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Abstract

Backpropagation, the cornerstone of deep learning, is limited to computing gra-
dients for continuous variables. This limitation poses challenges for problems
involving discrete latent variables. To address this issue, we propose a novel ap-
proach to approximate the gradient of parameters involved in generating discrete
latent variables. First, we examine the widely used Straight-Through (ST) heuris-
tic and demonstrate that it works as a first-order approximation of the gradient.
Guided by our findings, we propose ReinMax, which achieves second-order accu-
racy by integrating Heun’s method, a second-order numerical method for solving
ODEs. ReinMax does not require Hessian or other second-order derivatives, thus
having negligible computation overheads. Extensive experimental results on vari-
ous tasks demonstrate the superiority of ReinMax over the state of the art.

1 Introduction

There has been a persistent pursuit to build neural network models with discrete or sparse vari-
ables (Neal, 1992). However, backpropagation (Rumelhari et al., 1986), the cornerstone of deep
learning, is restricted to computing gradients for continuous variables. Correspondingly, many at-
tempts have been made to approximate the gradient of parameters that are used to generate discrete
variables, and most of them are based on the Straight-Through (ST) technique (Bengio et al., 2013).

The development of ST is based on the simple intuition that non-differentiable functions (e.g.,
sampling of discrete latent variables) can be approximated with the identity function in the back-
propagation (Rosenblatt, 1957; Bengio et al., 2013). Due to the lack of theoretical underpinnings,
there is neither guarantee that ST can be viewed as an approximation of the gradient, nor guidance
on hyper-parameter configurations or future algorithm development. Thus, researchers have to de-
velop different ST variants for different applications in a trial-and-error manner, which is laborious
and time-consuming (van den Oord et al., 2017; Liu et al., 2019; Fedus et al., 2021). To address
these limitations, we aim to explore how ST approximates the gradient and how it can be improved.
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Figure 1: Training curves of polynomial programming, i.e., minθ EX [∥X − c∥pp/128], where θ ∈
R128×2,X ∈ {0, 1}128, and Xi

iid∼ Multinomial(softmax(θi)). Details are elaborated in Section 6.
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Algorithm 1: ST.
Input: θ: softmax input, τ : temperature.
Output: D: one-hot samples.

1 π0 ← softmax(θ)
2 D ← sample_one_hot(π0)
3 π1 ← softmaxτ (θ)

/* stop_gradient(·) duplicates
its input and detaches it
from backpropagation. */

4 D ← π1 − stop_gradient(π1) +D
5 return D

Algorithm 2: ReinMax.
Input: θ: softmax input, τ : temperature.
Output: D: one-hot samples.

1 π0 ← softmax(θ)
2 D ← sample_one_hot(π0)

3 π1 ← D+softmaxτ (θ)
2

4 π1 ← softmax(stop_gradient(ln(π1)− θ) + θ)

5 π2 ← 2 · π1 − 1
2 · π0

6 D ← π2 − stop_gradient(π2) +D
7 return D

First, we adopt a novel perspective to examine ST and show that it works as a special case of the
forward Euler method, approximating the gradient with first-order accuracy. Besides confirming that
ST is indeed an approximation of the gradient, our finding provides guidance on how to optimize
hyper-parameters of ST and its variants, i.e., ST prefers to set the temperature τ ≥ 1, and Straight-
Through Gumbel-Softmax (STGS; Jang et al., 2017) prefers to set the temperature τ ≤ 1.

Our analyses not only shed insights on the underlying mechanism of ST but also lead us to develop a
novel gradient estimation method called ReinMax. ReinMax integrates Heun’s Method and achieves
second-order accuracy, i.e., its approximation matches the Taylor expansion of the gradient to the
second order, without requiring the Hessian matrix or other second-order derivatives.

We conduct extensive experiments on polynomial programming Tucker et al. (2017); Grathwohl
et al. (2018); Pervez et al. (2020); Paulus et al. (2021), unsupervised generative modeling (Kingma
& Welling, 2013), structured output prediction (Nangia & Bowman, 2018), and differentiable neural
architecture search (Dong et al., 2020a) to demonstrate that ReinMax brings consistent improve-
ments over the state of the art1.

Our contributions are two-fold:
• We formally establish that ST works as a first-order approximation to the gradient in the general

multinomial case, which provides valuable guidance for future research and applications.
• We propose a novel and sound gradient estimation method ReinMax that achieves second-order

accuracy without requiring the Hessian matrix or other second-order derivatives. ReinMax is
shown to outperform the previous state-of-the-art methods in extensive experiments.

2 Related Work and Preliminary

Discrete Latent Variables and Gradient Computation. The idea of incorporating discrete
latent variables and neural networks dates back to sigmoid belief network and Helmholtz ma-
chines (Williams, 1992; Dayan et al., 1995). To keep things straightforward, we will focus on a
simplified scenario. We refer to the tempered softmax as softmaxτ (θ)i = exp(θi/τ)∑n

j=1 exp(θj/τ)
, where

n is the number of possible outcomes, θ ∈ Rn×1 is the parameter, and τ is the temperature2. For
i ∈ [1, · · · , n], we mark its one-hot representation as Ii ∈ Rn×1, whose element equals 1 if it is
the i-th element or equals 0 otherwise. Let D be a discrete random variable and D ∈ {I1, · · · , In},
we assume the distribution of D is parameterized as: p(D = Ii) = πi = softmax(θ)i, and mark
softmaxτ (θ) as π(τ). Given a differentiable function f : Rn → R, we aim to minimize (note that
temperature scaling is not used in the generation of D):

min
θ
L(θ), where L(θ) = ED∼softmax(θ)[f(D)]. (1)

Here, we mark the gradient of θ as ∇:

∇ :=
∂L(θ)
∂θ

=
∑
i

f(Ii)
dπi

dθ
. (2)

1Implementations are available at https://github.com/microsoft/ReinMax.
2Without specification, the temperature (i.e., τ ) is set to 1.
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In many applications, it is usually too costly to compute ∇, since it requires the computation of
{f(I1), · · · , f(In)} and evaluating f(Ii) is costly for typical deep learning applications. Corre-
spondingly, many efforts have been made to estimate∇ efficiently.

The ∇REINFORCE (Williams, 1992) is unbiased (i.e., E[∇REINFORCE] = ∇) and only requires the
distribution of the discrete variable to be differentiable (i.e., no backpropagation through f ):

∇REINFORCE := f(D)
d log p(D)

dθ
. (3)

Despite the REINFORCE estimator being unbiased, it tends to have prohibitively high variance,
especially for networks that have other sources of randomness (i.e., dropout or other independent
random variables). Recently, attempts have been made to reduce the variance of REINFORCE (Gu
et al., 2016; Tucker et al., 2017; Grathwohl et al., 2018; Shi et al., 2022). Still, it has been found
that the REINFORCE-style estimators fail to work well in many real-world applications. Empirical
comparisons between ReinMax and REINFORCE-style methods are elaborated in Section 6.5.

Efficient Gradient Approximation. In practice, a popular family of estimators is Straight-
Through (ST) estimators. They compute the backpropagation "through" a surrogate that treats the
non-differentiable function (e.g., the sampling of D) as an identity function. The idea of ST origi-
nates from the perceptron algorithm (Rosenblatt, 1957; Mullin & Rosenblatt, 1962), which leverages
a modified chain rule and utilizes the identity function as the proxy of the original derivative of a
binary output function. Bengio et al. (2013) improves this method by using non-linear functions
like sigmoid or softmax, and Jang et al. (2017) further incorporates the Gumbel reparameterization.
Here, we briefly describe Straight-Through (ST) and Straight-Through Gumbel-Softmax (STGS).

In the general multinomial distribution case, as in Algorithm 1, the ST estimator treats the sampling
process of D as an identity function during the backpropagation3:

∇̂ST :=
∂f(D)

∂D
· dπ
dθ

. (4)

In practice, ∇̂ST is usually implemented with the tempered softmax, under the hope that the temper-
ature hyper-parameter τ may be able to reduce the bias introduced by ∇̂ST (Chung et al., 2017).

The STGS estimator is built upon the Gumbel re-parameterization trick (Maddison et al., 2014; Jang
et al., 2017). It is observed that the sampling of D can be reparameterized using Gumbel random
variables at the zero-temperature limit of the tempered softmax (Gumbel, 1954):

D = lim
τ→0

softmaxτ (θ +G) where Gi are i.i.d. and Gi ∼ Gumbel(0, 1).

STGS treats the zero-temperature limit as identity function during the backpropagation:

∇̂STGS :=
∂f(D)

∂D
· d softmaxτ (θ +G)

dθ
. (5)

Both ∇̂ST and ∇̂STGS are clearly biased. However, since the mechanism of ST is unclear, it remains
unanswered what the form of their biases are, how to configure their hyper-parameters for optimal
performance, or even whether E[∇̂ST] or E[∇̂STGS] can be viewed as an approximation of ∇. Thus,
we aim to answer the following questions: How ∇̂ST approximates∇ and how it can be improved?

3 Discrete Variable Gradient Approximation: a Numerical ODE Perspective

In numerical analysis, extensive studies have been conducted to develop numerical methods for
solving ordinary differential equations. In this study, we leverage these methods to approximate ∇
with the gradient of f . To begin, we demonstrate that ST works as a first-order approximation of ∇.
Then, we propose ReinMax, which integrates Heun’s method for a better gradient approximation
and achieves second-order accuracy.

3We use the notation ∇̂ to indicate gradient approximations. Note that the generation of D is not differen-
tiable, and ∇̂ST does not have the term ∂D/∂π.
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3.1 Straight-Through as a First-order Approximation

We start by defining a first-order approximation of ∇ as ∇̂1st-order.

Definition 3.1. One first-order approximation of∇ is ∇̂1st-order :=
∑

i

∑
j πj

∂f(Ij)
∂Ij

(Ii− Ij)
dπi

d θ .

To understand why ∇̂1st-order is a first-order approximation, we rewrite∇ in Equation 2 as4:

∇ =
∑
i

(f(Ii)− E[f(D)])
dπi

dθ
+
∑
i

E[f(D)]
dπi

dθ
=

∑
i

∑
j

πj(f(Ii)− f(Ij))
dπi

dθ
. (6)

Comparing ∇̂1st-order and Equation 6, it is easy to notice that ∇̂1st-order approximates f(Ii) −
f(Ij) as ∂f(Ij)

∂Ij
(Ii − Ij). In numerical analyses, this approximation is known as the forward Euler

method, which has first-order accuracy (we provide a brief introduction to the forward Euler method
in Appendix E). Correspondingly, we know that ∇̂1st-order is a first-order approximation of ∇.

Now, we proceed to show ∇̂ST works as a first-order approximation. Note that our analyses only
apply to ∇̂ST as defined in Equation 4 and may not apply to its other variants.
Theorem 3.1.

E[∇̂ST] = ∇̂1st-order.

The proof of Theorem 3.1 is provided in Appendix A.

It is worth mentioning that Tokui & Sato (2017) discussed this connection for the special case of
D being a Bernoulli variable. However, their study is built upon a Bernoulli variable property
(i.e., ∇ = (f(I2) − f(I1))

dπ1

dθ = (f(I1) − f(I2))
dπ2

dθ ), making their analyses not applicable to
multinomial variables. Alternatively, the analyses in Gregor et al. (2014) and Pervez et al. (2020)
are applicable to multinomial variables but resort to modify ∇̂ST as 1

n·πD
∇̂ST, in order to position it

as a first-order approximation. We suggest that this modification would lead to unwanted instability
and provide more discussions in Section 4.1 and Section 6.6. Here, our study is the first to formally
established ∇̂ST works as a first-order approximation in the general multinomial case.

Besides revealing the mechanism of the Straight-Through estimator, our finding also shows that
the bias of ∇̂ST comes from using the first-order approximation (i.e., the forward Euler method).
Accordingly, we propose to integrate a better approximation for f(Ii)− f(Ij).

3.2 Towards Second-order Accuracy: ReinMax

The literature on numerical methods for differential equations shows that it is possible to achieve
higher-order accuracy without computing higher-order derivatives. Correspondingly, we propose to
integrate a second-order approximation to reduce the bias of the gradient estimator.
Definition 3.2. One second-order approximation of ∇ is

∇̂2nd-order :=
∑
i

∑
j

πj

2
(
∂f(Ij)

∂Ij
+

∂f(Ii)

∂Ii
)(Ii − Ij)

dπi

dθ
.

Comparing ∇̂2nd-order and Equation 6, we can observe that, ∇̂2nd-order approximates f(Ii)−f(Ij)

as 1
2 (

∂f(Ii)
∂Ii

+
∂f(Ij)
∂Ij

)(Ii−Ij). This approximation is known as the Heun’s Method and has second-
order accuracy (we provide a brief introduction to Heun’s method in Appendix E). Correspondingly,
we know that ∇̂2nd-order is a second-order approximation of ∇.

Based on this approximation, we propose the ReinMax operator as (πD refers to π+D
2 , I refers to

the identity matrix, and ⊙ refers to the element-wise product):

∇̂ReinMax := 2 · ∇̂
π+D

2 − 1

2
∇̂ST, where ∇̂

π+D
2 =

∂f(D)

∂D
· ((πD · 1T )⊙ I− πD · πT

D) (7)

4Please note that
∑

i E[f(D)] dπi
d θ

= E[f(D)]
d

∑
i πi

d θ
= E[f(D)] d1

d θ
= 0
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Then, we show that ∇̂ReinMax approximates ∇ to the second order. Or, formally we have:
Theorem 3.2.

E[∇̂ReinMax] = ∇̂2nd-order.

The proof of Theorem 3.2 is provided in Appendix B.

Computation Efficiency of ReinMax. Instead of requiring Hessian or other second-order
derivatives, ∇̂ReinMax achieves second-order accuracy with two first-order derivatives (i.e., ∂f(Ij)

∂Ij

and ∂f(Ii)
∂Ii

). As observed in our empirical efficiency comparisons in Section 6, the computation

overhead of ∇̂ReinMax is negligible. At the same time, similar to ∇̂ST (as in Algorithm 1), our pro-
posed algorithm can be easily integrated with existing automatic differentiation toolkits like PyTorch
(a simple implementation of ReinMax is provided in Algorithm 2), making it easy to be integrated
with existing algorithms.

Applicability of Higher-order ODE solvers. Although it’s possible to apply higher-order
ODE solvers, they require more gradient evaluations, leading to undesirable computational over-
head. To illustrate this point: The approximation used by ReinMax requires n gradient evaluations,
i.e., {∂f(Ii)∂Ii

}. In contrast, the approximation derived by RK4 needs n2+n gradient evaluations, i.e.,

{∂f(Ii)∂Ii
} and {∂f(Iij)∂Iij

}, where Iij =
Ii+Ij

2 . Therefore, while higher-order solvers are applicable,
they may not be suitable in our case.

4 ReinMax and Baseline Subtraction

Equation 6 plays a crucial role in positioning ST as a first-order approximation of the gradient
and deriving our proposed method, ReinMax. This equation is commonly referred to as baseline
subtraction, a common technique for reducing the variance of REINFORCE.

In this section, we first discuss the reason for choosing E[f(D)] as the baseline, and then reveal that
the derivation of ReinMax is independent to baseline subtraction.

4.1 Benefits of Choosing E[f(D)] as the Baseline

The choice of baseline in reinforcement learning has been the subject of numerous discus-
sions (Weaver & Tao, 2001; Rennie et al., 2016; Shi et al., 2022). Similarly, in our study, different
baselines lead to different gradient approximations.

Here, we discuss the rationale for choosing E[f(D)] as the baseline. Considering
∑

i ϕif(Ii) as
the general form of the baseline (ϕi is a distribution over {I1, · · · , In}, i.e.,

∑
i ϕi = 1), we have:

Remark 4.1. When
∑

i ϕif(Ii) is used as the baseline and f(Ii) − f(Ij) is approximated as
∂f(Ij)
∂Ij

(Ii − Ij), we mark the resulting first-order approximation of ∇ as ∇̂1st-order-avg-baseline.

Then, we have E[ϕD

πD
∇̂ST] = ∇̂1st-order-avg-baseline.

The derivations of Remark 4.1 are provided in Appendix C. Intuitively, since πD is the output of
the softmax function, it could have very small values, which makes ϕD

πD
to be unreasonably large

and leads to undesired instability. Therefore, we suggest that E[f(D)] is a better choice of baseline
when it comes to gradient approximation, since its corresponding gradient approximation is free of
the instability ϕD

πD
brought.

It is worth mentioning that, when setting ϕ as 1
n , the result of Remark 4.1 echoes some existing

studies. Specifically, both Gregor et al. (2014) and Pervez et al. (2020) propose to approximate ∇
as E[ 1

n·πD
∇̂ST], which matches the result of Remark 4.1 by setting ϕ = 1

n .

In Section 6, we compared the corresponding second-order approximation when treating E[f(D)]
and 1

n

∑
i f(Ii) as the baseline, respectively. We observed that gradient estimators that use E[f(D)]

as the baseline consistently outperform gradient estimators that use 1
n

∑
i f(Ii) as the baseline,

which verifies our intuition and demonstrates the importance of the baseline selection.
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Figure 2: Training −ELBO on MNIST-VAE (lighter color indicates better performance). STGS,
GST-1.0, and GR-MCK prefer to set the temperature τ ≤ 1. ST and ReinMax prefer to set τ ≥ 1.

4.2 Independence of ReinMax over Baseline Subtraction

To better understand the effectiveness of ReinMax, we further provide an alternative derivation that
does not rely on the selection of the baseline. For simplicity, we only discuss ∂L

∂θk
and mark it as∇k.

Similar to Equation 2, we have:

∇k :=
∂L
∂θk

=
∑
i

f(Ii)
dπi

dθk
= πk

∑
i

πi(f(Ik)− f(Ii)). (8)

It is worth mentioning that the derivation of Equation 8 leverages the derivative of the softmax
function (i.e., for π = softmax(θ), we have ∂πi/∂θk = πk(δik − πi)) and does not involve the
baseline subtraction technology.

Remark 4.2. In Equation 8, we approximate f(Ik)−f(Ii) as 1
2 (

∂f(Ii)
∂Ii

+ ∂f(Ik)
∂Ik

)(Ik−Ii), and mark

the resulting second-order approximation of∇k as ∇̂2nd-order-wo-baseline,k = πk

∑
i πi

1
2 (

∂f(Ii)
∂Ii

+
∂f(Ik)
∂Ik

)(Ik − Ii), Then, we have E[∇̂ReinMax] = ∇̂2nd-order-wo-baseline

The proof of Remark 4.2 is provided in Appendix D.

As in Remark 4.2, applying the Heun’s method on Equation 8 and Equation 6 lead to the same gradi-
ent estimator, which implies another benefit of using E[f(D)] as the baseline: the resulting gradient
estimator does not rely on additional prior (i.e., its derivation can be free of baseline subtraction).

5 Temperature Scaling for Gradient Estimators

Here, we discuss how to apply temperature scaling, a technique widely used in gradient estimators,
to our proposed method, ReinMax. While the typical practice is to set the temperature τ to small
values for STGS, we show that ST and ReinMax need a different strategy.

Temperature Scaling for ∇STGS. As introduced in Section 2, ∇STGS conduct a two-step approx-
imation: (1) it approximates minθ E[f(D)] as minθ E[f(softmaxτ (θ + G)))]; (2) it approximates
∂f(softmaxτ (θ+G))

∂softmaxτ (θ+G)
as f(D)

∂D . Since the bias introduced in both steps can be controlled by τ , ∇STGS

prefers to set τ as a relatively small value.

Temperature Scaling for ∇ST and ∇ReinMax. As in Section 4, it does not involve temperature
scaling to show∇ST and∇ReinMax work as the first-order and the second-order approximation to the
gradient. Correspondingly, temperature scaling technology cannot help to reduce the bias for ∇ST
in the same way it does for∇STGS. As in Figure 2, STGS, GR-MCK, and GST-1.0 work better when
setting the temperature τ ≤ 1. ST and ReinMax work better when setting the temperature τ ≥ 1.

Thus, we incorporate temperature scaling to smooth the gradient approximation (πτ = softmaxτ (θ))
as ∇̂ReinMax = 2 · ∇̂

πτ+D
2 − 1

2∇̂ST. It is worth emphasizing that τ in ∇̂ReinMax is used to stabilize the
gradient approximation (instead of reducing bias) at the cost of accuracy. Therefore, the value of τ
should be larger or equal to 1.
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Table 1: Performance on ListOps.
STGS GR-MCK GST-1.0 ST ReinMax

Valid Accuracy 66.95±3.05 66.53±0.58 66.28±0.52 66.51±0.76 67.65±1.25
Test Accuracy 67.30±2.50 66.53±0.86 66.30±0.62 66.26±0.48 68.07±1.18

Table 2: Training −ELBO on MNIST (N ×M refers to N categorical dim. and M latent dim.).
AVG 8× 4 4× 24 8× 16 16× 12 64× 8 10× 30

STGS 105.20 126.85±0.85 101.32±0.43 99.32±0.33 100.09±0.32 104±0.41 99.63±0.63
GR-MCK 107.06 125.94±0.71 99.96±0.25 99.58±0.31 102.54±0.48 112.34±0.48 102.02±0.18
GST-1.0 104.25 126.35±1.24 101.49±0.44 98.29±0.66 98.12±0.57 102.53±0.57 98.64±0.33

ST 116.72 135.53±0.31 112.03±0.03 112.94±0.32 113.31±0.43 113.90±0.28 112.63±0.34
ReinMax 103.21 124.66±0.88 99.77±0.45 97.70±0.39 98.06±0.53 100.71±0.70 98.37±0.44

6 Experiments

Here, we conduct experiments on polynomial programming, unsupervised generative modeling,
and structured output prediction. In all experiments, we consider four major baselines: Straight-
Through (ST), Straight-Through Gumbel-Softmax (STGS), Gumbel-Rao Monte Carlo (GR-MCK),
and Gapped Straight-Through (GST-1.0). For a more comprehensive comparison, we run a complete
grid search on the training hyper-parameters for all methods. Also, we would reference results from
the literature when their setting is comparable with ours. More details are elaborated in Appendix F.

6.1 Polynomial Programming

Following previous studies (Tucker et al., 2017; Grathwohl et al., 2018; Pervez et al., 2020; Paulus
et al., 2021), we start with a simple problem. Consider L i.i.d. latent binary variables X1, · · · ,XL ∈
{0, 1} and a constant vector c ∈ RL×1, we parameterize the distributions of {X1, · · · ,XL} with L

softmax functions, i.e., Xi
iid∼ Multinomial(softmax(θi)) and θi ∈ R2. Following previous studies,

we set every dimension of c as 0.45, i.e., ∀i, ci = 0.45, and use minθ EX [
∥X−c∥p

p

L ] as the objective.

Training Curve with Various p. We first set the number of latent variables (i.e., L) as 128 and
batch size as 256. The training curve is visualized in Figure 1 for p = 1.5, 2, and 3. In all cases,
ReinMax achieved near-optimal performance and the best convergence speed. Meanwhile, we can
observe that ST and GST-1.0 do not perform well in all three cases. Although the final performance
of STGS and GR-MCK is close to ReinMax, ReinMax has a faster convergence speed.

6.2 ListOps

We conducted unsupervised parsing on ListOps (Nangia & Bowman, 2018) and summarized the
average accuracy and the standard derivation in Table 1. We also visualized the accuracy and loss on
the valid set in Figure 3. Although the ST algorithm performs poorly on polynomial programming, it
achieves a reasonable performance on this task. Also, while all baseline methods perform similarly,
our proposed method stands out and brings consistent improvements. This further demonstrates the
benefits of achieving second-order accuracy and the effectiveness of our proposed method.
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Figure 3: The accuracy (left) and loss (right) on the valid set of ListOps.
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Figure 4: The training −ELBO (left) and the cos similarity between the gradient and its approxima-
tions (right) on MNIST-VAE (with 4 latent dimensions and 8 categorical dimensions).

Table 3: Average time cost (per epoch) / peak memory consumption on quadratic programming (QP)
and MNIST-VAE. QP is configured to have 128 binary latent variables and 512 samples per batch.
MNIST-VAE is configured to have 10 categorical dimensions and 30 latent dimensions.

ReinMax ST STGS GST-1.0 GR-MCK100 GR-MCK300 GR-MCK1000

QP 0.2s / 6.5Mb 0.2s / 5.0Mb 0.2s / 5.5Mb 0.2s / 8.0Mb 0.8s / 0.3Gb 2.2s / 1Gb 6.6s / 3Gb

MNIST-VAE 5.2s / 13Mb 5.2s / 13Mb 5.2s / 13Mb 5.2s / 13Mb 5.2s / 76Mb 5.2s / 0.2Gb 5.4s / 0.6Gb

Table 4: Performance on NATS-Bench. ∗ Baseline results are referenced from Dong et al. (2020a).
CIFAR-10 CIFAR-100 ImageNet-16-120

validation test validation test validation test

GDAS + STGS∗ 89.68±0.72 93.23±0.58 68.35±2.71 68.17±2.50 39.55±0.00 39.40±0.00

GDAS + ReinMax 90.01±0.12 93.44±0.23 69.29±2.34 69.41±2.24 41.47±0.79 42.03±0.41

6.3 MNIST-VAE

We benchmark the performance by training variational auto-encoders (VAE) with categorical latent
variables on MNIST (LeCun et al., 1998). As we aim to compare gradient estimators, we focus
our discussions on training ELBO. We find that training performance largely mirrors test perfor-
mance (Dong et al., 2020b, 2021; Fan et al., 2022) and briefly discussed test ELBO in Appendix F.

Biases of the Approximated Gradient. With 4 latent dimensions and 8 categorical dimensions,
we iterate through the whole latent space (the size of the latent space is only 4096), compute the
gradient as in Equation 2, and measured the cosine similarity between the gradient of latent vari-
ables and various approximations. As visualized in Figure 4, ReinMax achieves consistently more
accurate gradient approximation across the training and, accordingly, faster convergence. Also, we
can observe that, besides faster convergence, the performance of ReinMax is more stable.

Experiment with Larger Latent Spaces. Let us proceed to larger latent spaces. First, we
consider 4 settings with the latent space of 248. Then, following Fan et al. (2022), we also conduct
experiments with 10 latent dimensions and 30 categorical dimensions (the size of the latent space is
1030). As summarized in Table 2, ReinMax achieves the best performance on all configurations.

GST-1.0 Performance on Different Problems. It is worth mentioning that, despite GST-1.0
achieving good performance on most settings of MNIST-VAE, it fails to maintain this performance
on polynomial programming and unsupervised parsing, as discussed before. Upon discussing with
Fan et al. (2022), we suggest that this phenomenon is caused by the characteristic of GST-1.0, which
behaves similarly to ST on problems with a near one-hot optimal distribution. In other words, GST-
1.0 has an implicit prior and prefers distributions that are not one-hot. At the same time, a different
variant of GST (i.e., GST-p) would behave similarly to STGS on problems with a near one-hot
optimal distribution, which achieves a significant performance boost over GST-1.0 on polynomial
programming. However, on MNIST-VAE and ListOps, GST-p achieves an inferior performance.

This observation verifies our intuition that, without understanding the mechanism of ST, different ap-
plications have different preferences on its configurations. Meanwhile, ReinMax achieves consistent
improvements in all settings, which greatly simplifies future algorithms developments.
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Table 5: Training −ELBO on MNIST. ∗ All baseline results are referenced from Fan et al. (2022)
RLOO∗ DisARM-Tree∗ STGS∗ GR-MCK∗ GST-1.0∗ ST∗ ReinMax

Neg. ELBO 104.03±0.23 103.10±0.25 97.32±0.20 110.74±1.23 96.09±0.25 116±0.09 93.44±0.51
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(f) Fashion-MNIST when K=3.

Figure 5: 2×200 VAE training curves on MNIST, Omniglot, and Fashion-MNIST when K=2 or 3.

Table 6: Train −ELBO of 2 × 200 VAE on MNIST, Fashion-MNIST, and Omniglot. ∗ Baseline
results are referenced from Shi et al. (2022). K refers to the number of evaluations.

RELAX∗ ARMS∗ DisARM∗ Double CV∗ RODEO∗ ReinMax

K=3
MNIST 101.99±0.04 100.84±0.14 / 100.94±0.09 100.46±0.13 97.83±0.36
Fashion-MNIST 237.74±0.12 237.05±0.12 / 237.40±0.11 236.88±0.12 234.53±0.42
Omniglot 115.70±0.08 115.32±0.07 / 115.06±0.12 115.01±0.05 107.51±0.42

K=2
MNIST / / 102.75±0.08 102.14±0.06 101.89±0.17 98.17±0.29
Fashion-MNIST / / 237.68±0.13 237.55±0.16 237.44±0.09 234.89±0.21
Omniglot / / 116.50±0.04 116.39±0.10 115.93±0.06 107.79±0.27

6.4 Applying ReinMax to Differentiable Neural Architecture Search

To demonstrate the applicability of ReinMax as a drop-in replacement, we conduct experiments
following the topology search setting in the NATS-Bench benchmark (Dong et al., 2020a), and sum-
marize the results in Table 4. GDAS is an algorithm that employs STGS to estimate the gradient of
neural architecture parameters (Dong & Yang, 2019). We replaced STGS with ReinMax as the gra-
dient estimator (configurations elaborated in Appendix F). ReinMax brings consistent performance
improvements across all three datasets, demonstrating the great potential of ReinMax.

6.5 Comparisons with REINFORCE-style Methods

Here, we conduct experiments to discuss the difference between ReinMax and REINFORCE-style
methods. First, following Fan et al. (2022), we conduct experiments on the setting with a larger
batch size (i.e., 200), longer training (i.e., 5 × 105 steps), 32 latent dimensions, and 64 categorical
dimensions (details are elaborated in Appendix F). As in Table 5, ReinMax outperforms all baselines,
including two REINFORCE-based methods (Dong et al., 2020b, 2021).

We further conduct experiments to compare with the state of the art. Specifically we apply ReinMax
to Bernoulli VAEs on MNIST, Fashion-MNIST (Xiao et al., 2017), and Omniglot(Lake et al., 2015),
adhering closely to the experimental settings of Shi et al. (2022), including pre-processing, model
architecture, batch size, and training epochs. As in Tables 6 and Figure 5, ReinMax consistently out-
performs RODEO across all settings. To better understand the difference between RODEO and Rein-
Max, we conduct more experiments on polynomial programming (as elaborated in Appendix F.6).
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Overall, ReinMax achieves better performance in more challenging scenarios, i.e., smaller batch
size, more latent variables, or more complicated problems. Meanwhile, REINFORCE and RODEO
achieve better performance on simpler problem settings, i.e., larger batch size, fewer latent variables,
or simpler problems. This observation matches our intuition:
• REIFORCE-style algorithms excel as they provide unbiased gradient estimation but may fall short

in complex scenarios, since they only utilize the zero-order information (i.e., a scalar f(D)).

• ReinMax, using more information (i.e., a vector ∂f(D)
∂D ), handles challenging scenarios better.

Meanwhile, as a consequence of its estimation bias, ReinMax leads to slower convergence in
some simple scenarios.

6.6 Discussions

Figure 6: Training −ELBO on MNIST-
VAE when using 1

n

∑
i f(Ii) and

E[f(D)] as baselines respectively.

Choice of Baseline. As introduced in Section 4.1, the
choice of subtraction baseline has a huge impact on the
performance. Here, we demonstrate this empirically.

We use 1
n

∑
i f(Ii) as the baseline and compare the re-

sulting gradient approximation with ReinMax. As visu-
alized in Figure 6, ReinMax, which uses E[f(D)] as
the baseline, significantly outperforms the one that uses
1
n

∑
i f(Ii) as the baseline. We suspect that the gradi-

ent approximation using 1
n

∑
i f(Ii) as the baseline is

very unstable as it contains the 1
n·p(D) term.

Temperature Scaling. On MNIST-VAE (four settings with the 248 latent space), we utilize
heatmaps to visualize the final performance of all five methods under different temperatures, i.e.,
{0.1, 0.3, 0.5, 0.7, 1, 2, 3, 4, 5}. As in Figure 2, these methods have different preferences for the
temperature configuration. Specifically, STGS, GST-1.0, and GR-MCK prefer to set the temperature
τ ≤ 1. Differently, ST and ReinMax prefer to set the temperature τ ≥ 1. These observations match
our analyses in Section 5 that a small τ can help reduce the bias introduced by STGS-style methods.
Also, it verifies that ST and ReinMax work differently from STGS, GST-1.0, and GR-MCK.

Efficiency. As summarized in Table 3, we can observe that, since GR-MCK uses the Monte
Carlo method to reduce the variance, it has larger time and memory consumption, which becomes
less significant with fewer Monte Carlo samples (we use GR-MCKs to indicate GR-MCK with s
Monte Carlo samples). Meanwhile, all remaining methods have roughly the same time and memory
consumption. This shows that the computation overheads of ReinMax are negligible.

7 Conclusion and Future Work

In this study, we seek the underlying principle of the Straight-Through (ST) gradient estimator. We
formally establish that ST works as a first-order approximation of the gradient and propose a novel
method, ReinMax, which incorporates Heun’s Method and achieves second-order accuracy without
requiring second-order derivatives. We conduct extensive experiments on polynomial programming,
unsupervised generative modeling, and structured output prediction. ReinMax brings consistent
improvements over the state-of-the-art methods.

It is worth mentioning that analyses in this study further guided us to empower Mixture-of-Expert
training (Liu et al., 2023). Specifically, for gradient approximation of sparse expert routing, while
ReinMax requires the network to be fully activated, Liu et al. (2023) uses f(0) as the baseline and
only requires the network to be partially activated. In the future, we plan to conduct further analyses
on the truncation error to stabilize and improve the gradient estimation.
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A Theorem 3.1

Let us define the first-order approximation of ∇ as ∇̂1st-order =
∑

i

∑
j πj

∂f(Ij)
∂Ij

(Ii − Ij)
dπi

d θ ,

which approximates f(Ii)− f(Ij) in Equation 6 as ∂f(Ij)
∂Ij

(Ii − Ij).

Theorem 3.1.
E[∇̂ST] = ∇̂1st-order.

Proof. Based on the definition, we have:

∇̂1st-order =
∑
i

∑
j

πj
∂f(Ij)

∂Ij
(Ii − Ij)

dπi

dθ

=
∑
j

πj
∂f(Ij)

∂Ij

∑
i

Ii
dπi

dθ
−

∑
j

πj
∂f(Ij)

∂Ij
Ij

∑
i

dπi

dθ
(9)

Since
∑

i πi = 1, we have
∑

i
dπi

d θ = 0. Also, since π =
∑

i πiIi, we have dπ
d θ =

∑
i Ii

dπi

d θ .
Thus, together with Equation 9, we have:

∇̂1st-order =
∑
j

πj
∂f(Ij)

∂Ij

∑
i

Ii
dπi

dθ

= E[
∂f(D)

∂D

dπ

dθ
] = E[∇̂ST].

B Theorem 3.2

Theorem 3.2.
E[∇̂ReinMax] = ∇̂2nd-order.

Proof. Here, we aim to proof, ∀k ∈ [1, n], we have E[∇̂ReinMax,k] = ∇̂2nd-order,k. As defined in
Equation 8, we have (note that δDIk is the indicator function of the event D = Ik):

∇̂2nd-order,k =
∑
i

∑
j

πj

2
(
∂f(Ij)

∂Ij
+

∂f(Ii)

∂Ii
)(Ii − Ij)

dπi

dθk

=
∑
i

∑
j

πjπi(δik − πk)

2
(
∂f(Ij)

∂Ij
+

∂f(Ii)

∂Ii
)(Ii − Ij)

=
∑
j

πjπk

2
(
∂f(Ij)

∂Ij
+

∂f(Ik)

∂Ik
)(Ik − Ij)

=
πk

2

∂f(Ik)

∂Ik
(Ik −

∑
j

πjIj) +
∑
j

πjπk

2

∂f(Ij)

∂Ij
(Ik − Ij)

=
1

2
ED∼π[δDIk

∂f(D)

∂D
(ID −

∑
j

πjIj)] +
1

2
ED∼π[πk

∂f(D)

∂D
(Ik − ID)]

=
1

2
ED∼π[

∂f(D)

∂D
(πk(Ik − ID) + δDIk(ID −

∑
i

πiIi))] (10)

At the same time, based on the definition of ∇̂ReinMax, we have:

E[∇̂ReinMax,k] = ED∼π[
∂f(D)

∂D
(2 · πk + δDIk

2
(Dk −

∑
i

πi + δDIk

2
Ii)−

πk

2
(Dk −

∑
i

πiIi))]

=
1

2
ED∼π[

∂f(D)

∂D
(πk(Ik − ID) + δDIk(Ik −

∑
i

πiIi))] (11)
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Since δDIk(Ik −
∑

i πiIi) = δDIk(ID −
∑

i πiIi), together with Equation 10 and 11, we have:

E[∇̂ReinMax,k] = ∇̂2nd-order,k

C Remark 4.1

Remark 3.1. When
∑

i ϕif(Ii) is used as the baseline and f(Ii) − f(Ij) is approximated as
∂f(Ij)
∂Ij

(Ii − Ij), we mark the resulting first-order approximation of ∇ as ∇̂1st-order-avg-baseline.
Then, we have:

E[
ϕD

πD
∇̂ST] = ∇̂1st-order-avg-baseline

Proof. Using
∑

i ϕif(Ii) as the baseline, we have:

∇ =
∑
i

(f(Ii)−
∑
j

ϕjf(Ij))
dπi

dθ
=

∑
i

∑
j

ϕj(f(Ii)− f(Ij))
dπi

dθ

Approximating f(Ii)− f(Ij) as ∂f(Ij)
∂Ij

(Ii − Ij), we have:

∇̂1st-order-avg-baseline =
∑
i

∑
j

ϕj
∂f(Ij)

∂Ij
(Ii − Ij)

dπi

dθ

=
∑
j

ϕj

πj
· πj ·

∂f(Ij)

∂Ij

∑
i

Ii
dπi

dθ

= E[
ϕD

πD
∇̂ST]

D Remark 4.2

Remark 3.2. In Equation 8, we approximate f(Ik)−f(Ii) as 1
2 (

∂f(Ii)
∂Ii

+ ∂f(Ik)
∂Ik

)(Ik−Ii), and mark

the resulting second-order approximation of∇k as ∇̂2nd-order-wo-baseline,k = πk

∑
i πi

1
2 (

∂f(Ii)
∂Ii

+
∂f(Ik)
∂Ik

)(Ik − Ii), Then, we have:

E[∇̂ReinMax] = ∇̂2nd-order-wo-baseline

Proof. Here, we aim to proof, ∀k ∈ [1, n], we have E[∇̂ReinMax,k] = ∇̂2nd-order-wo-baseline,k.

∇̂2nd-order-wo-baseline,k = πk

∑
i

πi
1

2
(
∂f(Ii)

∂Ii
+

∂f(Ik)

∂Ik
)(Ik − Ii)

= πk

∑
i

πi
1

2

∂f(Ii)

∂Ii
(Ik − Ii) + πk

∑
i

πi
1

2

∂f(Ik)

∂Ik
(Ik − Ii)

= E[
∂f(D)

∂D

πk(Ik − ID) + δDIk(Ik −
∑

i πiIi)

2
] = E[∇̂ReinMax,k]
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E Forward Euler Method and Heun’s Method

For simplicity, we consider a simple function g(x) : R → R that is three times differentiable on
[t0, t1]. Now, we proceed to a simple introduction to approximate

∫ t1
t0

g′(x)dx with the Forward
Euler Method and the Heun’s Method. For a detailed introduction to numerical ODE methods,
please refer to Ascher & Petzold (1998).

Forward Euler Method. Here, we approximate g(t1) with the first-order Taylor expansion, i.e.,
g(t1) = g(t0) + g′(t0) · (t1 − t0) + O((t1 − t0)

2), then we have
∫ t1
t0

g′(x)dx ≈ g′(t0)(t1 − t0).
Since we used the first-order Taylor expansion, this approximation has first-order accuracy.

Heun’s Method. First, we approximate g(t1) with the second-order Taylor expansion:

g(t1) = g(t0) + g′(t0) · (t1 − t0) +
g′′(t0)

2
· (t1 − t0)

2 +O((t1 − t0)
3). (12)

Then, we show that we can match this approximation by combining the first-order derivatives of two
samples. Taylor expanding g′(t1) to the first-order, we have:

g′(t1) = g′(t0) + g′′(t0) · (t1 − t0) +O((t1 − t0)
2)

Therefore, we have:

g(t0) +
g′(t0) + g′(t1)

2
(t1− t0) = g(t0) + g′(t0) · (t1− t0) +

g′′(t0)

2
· (t1− t0)

2 +O((t1− t0)
3).

It is easy to notice that the right-hand side of the above equation matches the second-order Taylor
expansion of g(t1) as in Equation 12. Therefore, the above approximation (i.e., approximating
g(t1)− g(t0) as g′(t0)+g′(t1)

2 (t1 − t0)) has second-order accuracy.

Connection to f(Ii)− f(Ij) in Equation 6. By setting g(x) = f(x ·Ii+(1−x) ·Ij)), we have
g(1)− g(0) = f(Ii)− f(Ij). Then, it is easy to notice that the forward Euler Method approximates
f(Ii)−f(Ij) as ∂f(Ij)

∂Ij
(Ii−Ij) and has first-order accuracy. Also, the Heun’s Method approximates

f(Ii)− f(Ij) as 1
2 (

∂f(Ii)
∂Ii

+
∂f(Ij)
∂Ij

)(Ii − Ij) and has second-order accuracy.

F Experiment Details

F.1 Baselines

Here, we consider four methods as our major baselines:
• Straight-Through (ST; Bengio et al., 2013) backpropagate through the sampling function as if it

had been the identity function.
• Straight-Through Gumbel-Softmax (STGS; Jang et al., 2017) integrates the Gumbel reparameter-

ization trick to approximate the gradient.
• Gumbel-Rao Monte Carlo (GR-MCK; Paulus et al., 2021) leverages the Monte Carlo method to

reduce the variance introduced by the Gumbel noise in STGS. To obtain the optimal performance
for this baseline, we set the number of Monte Carlo samples to 1000 in most experiments. Except
in our discussions of efficiency, we set the number of Monte Carlo samples to 100, 300, and 1000
for a more comprehensive comparisons.

• Gapped Straight-Through (GST-1.0; Fan et al., 2022) aims to reduce the variance of STGS and
constructs a deterministic term to replace the Monte Carlo samples used in GR-MCK. Here, as
suggested in (Fan et al., 2022), we set the gap (a hyper-parameter) as 1.0.

GST-1.0 Performance. Despite GST-1.0 achieving good performance on most settings of MNIST-
VAE, it fails to maintain this performance on polynomial programming and unsupervised parsing,
as discussed before. At the same time, a different variant of GST (i.e., GST-p) achieves a signifi-
cant performance boost over GST-1.0 on polynomial programming. However, on MNIST-VAE and
ListOps, GST-p achieves an inferior performance. Upon discussing with the author of the GST-1.0,
we suggest that this phenomenon is caused by different characteristics of GST-1.0 and GST-p.

This observation verifies our intuition that, without understanding the mechanism of ST, different ap-
plications have different preferences on its configurations. Meanwhile, ReinMax achieves consistent
improvements in all settings, which greatly simplifies future algorithms developments.
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F.2 Hyper-Parameters

Without specifically, we conduct full grid search for all methods in all experiments, and report the
best performance (averaged with 10 random seeds on MNIST-VAE and 5 random seeds on ListOps).
The hyper-parameter search space is summarized in Table 7. The search results for Table 2 and
Table 1 are summarized in Table 8.

Table 7: Hyper-parameter search space.
Hyperparameters Search Space

Optimizer {Adam(Kingma & Ba, 2015), RAdam(Liu et al., 2020)}
Learning Rate {0.001, 0.0007, 0.0005, 0.0003}
Temperature {0.1, 0.3, 0.5, 0.7, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5}

Table 8: Hyper-parameters Search Result for Results in Table 1 and Table 2.
STGS GR-MCK GST-1.0 ST ReinMax

Optimizer Adam Adam Adam Adam Adam

MNIST-VAE 8× 4 Learning Rate 0.0003 0.0005 0.0005 0.001 0.0005

Temperature 0.5 0.5 0.7 1.3 1.3

Optimizer RAdam RAdam RAdam RAdam RAdam

MNIST-VAE 4× 24 Learning Rate 0.0005 0.0005 0.0005 0.001 0.0005

Temperature 0.3 0.3 0.5 1.5 1.5

Optimizer RAdam RAdam RAdam RAdam RAdam

MNIST-VAE 8× 16 Learning Rate 0.0005 0.0007 0.0007 0.001 0.0007

Temperature 0.5 0.7 0.5 1.5 1.5

Optimizer RAdam Adam RAdam Adam RAdam

MNIST-VAE 16× 12 Learning Rate 0.0007 0.0005 0.0007 0.0005 0.0007

Temperature 0.7 1.0 0.5 1.5 1.5

Optimizer RAdam Adam RAdam Adam RAdam

MNIST-VAE 64× 8 Learning Rate 0.0007 0.0007 0.0007 0.0005 0.0005

Temperature 0.7 2.0 0.7 1.5 1.5

Optimizer RAdam RAdam RAdam RAdam RAdam

MNIST-VAE 10× 30 Learning Rate 0.0005 0.0005 0.0005 0.0007 0.0005

Temperature 0.5 1.0 0.5 1.4 1.3

Optimizer RAdam RAdam RAdam RAdam RAdam

ListOps Learning Rate 0.0005 0.0005 0.001 0.001 0.0007

Temperature 0.1 0.3 0.1 1.4 1.1

Polynomial Programming. As this problem is relatively simple, we set the learning rate to 0.001
and the optimizer to Adam, and only tune the temperature hyper-parameter.

MNIST-VAE. Following the previous study (Dong et al., 2020b, 2021; Fan et al., 2022), we used
2-layer MLP as the encoder and the decoder. We set the hidden state dimension of the first-layer
and the second-layer as 512 and 256 for the encoder, and 256 and 512 for the decoder. For our
experiments on MNIST-VAE with 32 latent dimensions and 64 categorical dimensions, we set the
batch size to 200, training steps to 5 × 105, and activation function to LeakyReLU, in order to be
consistent with the literature. For other experiments, we set the batch size to 100, the activation
function to ReLU, and training steps to 9.6× 104 (i.e., 160 epochs).
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Table 9: Test −ELBO on MNIST. Hyper-parameters are chosen based on Train −ELBO.
AVG 8× 4 4× 24 8× 16 16× 12 64× 8 10× 30

STGS 106.89 128.09±0.79 103.60±0.45 99.32±0.33 102.49±0.32 106.20±0.46 101.61±0.54
GR-MCK 109.03 127.90±0.71 102.76±0.33 102.12±0.29 104.23±0.65 113.54±0.50 103.62±0.13
GST-1.0 106.85 128.20±1.12 103.95±0.49 101.44±0.32 101.28±0.59 105.44±0.62 100.78±0.44

ST 118.85 137.06±0.51 113.41±0.49 114.25±0.29 114.48±0.56 115.43±0.29 118.46±0.18
ReinMax 105.74 126.89±0.79 102.40±0.43 100.63±0.41 100.85±0.50 102.91±0.67 100.75±0.50

Table 10: Test −ELBO on MNIST. Hyper-parameters are chosen based on Test −ELBO.
AVG 8× 4 4× 24 8× 16 16× 12 64× 8 10× 30

STGS 107.15 128.09±0.79 103.25±0.22 101.44±0.32 102.29±0.39 106.20±0.46 101.61±0.54
GR-MCK 108.87 127.86±0.54 102.40±0.37 101.59±0.22 104.22±0.63 113.54±0.50 103.62±0.13
GST-1.0 106.55 128.03±1.02 103.63±0.24 100.67±0.34 101.04±0.39 105.44±0.62 100.51±0.37
ST 118.79 137.05±0.36 113.23±0.43 114.11±0.31 114.48±0.56 115.43±0.29 118.46±0.18
ReinMax 105.60 126.29±0.32 102.40±0.43 100.45±0.26 100.84±0.56 102.91±0.68 100.69±0.48

Table 11: Train −ELBO on MNIST. Hyper-parameters are chosen based on Test −ELBO.
AVG 8× 4 4× 24 8× 16 16× 12 64× 8 10× 30

STGS 105.31 126.85±0.85 101.81±0.14 99.32±0.33 100.22±0.47 104.02±0.41 99.63±0.63
GR-MCK 107.37 126.53±0.55 100.47±0.31 99.75±0.29 103.11±0.58 112.34±0.48 102.02±0.18
GST-1.0 104.60 126.63±1.16 102.11±0.24 98.40±0.34 98.76±0.41 102.53±0.57 99.14±0.30

ST 117.76 136.75±0.22 112.09±0.50 113.06±0.26 113.31±0.43 113.90±0.28 117.46±0.09
ReinMax 103.40 124.92±0.38 99.77±0.45 98.06±0.31 98.51±0.54 100.71±0.70 98.40±0.48

Differentiable Neural Architecture Search. We adopt most of the hyper-parameter setting from
Dong et al. (2020a). Since GDAS employs a temperature schedule (decaying linearly from 10 to
0.1), and temperature scaling works differently in ReinMax and STGS (as discussed in Section 5
and Section 6.6), we removed the temperature scaling (i.e., set the temperature to a constant 1.0)
and increased the weight decay (i.e., from 0.001 to 0.09).

ListOps. We followed the same setting of Fan et al. (2022), i.e., used the same model configuration
as in Choi et al. (2017) and set the maximum sequence length to 100.

F.3 Hardware and Environment Setting

Most experiments (except efficiency comparisons) are conducted on Nvidia P40 GPUs. For effi-
ciency comparisons, we measured the average time cost per batch and peak memory consumption
on quadratic programming and MNIST-VAE on the same system with an idle A6000 GPU. Also,
to better reflect the efficiency of gradient estimators, we skipped all parameter updates in efficiency
comparisons.

F.4 Additional Results on Polynomial Programming

We visualized the training curve for polynomial programming with various batch sizes and latent
dimensions in Figure 8 (for p = 1.5), Figure 9 (for p = 2), and Figure 10 (for p = 3).

F.5 Additional Results on MNIST-VAE

In our discussions in Section 6, we focused on the training ELBO only. Here, we provide a brief
discussion on the test ELBO.

Choosing Hyper-parameter Based on Training Performance. Similar to Table 2, for each
method, we select the hyper-parameter based on its training performance. The Test −ELBO in
this setting is summarized in Table 9. Despite the model being trained without dropout or other
overfitting reduction techniques, ReinMax maintained the best performance in this setting.
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(a) p = 3 and c = [ 0.5
L
, 1.5

L
, · · · , L−0.5

L
]. (b) p = 3 and c = [0.45, · · · , 0.45].

(c) p = 2 and c = [ 0.5
L
, 1.5

L
, · · · , L−0.5

L
]. (d) p = 2 and c = [0.45, · · · , 0.45].

(e) p = 1.5 and c = [ 0.5
L
, 1.5

L
, · · · , L−0.5

L
]. (f) p = 1.5 and c = [0.45, · · · , 0.45].

Figure 7: Training curves of polynomial programming, i.e., minθ EX [
∥X−c∥p

p

L ], where X ∈
{0, 1}L,Xi

iid∼ Multinomial(softmax(θi)),θ = [θ1, · · · , θL]T ,θi ∈ R2, and L is the number of
latent dimensions.

Choosing Hyper-parameter Based on Test Performance. We also conduct experiments by
selecting hyper-parameters directly based on their test performance. In this setting, the test −ELBO
is summarized in Table 10, and the training −ELBO is summarized in Table 11. ReinMax achieves
the best performance in all settings except the test performance of the setting with 10 categorical
dimensions and 30 latent dimensions.

F.6 More Comparisons with RODEO

To better understand the difference between RODEO and ReinMax, we conduct more experiments
on polynomial programming, i.e., minθ EX [

|X−c|pp
L ]. Specifically, we consider polynomial pro-

gramming under two different settings that define c differently:

• In setting A, we have c = [0.45, · · · , 0.45]. This is the setting we used in the submission.

• In setting B, we have c = [ 0.5L , 1.5
L , · · · , L−0.5

L ].

As to the difference between the Setting A and the Setting B, we would like to note:

• In setting A, since ∀i, ci = 0.45 and θi ∼ Uniform(−0.01, 0.01) at initialization,
EXi∼softmax(θi)[

|Xi−ci|pp
L ] would have similar values. Therefore, the optimal control variates

for θi are similar across different i.

• In setting B, we set ci to different values for different i, and thus the optimal control variate for
θi are different across different i. Therefore, Setting A is a simpler setting for applying control
variate to REINFORCE.
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As in Figure 7, ReinMax achieves better performance in more challenging scenarios, i.e., smaller
batch size, more latent variables, or more complicated problems (Setting B or VAEs). Meanwhile,
REINFORCE and RODEO achieve better performance on simpler problem settings, i.e., larger batch
size, fewer latent variables, or simpler problems (Setting A).

Figure 8: Polynomial programming training curve, with different batch sizes and random vari-
able counts (L), i.e., minθ E[

∥X−c∥1.5
1.5

L ], where θ ∈ RL×2,X ∈ {0, 1}L, and Xi
iid∼

Multinomial(softmax(θi)). More details are elaborated in Section 6.
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Figure 9: Quadratic programming training curve, with different batch sizes and random vari-
able counts (L), i.e., minθ E[

∥X−c∥2
2

L ], where θ ∈ RL×2,X ∈ {0, 1}L, and Xi
iid∼

Multinomial(softmax(θi)). More details are elaborated in Section 6.
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Figure 10: Polynomial programming training curve, with different batch sizes and random
variable counts (L), i.e., minθ E[

∥X−c∥3
3

L ], where θ ∈ RL×2,X ∈ {0, 1}L, and Xi
iid∼

Multinomial(softmax(θi)). More details are elaborated in Section 6.
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