 0.3728±0.00513

720-1440 0.4833±0.02229 0.5393±0.01414 0.2753±0.00622 0.3650±0.00502 0.1768±0.03601 0.3409±0.03216 0.3731±0.04086 0.4827±0.02391 0.2352±0.03670 0.3733±0.03472
1440-1440 0.5142±0.03440 0.5571±0.01701 0.2848±0.02063 0.3681±0.01120 0.3574±0.14083 0.4878±0.11818 0.3906±0.04614 0.4951±0.02924 0.2226±0.01285 0.3609±0.01098
1440-2880 3.9018±4.00564 1.5276±0.92236 0.2952±0.01400 0.3844±0.01182 0.4269±0.29204 0.5252±0.20346 1.7167±1.76025 0.9698±0.60094 0.2138±0.00950 0.3599±0.01022

Py
ra

fo
rm

er

168-168 0.2651±0.01387 0.3802±0.01069 0.2979±0.01338 0.3815±0.01238 0.1534±0.01808 0.3287±0.01959 0.2746±0.01024 0.4080±0.00685 0.2144±0.02003 0.3451±0.02343
168-336 0.5392±0.26585 0.5271±0.10622 0.5838±0.02841 0.5652±0.01840 0.1665±0.00781 0.3419±0.01014 0.2392±0.02900 0.3834±0.02057 0.2594±0.04642 0.3833±0.04056
336-336 0.2994±0.01279 0.4030±0.01117 0.4703±0.06731 0.4964±0.05265 0.1408±0.01032 0.3087±0.01180 0.2610±0.03612 0.4010±0.02955 0.2310±0.02787 0.3591±0.02687
336-720 0.4856±0.06663 0.5243±0.03642 0.5235±0.10386 0.5292±0.08052 0.3984±0.23533 0.5202±0.16798 0.2341±0.00798 0.3818±0.00520 0.3241±0.06639 0.4300±0.04847
720-720 0.3115±0.02065 0.4218±0.01610 0.4811±0.05721 0.4962±0.04154 0.1563±0.01867 0.3253±0.01669 0.2795±0.04548 0.4151±0.03349 0.2378±0.06668 0.3684±0.05805

720-1440 0.3250±0.01497 0.4332±0.01241 0.4463±0.04505 0.4609±0.03322 0.1666±0.03171 0.3315±0.02987 0.2952±0.0432 0.4336±0.02947 0.6810±0.30460 0.6352±0.18544
1440-1440 0.4895±0.04971 0.5280±0.03132 0.4710±0.01399 0.4916±0.00751 0.3487±0.10751 0.4866±0.08011 0.2946±0.02847 0.4316±0.01817 0.2401±0.04767 0.3777±0.04109
1440-2880 0.4320±0.01920 0.5161±0.01283 0.5165±0.02708 0.5305±0.01786 0.5857±0.12854 0.6760±0.09034 0.3345±0.01392 0.4544±0.01035 0.1852±0.00663 0.3332±0.00954

A
ut

of
or

m
er

168-168 0.3496±0.01079 0.4337±0.01014 0.2378±0.01295 0.3490±0.01273 0.1318±0.00332 0.2872±0.00515 0.2903±0.01461 0.4326±0.01218 0.2670±0.00243 0.3813±0.00317
168-336 0.4733±0.05218 0.5120±0.03357 0.2683±0.01140 0.3803±0.01102 0.1315±0.00670 0.2878±0.00682 0.4447±0.30613 0.4964±0.12815 0.2990±0.00389 0.4096±0.00475
336-336 0.5153±0.12322 0.5304±0.07432 0.2460±0.01621 0.3567±0.02022 0.1384±0.01765 0.2959±0.01631 0.2805±0.01655 0.4255±0.01391 0.3066±0.01615 0.4162±0.01489
336-720 0.5045±0.02785 0.5393±0.01945 0.2849±0.03404 0.3956±0.03523 0.1928±0.03373 0.3450±0.03092 0.3372±0.01763 0.4625±0.01084 0.3468±0.01639 0.4592±0.01022
720-720 0.9639±0.26411 0.7520±0.10858 0.2959±0.02180 0.4045±0.01861 0.2388±0.04468 0.3869±0.03952 0.4668±0.10896 0.5477±0.06613 0.4309±0.04345 0.5085±0.02459

720-1440 1.4957±0.49225 0.9533±0.17135 0.3104±0.03672 0.4095±0.03276 0.3298±0.03720 0.4741±0.02983 0.5633±0.09564 0.5996±0.04671 0.8599±0.43154 0.7064±0.19138
1440-1440 1.7873±1.12827 1.0283±0.36295 0.2970±0.02378 0.3999±0.02575 0.4531±0.12054 0.5507±0.09597 0.8029±0.34886 0.7140±0.15332 0.9766±0.38596 0.7739±0.10604
1440-2880 1.2867±0.32261 0.8878±0.12519 0.3035±0.02038 0.3982±0.02444 1.3566±1.00518 0.9235±0.4592 4.1031±2.27321 1.7198±0.61623 1.7465±0.51402 1.0962±0.18964

In
fo

rm
er

168-168 0.3779±0.02565 0.4594±0.01559 0.3363±0.03784 0.3994±0.02525 0.1563±0.01273 0.3299±0.01299 0.3764±0.01781 0.4863±0.00921 0.2639±0.02557 0.3926±0.02566
168-336 0.5037±0.08433 0.5301±0.04791 0.5891±0.11257 0.5608±0.05492 0.1663±0.03122 0.3335±0.03102 0.3364±0.02216 0.4583±0.01619 0.2798±0.02688 0.4061±0.02242
336-336 0.4591±0.03057 0.4991±0.01943 0.5447±0.03647 0.5384±0.01976 0.1648±0.04980 0.3291±0.04794 0.3709±0.02624 0.4785±0.01520 0.2898±0.01358 0.4129±0.01501
336-720 0.6545±0.12350 0.5975±0.05506 1.2044±0.28757 0.8254±0.10672 0.1522±0.01115 0.3203±0.01333 0.3572±0.01765 0.4675±0.00646 0.2483±0.00848 0.3778±0.00462
720-720 0.4850±0.01891 0.5238±0.00888 1.2954±0.57549 0.9205±0.19654 0.1595±0.01501 0.3259±0.01221 0.3585±0.01299 0.4699±0.00700 0.3545±0.13325 0.4569±0.08858

720-1440 0.5064±0.04967 0.5317±0.02899 0.7614±0.17528 0.6469±0.09409 0.1378±0.00853 0.3051±0.00856 0.4025±0.04622 0.4991±0.02220 0.2466±0.00877 0.3849±0.01187
1440-1440 0.7247±0.23436 0.6292±0.10907 0.7375±0.04517 0.6414±0.02969 0.1430±0.00927 0.3156±0.00902 0.3484±0.01264 0.4786±0.00480 0.2556±0.00559 0.3969±0.00630
1440-2880 0.6152±0.25466 0.5953±0.13194 0.9849±0.23417 0.7618±0.10144 0.3177±0.10572 0.4733±0.08814 0.3335±0.00947 0.4482±0.00366 0.2126±0.01052 0.3600±0.01317

Tr
an

sf
or

m
er

168-168 0.3036±0.01240 0.4068±0.01204 1.5204±0.76091 0.9594±0.35768 0.1504±0.01406 0.3257±0.01774 0.3043±0.02208 0.4365±0.01397 0.2200±0.00977 0.3438±0.00915
168-336 0.3583±0.01874 0.4435±0.01628 0.6953±0.28867 0.6015±0.15680 0.1599±0.01629 0.3324±0.01735 0.3662±0.02673 0.4671±0.01450 0.2230±0.00914 0.3488±0.01073
336-336 0.5771±0.27509 0.5643±0.15434 0.8482±0.53327 0.6424±0.21839 0.1438±0.00533 0.3121±0.00606 0.3218±0.03005 0.4412±0.02106 0.2308±0.00771 0.3556±0.01044
336-720 0.4368±0.05110 0.4920±0.03146 0.7320±0.22311 0.6233±0.14229 0.1644±0.02587 0.3304±0.02911 0.3582±0.14008 0.4629±0.09578 0.2334±0.01492 0.3570±0.01743
720-720 0.3992±0.04794 0.4640±0.02729 1.1963±0.74703 0.8271±0.35161 0.1730±0.00988 0.3414±0.01075 0.3087±0.02578 0.4320±0.01658 0.2463±0.00604 0.3722±0.01029

720-1440 0.4030±0.03837 0.4797±0.02257 0.9876±0.19880 0.7445±0.10064 0.1905±0.03701 0.3555±0.03645 0.3712±0.01640 0.4805±0.00732 0.2188±0.01761 0.3512±0.01479
1440-1440 0.5531±0.05384 0.5524±0.02729 0.7430±0.05136 0.6492±0.02996 0.1972±0.02466 0.3630±0.02502 0.3797±0.02330 0.4818±0.01429 0.2610±0.01388 0.3823±0.01305
1440-2880 0.5243±0.06259 0.5460±0.03610 0.6000±0.07314 0.5877±0.05861 0.3495±0.08217 0.4911±0.06523 0.3737±0.05141 0.4787±0.03206 0.1993±0.00884 0.3436±0.00934

sets, when their variances are not significantly different, it indicates that the data fluctuations in
the two sets are similar. In this case, the difference in the data distribution is not significant, and
selecting norm as 0 is reasonable. However, when the variance difference between the training and
validation sets is relatively large (approximately twice or half), there is a significant difference in
the data distribution between the two sets, and norm should be 1 to re-normalize the input of the
model. It should be noted that in the Weather dataset, there are negative values present, which makes
its mean close to 0, resulting in a large difference between its variance and mean. However, this is
reasonable. For the Traffic dataset, there are no negative values present, so even if the variances of its
training and validation sets are similar, its significant fluctuations can be observed when combined
with its mean. This was also demonstrated by setting the norm value to 1 during the model training
process.
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Table 10: The distribution of data in the training and validation sets (Mean and STD) and the value of
norm.

Datasets ECL Traffic ETTh1 ETTh2 Weather

Tasks training set validation set norm training set validation set norm training set validation set norm training set validation set norm training set validation set norm

168-168 3425.733±564.8776 3036.397±388.2128

0

0.029±0.0170 0.034±0.0201

1

16.880±8.2921 6.667±4.1794

1

28.959±12.0653 18.680±9.0427

0

0.500±6.6321 1.143±7.7659

0
168-336 3427.480±566.9556 3036.291±388.0110 0.029±0.0170 0.035±0.0202 16.606±8.0735 6.258±3.8462 28.767±12.0604 17.922±8.5800 0.536±6.6444 1.017±7.8162
336-336 3428.455±569.1108 3036.291±388.0110 0.029±0.0170 0.035±0.0202 16.207±7.5364 6.258±3.8462 28.434±11.8740 17.922±8.5800 0.585±6.6409 1.017±7.8162
336-720 3434.150±573.2660 3037.919±387.2758 0.029±0.0170 0.035±0.0203 15.446±6.6217 5.583±3.4658 27.774±11.6120 16.360±7.7594 0.700±6.6410 0.721±7.9234
720-720 3437.773±578.4705 3037.919±387.2758 0.029±0.0170 0.035±0.0203 14.832±5.9927 5.583±3.4658 27.111±11.3299 16.360±7.7594 0.825±6.6270 0.721±7.9234

720-1440 3439.817±586.5029 3046.877±397.7761
0

0.029±0.0170 0.035±0.0204
1

14.044±5.5077 4.273±2.7600
1

26.403±11.4257 13.646±6.5725
1

0.978±6.6791 -0.547±7.5174
01440-1440 3452.135±594.6857 3046.877±397.7761 0.029±0.0169 0.035±0.0204 13.722±5.5456 4.273±2.7600 26.355±11.8918 13.646±6.5725 1.029±6.7679 -0.547±7.5174

1440-2880 3458.328±610.2118 3093.128±446.4128 0.029±0.0171 0.036±0.0208 14.195±5.5780 2.623±2.5005 28.303±12.1275 9.130±5.5363 0.725±6.8812 -3.859±5.5129

The impact of C The choice of C for the model represents the determination of the sequence
period. Due to the different original acquisition granularities of each dataset, in order to ensure that
they contain the same semantic information on the same task, in this paper, our experiments are
conducted by aggregating them into one hour. To facilitate the discovery of long-term repetitive
patterns in the sequence, we set the C to 12, 24, 48, and the specific experimental results are shown
in Table 11. From Table 11, we can clearly see that for sequences with time steps in hours, using a
period of 24 hours (1 day) for division yields better results. This is because in WIT, information is
transmitted horizontally at the granularity of hours, while information is transmitted vertically at the
granularity of days. This approach can more fully capture the long- and short-term repetitive patterns
and global/local correlations hidden in the time series data.

Table 11: Parameter Sensitivity of C on ECL and Traffic datasets.

Settings for C 12 24 48

Datasets Tasks MSE MAE MSE MAE MSE MAE

E
C

L

168-168 0.2461 0.3648 0.2397 0.3519 - -
168-336 0.3166 0.4230 0.2607 0.3721 - -
336-336 0.3217 0.4099 0.2517 0.3627 0.2634 0.3847
336-720 0.3397 0.4310 0.3084 0.4055 0.3233 0.4130
720-720 0.2802 0.3951 0.2478 0.3651 0.3175 0.4063
720-1440 0.2907 0.4051 0.2499 0.3727 0.2985 0.3946

1440-1440 0.3007 0.4110 0.2408 0.3680 0.2748 0.3768
1440-2880 0.4301 0.5150 0.3359 0.4383 0.3464 0.4347

Tr
af

fic

168-168 0.1598 0.2408 0.1377 0.2051 - -
168-336 0.2272 0.2783 0.1321 0.2059 - -
336-336 0.2131 0.2967 0.1306 0.2054 0.1412 0.2278
336-720 0.2022 0.2804 0.1391 0.2175 0.1510 0.2371
720-720 0.2028 0.2846 0.1408 0.2191 0.1505 0.2326
720-1440 0.2710 0.3311 0.1672 0.2449 0.1813 0.2605

1440-1440 0.2676 0.3301 0.1543 0.2325 0.1881 0.2652
1440-2880 0.2407 0.3443 0.1425 0.2333 0.1692 0.2765

I.2 A detailed explanation of time and memory consumption

The efficiency of the model is crucial, as even if the model’s efficiency is high, it is limited if it does
not have good predictive performance. Therefore, in this paper, we only compared our proposed
method with methods that have good or the latest results. It should be noted that, for example,
Transformer [Vaswani et al., 2017], Informer [Zhou et al., 2021] and Autoformer [Wu et al., 2021]
have been shown in previous works to have higher complexity than FiLM [Zhou et al., 2022b], so we
only compared our proposed method with FiLM, rather than comparing with Transformer, Informer
and Autoformer again.

Memory Usage As shown in Figure 5(a) and (c), WITRAN has good memory usage with the
prolonging the input length and output length. For a fair comparison, we fix the experimental settings
of all methods, where we fix the input length as 720 and prolong the output length. Moreover, we
fix the output length as 720 and prolong the input length. And for each model, to achieve good
performance, it is important to have a sufficiently large search space to select the most suitable
parameters for the model, in order to achieve the best possible results. Therefore, we set all public
parameters to their upper limits to test the memory usage of each model. To allow as many models
as possible to be trained, we uniformly set the batch size to 8 for testing in this section. It should
be noted that if a point is not shown on the graph, it indicates that the model encountered an "out of
memory" (OOM) error at that particular configuration of input sequence length and output length.
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As for TimesNet, due to its large memory usage, it cannot be trained even with a batch size of 1.
Therefore, we did not include TimesNet in the Figure 5. From Figure 5(a), we can observe that when
the input sequence is fixed, the memory usage of WITRAN and WIT is not significantly different
since they both have the same prediction module. Additionally, we found that as the output length
increases, the memory usage of WITRAN and WIT also increases linearly, but our proposed method
still has the lowest memory usage. From Figure 5(c), we can observe that the memory usage of
WITRAN increases very slowly with the increase in sequence length, and the memory usage of
WITRAN is even lower than that of WIT. This is because WITRAN does not need to retain a large
number of intermediate storage variables in the computation of each slice, while WIT needs to store
the intermediate variables for the entire sequence. Through comparison with other methods, we can
clearly see the advantages of WITRAN on memory consumption.

Training Speed As shown in Figure 5(b) and (d), WITRAN has a faster training speed than others
with the prolonging the input length and output length. To ensure a fair comparison of the performance
of each model, we fixed the experimental settings, which were the same as the settings used for
testing memory usage. The experiment is performed on ECL dataset. Due to our extremely low space
complexity, we followed the experimental settings used in FiLM [Zhou et al., 2022b] for comparing
the training Speed. To fully utilize the GPU memory, our model can increase the batch size from 8 to
32 under the experimental settings mentioned above. Similarly, FiLM can also increase the batch
size = 32. However, we still have the fastest training speed, and due to the role of RAN mainly being
on the input sequence, our advantage can be clearly seen from Figure 5(d), which is related to the
square root of the sequence length. Through comparison with other methods, we can clearly see the
advantages of WITRAN on time consumption.

J Showcases of Main Results

As shown in Figure 10 to Figure 49, we plot the forecasting results from the test set of all datasets
for comparison. For the long-range forecasting task, we chose two suboptimal models, FiLM and
Pyraformer. As for the ultra-long-range forecasting task, we also chose two suboptimal models,
Pyraformer and TimesNet. Our model WITRAN gives the best performance among different models.
Moreover, WITRAN is significantly better at modeling global and local correlations, as well as
discovering long- and short-term repetitive patterns in the time series than other models.
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Figure 10: Forecasting cases comparison of WITRAN, FiLM and Pyraformer on the 168-168 task of
the ECL dataset.
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Figure 11: Forecasting cases comparison of WITRAN, FiLM and Pyraformer on the 168-336 task of
the ECL dataset.
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Figure 12: Forecasting cases comparison of WITRAN, FiLM and Pyraformer on the 336-336 task of
the ECL dataset.

29



Figure 13: Forecasting cases comparison of WITRAN, FiLM and Pyraformer on the 336-720 task of
the ECL dataset.
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Figure 14: Forecasting cases comparison of WITRAN, FiLM and Pyraformer on the 720-720 task of
the ECL dataset.

31



Figure 15: Forecasting cases comparison of WITRAN, Pyraformer and TimesNet on the 720-1440
task of the ECL dataset.
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Figure 16: Forecasting cases comparison of WITRAN, Pyraformer and TimesNet on the 1440-1440
task of the ECL dataset.
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Figure 17: Forecasting cases comparison of WITRAN, Pyraformer and TimesNet on the 1440-2880
task of the ECL dataset.
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Figure 18: Forecasting cases comparison of WITRAN, FiLM and Pyraformer on the 168-168 task of
the Traffic dataset.
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Figure 19: Forecasting cases comparison of WITRAN, FiLM and Pyraformer on the 168-336 task of
the Traffic dataset.
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Figure 20: Forecasting cases comparison of WITRAN, FiLM and Pyraformer on the 336-336 task of
the Traffic dataset.
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Figure 21: Forecasting cases comparison of WITRAN, FiLM and Pyraformer on the 336-720 task of
the Traffic dataset.
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Figure 22: Forecasting cases comparison of WITRAN, FiLM and Pyraformer on the 720-720 task of
the Traffic dataset.
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Figure 23: Forecasting cases comparison of WITRAN, Pyraformer and TimesNet on the 720-1440
task of the Traffic dataset.

40



Figure 24: Forecasting cases comparison of WITRAN, Pyraformer and TimesNet on the 1440-1440
task of the Traffic dataset.

41



Figure 25: Forecasting cases comparison of WITRAN, Pyraformer and TimesNet on the 1440-2880
task of the Traffic dataset.
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Figure 26: Forecasting cases comparison of WITRAN, FiLM and Pyraformer on the 168-168 task of
the ETTh1 dataset.
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Figure 27: Forecasting cases comparison of WITRAN, FiLM and Pyraformer on the 168-336 task of
the ETTh1 dataset.
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Figure 28: Forecasting cases comparison of WITRAN, FiLM and Pyraformer on the 336-336 task of
the ETTh1 dataset.
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Figure 29: Forecasting cases comparison of WITRAN, FiLM and Pyraformer on the 336-720 task of
the ETTh1 dataset.
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Figure 30: Forecasting cases comparison of WITRAN, FiLM and Pyraformer on the 720-720 task of
the ETTh1 dataset.
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Figure 31: Forecasting cases comparison of WITRAN, Pyraformer and TimesNet on the 720-1440
task of the ETTh1 dataset.
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Figure 32: Forecasting cases comparison of WITRAN, Pyraformer and TimesNet on the 1440-1440
task of the ETTh1 dataset.
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Figure 33: Forecasting cases comparison of WITRAN, Pyraformer and TimesNet on the 1440-2880
task of the ETTh1 dataset.
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Figure 34: Forecasting cases comparison of WITRAN, FiLM and Pyraformer on the 168-168 task of
the ETTh2 dataset.
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Figure 35: Forecasting cases comparison of WITRAN, FiLM and Pyraformer on the 168-336 task of
the ETTh2 dataset.
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Figure 36: Forecasting cases comparison of WITRAN, FiLM and Pyraformer on the 336-336 task of
the ETTh2 dataset.
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Figure 37: Forecasting cases comparison of WITRAN, FiLM and Pyraformer on the 336-720 task of
the ETTh2 dataset.

54



Figure 38: Forecasting cases comparison of WITRAN, FiLM and Pyraformer on the 720-720 task of
the ETTh2 dataset.
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Figure 39: Forecasting cases comparison of WITRAN, Pyraformer and TimesNet on the 720-1440
task of the ETTh2 dataset.
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Figure 40: Forecasting cases comparison of WITRAN, Pyraformer and TimesNet on the 1440-1440
task of the ETTh2 dataset.
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Figure 41: Forecasting cases comparison of WITRAN, Pyraformer and TimesNet on the 1440-2880
task of the ETTh2 dataset.
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Figure 42: Forecasting cases comparison of WITRAN, FiLM and Pyraformer on the 168-168 task of
the Weather dataset.
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Figure 43: Forecasting cases comparison of WITRAN, FiLM and Pyraformer on the 168-336 task of
the Weather dataset.
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Figure 44: Forecasting cases comparison of WITRAN, FiLM and Pyraformer on the 336-336 task of
the Weather dataset.
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Figure 45: Forecasting cases comparison of WITRAN, FiLM and Pyraformer on the 336-720 task of
the Weather dataset.
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Figure 46: Forecasting cases comparison of WITRAN, FiLM and Pyraformer on the 720-720 task of
the Weather dataset.
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Figure 47: Forecasting cases comparison of WITRAN, Pyraformer and TimesNet on the 720-1440
task of the Weather dataset.
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Figure 48: Forecasting cases comparison of WITRAN, Pyraformer and TimesNet on the 1440-1440
task of the Weather dataset.
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Figure 49: Forecasting cases comparison of WITRAN, Pyraformer and TimesNet on the 1440-2880
task of the Weather dataset.
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Algorithm 3 Recurrent Acceleration Network (RAN)

import torch
import torch.nn as nn
import math
import torch.nn.functional as F

class WITRAN_HVGSU_Encoder(torch.nn.Module):
def __init__(self, input_size, hidden_size, num_layers, dropout, water_rows, water_cols, res_mode=’

none’):
super(WITRAN_HVGSU_Encoder, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.dropout = dropout
self.water_rows = water_rows
self.water_cols = water_cols
self.res_mode = res_mode
# parameter of row cell
self.W_first_layer = torch.nn.Parameter(torch.empty(6 * hidden_size, input_size + 2 * hidden_size))
self.W_other_layer = torch.nn.Parameter(torch.empty(num_layers − 1, 6 * hidden_size, 4 *

hidden_size))
self.B = torch.nn.Parameter(torch.empty(num_layers, 6 * hidden_size))
self.reset_parameters()

def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.hidden_size)
for weight in self.parameters():

weight.data.uniform_(−stdv, +stdv)

def linear(self, input, weight, bias, batch_size, slice, Water2sea_slice_num):
a = F.linear(input, weight)
if slice < Water2sea_slice_num:

a[:batch_size * (slice + 1), :] = a[:batch_size * (slice + 1), :] + bias
return a

def forward(self, input, batch_size, input_size, flag):
if flag == 1: # cols > rows

input = input.permute(2, 0, 1, 3)
else:

input = input.permute(1, 0, 2, 3)
Water2sea_slice_num, _, Original_slice_len, _ = input.shape
Water2sea_slice_len = Water2sea_slice_num + Original_slice_len − 1
hidden_slice_row = torch.zeros(Water2sea_slice_num * batch_size, self.hidden_size).to(input.

device)
hidden_slice_col = torch.zeros(Water2sea_slice_num * batch_size, self.hidden_size).to(input.device

)
input_transfer = torch.zeros(Water2sea_slice_num, batch_size, Water2sea_slice_len, input_size).to(

input.device)
for r in range(Water2sea_slice_num):

input_transfer[r, :, r:r+Original_slice_len, :] = input[r, :, :, :]
hidden_row_all_list = []
hidden_col_all_list = []
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Algorithm 3 Recurrent Acceleration Network (RAN)

for layer in range(self.num_layers):
if layer == 0:

a = input_transfer.reshape(Water2sea_slice_num * batch_size, Water2sea_slice_len,
input_size)

W = self.W_first_layer
else:

a = F.dropout(output_all_slice, self.dropout, self.training)
if layer == 1:

layer0_output = a
W = self.W_other_layer[layer−1, :, :]
hidden_slice_row = hidden_slice_row * 0
hidden_slice_col = hidden_slice_col * 0

B = self.B[layer, :]
# start every for all slice
output_all_slice_list = []
for slice in range (Water2sea_slice_len):

# gate generate
gate = self.linear(torch.cat([hidden_slice_row, hidden_slice_col, a[:, slice, :]],

dim = −1), W, B, batch_size, slice, Water2sea_slice_num)
# gate
sigmod_gate, tanh_gate = torch.split(gate, 4 * self.hidden_size, dim = −1)
sigmod_gate = torch.sigmoid(sigmod_gate)
tanh_gate = torch.tanh(tanh_gate)
update_gate_row, output_gate_row, update_gate_col, output_gate_col = sigmod_gate.chunk

(4, dim = −1)
input_gate_row, input_gate_col = tanh_gate.chunk(2, dim = −1)
# gate effect
hidden_slice_row = torch.tanh(

(1−update_gate_row)*hidden_slice_row + update_gate_row*input_gate_row) *
output_gate_row

hidden_slice_col = torch.tanh(
(1−update_gate_col)*hidden_slice_col + update_gate_col*input_gate_col) *

output_gate_col
# output generate
output_slice = torch.cat([hidden_slice_row, hidden_slice_col], dim = −1)
# save output
output_all_slice_list.append(output_slice)
# save row hidden
if slice >= Original_slice_len − 1:

need_save_row_loc = slice − Original_slice_len + 1
hidden_row_all_list.append(

hidden_slice_row[need_save_row_loc*batch_size:(need_save_row_loc+1)*
batch_size, :])

# save col hidden
if slice >= Water2sea_slice_num − 1:

hidden_col_all_list.append(
hidden_slice_col[(Water2sea_slice_num−1)*batch_size:, :])

# hidden transfer
hidden_slice_col = torch.roll(hidden_slice_col, shifts=batch_size, dims = 0)

if self.res_mode == ’layer_res’ and layer >= 1: # layer−res
output_all_slice = torch.stack(output_all_slice_list, dim = 1) + layer0_output

else:
output_all_slice = torch.stack(output_all_slice_list, dim = 1)

hidden_row_all = torch.stack(hidden_row_all_list, dim = 1)
hidden_col_all = torch.stack(hidden_col_all_list, dim = 1)
hidden_row_all = hidden_row_all.reshape(batch_size, self.num_layers, Water2sea_slice_num,

hidden_row_all.shape[−1])
hidden_col_all = hidden_col_all.reshape(batch_size, self.num_layers, Original_slice_len,

hidden_col_all.shape[−1])
if flag == 1:

return output_all_slice, hidden_col_all, hidden_row_all
else:

return output_all_slice, hidden_row_all, hidden_col_all
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