
Diffusion with Forward Models: Solving Stochastic
Inverse Problems Without Direct Supervision

Ayush Tewari1
∗

Tianwei Yin1∗ George Cazenavette1 Semon Rezchikov4

Joshua B. Tenenbaum1,2,3 Frédo Durand1 William T. Freeman1 Vincent Sitzmann1

1MIT CSAIL 2MIT BCS 3MIT CBMM 4Princeton IAS

Contents

1 Proposition

2 Details of the Method

2.1 Inverse Graphics .

2.2 Single-Image Motion Prediction .

2.3 GAN Inversion .

2.4 Sampling .

3 Limitations

1 Proposition

Proposition 1. Suppose that any signal S can be reconstructed from the set of all all possible
observations of S. Under this assumption, if in the limit as the number of known observations per
signal goes to infinity, there are parameters θ such that Ltrgt

θ +Lnovel is minimized, then the conditional
probability distribution over signals discovered by our model p(S | Octxt;ϕctxt) agrees with the true
distribution ptrue(S | Octxt;ϕctxt).

The total observation loss is defined in Equation equation 4 below.

After introducing some notation, we will formalize the assumptions made in the proposition.
Definition 1. We call the collection of all observations that correspond to a signal a total observation
of the signal Ototal. Formally,

Ototal = Ototal(S) = {(ϕ, forward(S, ϕ))}ϕ∈P .

Here, P denotes the set of parameters of the forward model, e.g. P = SE(3) for the inverse graphics
application in the paper.
Definition 2. We define the scattering map as the (measurable) map sending signal S to its total
image Ototal:

Scatter : S 7→ Ototal(S).

For a reference for the technical notion of a measurable map, see any textbook on measure theory
(e.g. [1]); all maps arising in machine-learning models are measurable because they are piecewise
continuous.

∗ Equal Contribution.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Assumption We formalize the assumption of Proposition 1 by requiring that there is a (measurable)
map Scatter−1 from total observations to signals which satisfies, for all signals under consideration,

Scatter−1(Scatter(S)) = S. (1)

In other words, given all possible observations of a signal, we can uniquely reconstruct the signal
(for the class of signals under consideration). Alternatively, the map Scatter is injective. This
assumption is a basic assumption necessary for many algorithms in 3D computer vision, and underlies
the recent success of differentiable rendering for 3D scene reconstruction [2] from large sets of image
observations. Note that there may be total observations Ototal = {(ϕ,Ototal

ϕ)}ϕ∈P which do not arise
as the total observations Ototal(S) of any signal S. Equation 1 makes no assumption on the behavior
of Scatter−1(Ototal) on such ‘inconsistent’ total observations Ototal.

Observations generated by our model are slices of total observations. A basic property of our
model is that the target observations arise from predicted signals, since

Otrgt = forward(S, ϕtrgt).

Thus, our model is limited to modeling the space over observations that are a member of the total
observations set, i.e., (ϕtrgt,Otrgt) ∈ Ototal(S) for some signal S. This is an important property
that is not trivially true for many existing models, e.g., for inverse graphics, many light-field-based
approaches [3–6] do not satisfy this property.

The predicted distribution over signals can be recovered from the distribution over observations.
Since we can reconstruct a signal from its total observation, we have that Scatter−1(Scatter(U)) =
U for any set of signals U . Writing

V = {(ϕtrgt, forward(S, ϕtrgt)) | ϕtrgt ∈ P,S ∈ U} = {Scatter(S) | S ∈ U}.
for the set of total observations of signals S ∈ U , we therefore have that

p(Ototal(S) ∈ V | Octxt;ϕctxt) = p(S ∈ U |Octxt;ϕctxt). (2)

As such, we can recover p(S ∈ U | Octxt;ϕctxt) by computing p(Ototal(S) ∈ V | Octxt;ϕctxt) for all
possible V (where we note that if V consists of total observations that do not arise from signals then
its probability is zero).

Our loss maximizes the likelihood over total observations. We now claim that the loss we
optimize forces our model to find parameters θ such that

p(Ototal(S) ∈ V | Octxt;ϕctxt) = ptrue(Ototal(S) ∈ V | Octxt;ϕctxt) (3)

We first define the total observation loss

Ltotal
θ = EOctxt,Otrgt,ϕctxt,ϕtrgt,t

[
∥Otrgt − forward(denoiseθ(Octxt,Ototal

t ; t, ϕctxt), ϕtrgt)∥2
]

(4)

This is the same as Ltarget
θ of the main text, but with denoiseθ depending on the total observation.

We now have the identity

EOtrgt,ϕtrgt

[
∥Otrgt − forward(denoiseθ(Octxt,Ototal

t ; t, ϕctxt), ϕtrgt)∥2
]

= ∥Ototal
t − Ôtotal

t−1∥2

= CtDKL(q(O
total
t−1 | Ototal

t ,Ototal
0 ,Octxt;ϕtrgt) | pθ(Ototal

t−1 | Ototal
t ,Octxt;ϕctxt).

(5)

where Ct is some positive constant for each t; this follows from Equations 95-99 of [7]. Thus, if the
model has parameters θ such that Eq. 3 holds for this parameter, then this will also hold the global
minimum of the loss, since Eq. 3 holds exactly when the t = 1 term of Eq. 5 is zero.

It is natural to train such a model by minimizing the loss

∥Otrgt − forward(denoiseθ(Octxt,Ototal
t ; t, ϕctxt), ϕtrgt)︸ ︷︷ ︸

=Ôtrgt
t-1

∥2

with randomly-sampled forward-model parameters ϕtrgt. This is what we do in our real training
procedure, except that denoiseθ now only depends on a slice of Ototal

t , namely Otrgt
t , as well as on

ϕtrgt, see Eq. 8 in the main paper. Now, nothing in equation 5 requires Ôtotal
t−1 to depend on all of Ototal

t ;
the equation is still valid even if Ôtotal

t−1 is a function only of a slice of Ototal
t . This is precisely the case

in our training procedure. As such, the addition of the term Lnovel to the loss (see Eq. 9 in the main
paper), when ϕnovel is stochastically sampled, forces the quantity in Equation 5 to be minimized even
though our estimate of the denoised signal only depends on the context observation and the noised
target observation. Thus, the conclusion of this proposition still applies to our training procedure.

Conclusion of proof. We now conclude that

p(S ∈ U | Octxt;ϕctxt) = ptrue(S ∈ U | Octxt;ϕctxt) (6)

by applying (3) and using the fact that (2) holds both for p and for ptrue. Equation 6 is the desired
conclusion.

Remark on 3D consistency. Technically, in the models in our paper, we have that p(S | Octxt;ϕctxt)
is actually dependent on auxiliary parameter ϕtrgt: we make predictions over signals using a diffusion
model coupled with a particular choice of forward-model parameter. As such, to be precise, we
say that our model predicts a family of distributions pϕtrgt(S | Octxt;ϕctxt) depending on ϕtrgt, where
these distributions may differ for different values of ϕtrgt. Correspondingly, the model predicts a
family of distributions pϕtrgt(Ototal | Octxt;ϕtrgt). However, the addition of the Lnovel term forces
learned distribution over signals to agree with the true distribution over signals in the limit of infinite
observations; as such, in that same limit, the learned distribution over signals becomes independent
of ϕtrgt since the true distribution is manifestly independent of it.

Inverting the scatter map is unnecessary. In the above argument, while we assumed the inverse
to the Scatter map, we did not need to compute the map Scatter−1 to argue that the estimated
probability densities p(S | Octxt;ϕctxt) agree with ptrue(S | Octxt;ϕctxt). This is a highly desirable
property, as the map Scatter−1 often cannot be computed efficiently. Thus, our model learns correct
estimates of ptrue(S | Octxt;ϕctxt) without ever explicitly computing Scatter−1.

2 Details of the Method

2.1 Inverse Graphics

Loss Function We incorporate the use of several regularization terms:

Lreg = LLPIPS + Ldepth + Lcond, (7)

LLPIPS = LLPIPS(Ô
trgt
t-1,O

trgt), (8)
Ldepth = LEAS + Ldist, (9)

Lcond = ∥Otrgtcolor
det −Otrgt∥2. (10)

Here, LLPIPS is the LPIPS perceptual loss [8] that encourages rendered images to be perceptually
similar to the ground truth observation. This has been shown to help improve the quality of diffusion
models [9]. We further regularize the depth renderings from the target and novel viewpoints using an
edge-aware smoothness loss [10] and a distortion loss [11] that discourages floating geometry artifacts.
These depth regularization terms encourage natural 3D geometry reconstructions. Finally, we use
Lcond on the rgb component of the deterministic estimate Otrgt

det , denoted as Otrgtcolor
det . Recall that we

use Otrgt
det to condition our denoising network, and that it includes color as well as high-dimensional

features. We use multiplier hyperparameters 0.2 for LLPIPS and 0.02 for Ldepth. Our code will be
publicly released to aid in reproducibility.

Remark on regularization Recall our assumption in Proposition 1 that the map from all observa-
tions to the signal is invertible. In the 3D setting, where we use real-world 2D datasets for training,
we do not have access to all possible signal observations. On such training data, this assumption is not
strictly true, since multiple 3D scenes can explain a subset of observations. However, the addition of
the regularizing terms singles out preferred choices of 3D scenes explaining the known observations.

Heuristically, our depth and smoothness regularizers Ldepth make the map between scenes and the
observations in the training dataset invertible, i.e., they single out a uniquely determined natural 3D
scene that explains the observations in the impoverished 2D dataset.

Training Details Volume rendering is an expensive computation, making training our 3D models
under limited memory budgets challenging. However, unlike image-space diffusion models, where the
entire image is predicted directly, we can render pixels independent of each other using render. In
practice, we render 24×24 patches at random positions in the image in each training iteration. We use
the vision transformer architecture from DiT [12] to implement the image backbone enc in denoise.
We modify the MLP architecture (MLP) of pixelNeRF to support additional time conditioning input in
our models. Our models are trained on 8 A100 GPUs, with a batch size of 24. Training takes around
7 days for RealEstate10k, and around 3 days for Co3D. We use ADAM with a learning rate of 2e−5.
We initially train at a resolution of 64× 64. We then finetune the model at 128× 128. For our Co3D
models, we found it helpful to first pretrain the deterministic conditioning component of the model
for 10k iterations. We use 64 samples each for coarse and fine stages for volume rendering of the
output 3D reconstruction, and only 32 coarse samples for rendering the conditioning input.

We process the Co3D dataset following [5], i.e., we center-crop the images and resize them to a
consistent resolution. We follow Chan et al. [5] to provide the absolute pose of the input image
as an additional input to the encoder. We also use this input for our baselines, except when using
official codebases of SparseFusion [13] and pixelNeRF [14]. During training, we randomly select the
initial context frame, and pick a target frame for denoising within predetermined distance intervals.
We randomly choose one additional frame between initial context frame and the target frame for
computing the novel view reconstruction loss (Lnovel). To support autoregressive sampling, we add
more context frames from the dataset during training, such that the network can reason jointly from
multiple input images. At test time, we iteratively sample new images that are then added as a context
frame for the next frame. Autoregressive sampling allows us to cover the entire 360 regions in Co3D
scenes by diffusing multiple images around the object. We follow the same training strategy for
RealEstate10k, except that we do not feed in absolute poses to our encoder or the baselines. We
augment the RealEstate10k dataset by randomly reversing the order of frames in the videos.

Baselines We use code provided by the authors for SparseFusion and train on our datasets. We
note that the SparseFusion paper only demonstrated results on segmented-out objects without any
background, and used multiple input images at test time, unlike our monocular method. Since
SparseFusion uses a pretrained VAE backbone that only takes inputs at 256 × 256 resolution, we
train it at this resolution. However, the 3D optimization is performed at the same resolution as
our method. We use the official repository (https://github.com/sxyu/pixel-nerf) for the
pixelNeRF baseline. We use 50 scenes for Co3D and 100 scenes for RealEstate for the quantitative
evaluations.

2.2 Single-Image Motion Prediction

We use an edge-aware smoothness regularization loss on the motion field that is equivalent to the
smoothness loss on the depths defined in Sec. 2.1. We use the DiT archicture as our denoising model.
The clean context image and the noisy target image are concatenated along the channel dimension
and used as input to the network. The output is pixel-aligned motion field that is used to warp the
context into the target using SoftSplat [15]. We use ADAM with a learning rate of 2e− 5 and batch
size of 72 to optimize our networks on 2 RTXA6000 GPUs. Our models are trained on the Vimeo90K
dataset [16].

2.3 GAN Inversion

The GAN into which we are inverting is a StyleGAN2-Ada [17] trained on the 256×256 FFHQ
dataset [18]. Our “ground truth” target dataset is generated by taking random samples from this GAN
with a truncation ψ of 0.5, down-sampled to 64×64 pixels. We, again, use the DiT architecture as
our denoising model. The context images are obtained by taking a ground truth sample and masking
out all but a small patch of varying size. The masked context image and noise target image are
concatenated along the channel dimension and used as input to the denoising network, which predicts
the denoised “w” code. This w is then fed through the forward model (generator) and downsampled to

https://github.com/sxyu/pixel-nerf

Patch Samples From GAN Inversion Determ. Patch Samples From GAN Inversion Determ.

Figure 1: More samples from our GAN Inversion model. Our method produces many plausible faces
given only a small patch.

64×64 pixels to obtain our denoised target image. All of our training is done at 64×64 resolution, but
using a GAN trained on high-resolution 256×256 images allows us to obtain high-resolution results
at test time by simply not downsampling the final denoised output. We use the ADAM optimizer
with a learning rate of 2e-5 and a batch size of 4 to train our networks on a single RTXA6000 GPU.
We include more results in Figure 1.

2.4 Sampling

We use 50 DDIM [19] denoising timesteps for all our results across all applications. All our models,
except the inverse graphics model trained on RealEstate10k, are trained without any classifier-free
guidance. For our RealEstate10k model, we use a classifier-free guidance weight of 2. Here, the
model is also trained as an unconditional model, where the conditioning image is zeroed out for 10%
of the iterations.

3 Limitations

While we present the first method that enables diffusion models to learn the conditional distribution
over signals, only using observations through a forward model, our approach has several limitations.
Our sampling times can be very expensive in some cases. The sampling time ranges from just a few
seconds for our GAN application, to around 100 mins for 360-degree autoregressive sampling for
Co3D. This is both due to the expensive nature of the iterative denoising process, as well as the cost of
rendering 3D reconstructions using volume rendering. Our training has large memory requirements,
and can thus not be trained on smaller GPUs. Future work on making these models easier to train
would make them mode applicable. Our models are not trained on very large-scale datasets, and can
thus not generalize to out-of-distribution data. Finally, we only present preliminary investigations
into applications outside inverse graphics; however, we hope that we offer a strong experimental base
that can be beneficial for future exploration.

References
[1] Elias M Stein and Rami Shakarchi. Real analysis. Princeton lectures in analysis. Princeton University

Press, Princeton, NJ, March 2005.

[2] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren
Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In Proc. ECCV, 2020.

[3] Vincent Sitzmann, Semon Rezchikov, Bill Freeman, Josh Tenenbaum, and Fredo Durand. Light field
networks: Neural scene representations with single-evaluation rendering. In NeurIPS, 2021.

[4] Mehdi SM Sajjadi, Henning Meyer, Etienne Pot, Urs Bergmann, Klaus Greff, Noha Radwan, Suhani
Vora, Mario Lučić, Daniel Duckworth, Alexey Dosovitskiy, et al. Scene representation transformer:
Geometry-free novel view synthesis through set-latent scene representations. In CVPR, 2022.

[5] Eric R Chan, Koki Nagano, Matthew A Chan, Alexander W Bergman, Jeong Joon Park, Axel Levy, Miika
Aittala, Shalini De Mello, Tero Karras, and Gordon Wetzstein. Generative novel view synthesis with
3d-aware diffusion models. arXiv preprint arXiv:2304.02602, 2023.

[6] Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov, and Carl Vondrick.
Zero-1-to-3: Zero-shot one image to 3d object, 2023.

[7] Calvin Luo. Understanding diffusion models: A unified perspective. arXiv preprint arXiv:2208.11970,
2022.

[8] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proc. CVPR, 2018.

[9] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023.

[10] Sylvain Paris, Pierre Kornprobst, Jack Tumblin, Frédo Durand, et al. Bilateral filtering: Theory and
applications. Foundations and Trends® in Computer Graphics and Vision, 4(1):1–73, 2009.

[11] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-nerf 360:
Unbounded anti-aliased neural radiance fields. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5470–5479, 2022.

[12] William Peebles and Saining Xie. Scalable diffusion models with transformers. arXiv preprint
arXiv:2212.09748, 2022.

[13] Zhizhuo Zhou and Shubham Tulsiani. Sparsefusion: Distilling view-conditioned diffusion for 3d recon-
struction. Proc. CVPR, 2023.

[14] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. pixelnerf: Neural radiance fields from one or
few images. In Proc. CVPR, 2021.

[15] Simon Niklaus and Feng Liu. Softmax splatting for video frame interpolation. In Proc. CVPR, 2020.

[16] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William T Freeman. Video enhancement with
task-oriented flow. International Journal of Computer Vision, 127:1106–1125, 2019.

[17] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Training
generative adversarial networks with limited data. Advances in neural information processing systems,
33:12104–12114, 2020.

[18] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial
networks. In Proc. CVPR, 2019.

[19] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In ICLR, 2021.

