
A Algorithm: DP-SGD

Algorithm 2 DP-SGD from Abadi et al. [2]

Require: Training data x1, ..., xN , loss function L(θ) = 1
N

∑
i L(θ, xi). Parameters: learning rate ηt, noise

scale σ, group size B, gradient norm bound C.
Initialize θ0 randomly
for t ∈ [T ] do

Take a random sample Bt with sampling probability B/N
for each i ∈ Bt do

Compute gt(xi)← ∇θL(θt, xi)

ḡt(xi)← gt(xi)/max(1, ||gt(xi)||2
C

)
end for
g̃t ← 1

B

∑
i(ḡt(xi) +N (0, σ2C2I))

θt+1 ← θt − ηtg̃t

end for
Ensure: θT and and compute the overall privacy cost (ε, δ) using a privacy accounting method

B Additional Experimental Results

B.1 How useful is the synthetic data?

Let S1 and S2 denote equally sized disjoint subsets of the private dataset, and D an equally sized set
of synthetic samples generated via diffusion, as described in Section 3.1.

For this experiment, we consider three different training methods.

• Method A: Fine-tune on S1 using DP-MIXSELF.
• Method B: Fine-tune on S1 using DP-MIXDIFF with mixup images sampled from D.
• Method C: Same as Method B, but replace set D with set S2. Note, we assume that S2 is publicly

available, so accessing it during training does not incur a privacy cost.

The intuition behind this experiment is that method C provides an upper bound for both A and B,
since, in the best case, the distribution of the synthetic data would exactly match that of the private
data. The experimental results, presented in Table 10, validate this intuition.

For CIFAR-100, Caltech256, SUN397, and Oxford Pet, method C outperforms method A. Consistent
with this, method B, our proposed DP-MIXDIFF, also provides a performance boost. On the other
hand, for CIFAR-10 and EuroSAT, method C, despite directly using private data for mixup, does not
meaningfully improve performance. Similarly, method B also does not improve performance. For
EuroSAT, method B slightly decreases performance, due to the large domain gap and bigger fid value
between the synthetic and private data.

Table 10: Test Accuracy (%) using different training methods with Vit-B-16 and ConvNext on
various datasets after fine-tuning . We set the ε = 2 and δ = 10−5.

Vit-B-16 ConvNext
Dataset A B C A B C

CIFAR-10 96.9 (.1) 96.9 (.0) 97.0 (.1) 96.2 (.1) 96.1 (.1) 96.2 (.1)
CIFAR-100 81.3 (.3) 82.0 (.2) 82.1 (.1) 76.7 (.3) 78.0 (.1) 78.4 (.1)
EuroSAT 93.7 (.1) 91.4 (.1) 93.9 (.2) 93.8 (.2) 92.3 (.1) 93.9 (.2)

Caltech 256 76.0 (.4) 81.9 (.1) 82.3 (.2) 76.4 (.3) 81.1 (.1) 81.6 (.3)
SUN397 70.8 (.2) 72.4 (.1) 73.8 (.1) 70.1 (.2) 72.3 (.1) 73.6 (.2)

Oxford Pet 65.1 (.3) 68.3 (.1) 68.3 (.1) 64.6 (.2) 66.0 (.1) 68.1 (.1)

B.2 Reproducing De et al.[9] and DP-MIXSELF in JAX

For completeness, we train WRN-16-4 on CIFAR10 using Self-Aug and our proposed DP-MIXSELF

using [9]’s official JAX code (https://github.com/deepmind/jax_privacy). As in [9], we
repeat each experiment 5 times and report median test accuracy in Table 11. The results are consistent
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with those presented in the rest of our paper — DP-MIXSELF outperforms Self-Aug for different
privacy budgets.

Table 11: Performance comparison on JAX.

Method ε = 1 ε = 8

Self-Aug 56.3 (.3) 79.4 (.1)
DP-MIXSELF 57.1 (.4) 80.0 (.2)

B.3 Pure-DP-MIXDIFF

To demonstrate the influence of KBASE in our method, we set KBASE = 0 and call it Pure-DP-MIXDIFF.
In effect Pure-DP-MIXDIFF is simply mixing up the synthetic examples themselves. We test it on
CIFAR-100 and represent it in Table 12. We can see that Pure-DP-MIXDIFF offers much worse
performance than both DP-MIXSELF and DP-MIXDIFF, although it still offers better performance than
Self-Aug due to the beneficial effects of mixup. More generally, we think that Pure-DP-MIXDIFF will
tend to worsen an overfitting problem whenever there is a large domain gap between the original
training data and the diffusion samples. DP-MIXDIFF does not suffer from this problem because it
ensures that (augmented versions) of the original training data samples are seen during training.

Table 12: Test Accuracy (%) of Pure-DP-MIXDIFF (KBASE = 0) on CIFAR-100 with Vit-B-16
model. We set δ = 10−5 and ε = 1. We can observe that Pure-DP-MIXDIFF does not improve
performance, which shows the necessitate of using base augmentations (KBASE > 0).

Method Test accuracy
Selg-Aug 79.3 (.2)

DP-MIXSELF 81.8 (.2)
DP-MIXDIFF 82.0 (.1)

Pure-DP-MIXDIFF 80.9 (.2)

B.4 Running time

We provide the running time for different methods in Table 13. All experimental runs utilized a single
A100 GPU and were based on the same task of finetuning the Vit-B-16 model on the Caltech256
dataset for 10 epochs. Due to additional augmentation steps, the training time of our methods is
longer than prior work.

Table 13: Running time for different methods of the same task(fine-tuning Vit-B-16 on Caltech256
for 10 epochs). We use one A100 GPU for each training method.

Method Self-Aug DP-MIXSELF DP-MIXDIFF

Running time 2h 12min 7h 33min 7h 40 min

B.5 Effect of Mixup on Gradients

We study what happens to gradients and parameter updates during training for our methods versus
Self-Aug. Fig. 2 plots the per-parameter gradient magnitude averaged over samples at each epoch
(prior to clipping and noise adding). The histogram shows the data averaged over all training epochs
and the X% color lines show that data only for the epoch at X% of the total training process. There
are 10 epochs for this experiment – for example, the line for 20% shows the data for epoch 2 (out of
10).

The figure shows more concentrated values for our methods compared to the Self-Aug baseline,
which suggests more stable training and faster convergence. Standard deviations for CIFAR-10 with
Self-Aug, DP-MIXSELF and DP-MIXDIFF are: 2.16 · 10−3, 9.76 · 10−4 and 9.59 · 10−4, respectively.
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For Caltech256 they are: 1.43 · 10−3, 1.07 · 10−3 and 9.32 · 10−4, respectively. This is consistent
with experimental results of test accuracies for each method.
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Figure 2: Per-parameter gradient magnitude before clipping and adding noise on CIFAR-10(a)
and Caltech256(b) with fine-tuning Vit-B-16 model with ε = 1 and δ = 10−5. The different curves
represent different training stages. Values for our proposed DP-MIXSELF and DP-MIXDIFF are more
concentrated suggesting more stable training and faster convergence.

C Additional Experimental Details

Datasets We use the following datasets:

• CIFAR-10 is a widely-utilized dataset in the field of computer vision, serving as a standard for
evaluating image recognition algorithms. Collected by Alex Krizhevsky, Vinod Nair, and Geoffrey
Hinton [21], this dataset is a crucial tool for machine learning research. The dataset consists of
60,000 color images, each sized at 32× 32 pixels, and categorized into 10 different classes like
cats, dogs, airplanes, etc. We use 50,000 data points for training, and 10,000 for the test set.

• CIFAR-100 is a well-regarded dataset in the domain of computer vision, typically used for
benchmarking image classification algorithms. This dataset, also collected by Krizhevsky et al.
[21], is a key resource in machine learning studies. CIFAR-100 comprises 60,000 color images,
each of 32x32 pixel resolution. What distinguishes it from CIFAR-10 is the higher level of
categorization complexity; the images are sorted into 100 distinct classes instead of 10. We use
50,000 data points for training, and 10,000 for the test set.

• EuroSAT [18] is a benchmark dataset for deep learning and image classification tasks. This
dataset is composed of Sentinel-2 satellite images spanning 13 spectral bands and divided into ten
distinct classes. It has 27,000 labeled color images which size is 64× 64. We use 21600 as the
training set and 5400 as a test set.

• Caltech 256 [15]. Caltech is commonly used for image classification tasks and comprises of
30607 RGB images of 257 different object categories. For our experiments, we designated 80%
of these images for training and the remaining 20% for testing.

• SUN397 The Scene UNderstanding (SUN) [42, 43] database contains 108,754 RGB images from
397 classes. For our experiments, we use 80% of these images for training and the remaining 20%
for testing.

• Oxford Pet [28] contains 37 classes of cats and dogs and we use 3680 images for training and the
rest 3669 images for testing.

For all our experiments, we maintained the clip norm at C = 1, with the exception of Mix-ghost
clipping where we used C = 0.05 as required by the original paper [5] and its implementation4. The
noise level was automatically calculated by Opacus based on the batch size, target ε, and δ, as well as
the number of training epochs.

Implementation details of Section 3. In this experiment, we set KBASE = 16 and adjust the
hyperparameters according to the recommendations in the original paper [9]. To facilitate the
implementation in PyTorch and enable microbatch processing, we adapt our code based on two
existing code bases 5.

Implementation details of Section 5.1. In training our models from scratch, we adhere to a KBASE

value of 16 and adjust the other hyperparameters in accordance with the guidelines provided in the

4https://github.com/JialinMao/private_CNN
5https://github.com/facebookresearch/tan and https://github.com/ChrisWaites/pyvacy
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original papers [9, 5]. For our fine-tuning experiments, we maintain the same KBASE value and perform
hyperparameter searches in each case to ensure we utilize the optimal learning rate. Importantly, we
do not incorporate any learning rate schedules, as per the suggestions of other research papers [5, 9]
that indicate such schedules do not yield performance improvements.

Implementation details of Section 5.2 and Appendix B. In order to generate synthetic samples,
we feed the text prompt ’a photo of a <class name>’ to the diffusion model [13]. For each
dataset, the number of synthetic samples we generate is equal to the number of real images in the
dataset.

Source Code. Readers can find further experimental and implementation details in our open-source
code at https://github.com/wenxuan-Bao/DP-Mix.

D Ethical Considerations & Broader Impacts

In this paper, we propose an approach to use multi-sample data augmentation techniques such as
mixup to improve the privacy-utility tradeoff of differentially-private image classification. Since
differential privacy offers strong guarantees, its deployment when training machine learning has
the potential to substantially reduce harm to individuals’ privacy. However, some researchers have
observed that although the guarantee of differential privacy is a worst-case guarantee, the privacy
obtained is not necessarily uniformly spread across all individuals and groups. Further, there is
research suggesting that differential privacy may (in some cases) increase bias and unfairness,
although these findings are disputed by other research.
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