
A Proofs and Derivations

In this section, we provide complete proofs of our theoretical results. More specifically, Section A.1
contains the proof of Theorem 3.1; Section A.2 the proof of Theorem 4.1, and Section A.3 proofs
and details of additional statements that have been made in the main text (i.e., formal description
of the transformation between optimization problems and how we applied this technique in RIDO,
difficulties in deriving closed-form solutions for the optimization problems of interest, formal
statement and proof of Equation (9), sub-optimality examples of non-adaptive methods whose
variance cannot scale with the variance of the optimal DCS, as RIDO, instead, does).

A.1 Proof of Theorem 3.1

Theorem 3.1. Consider a generic DCSm such that mT ≥ 1, then:
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Proof. Given that the different trajectories are independent, we have that:
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where the first step follows from the fact that different trajectories are independent, the sec-
ond one from the variance of the sum of dependent random variable, namely Var [

∑n
i=1Xi] =∑n

i=1 Var[Xi] +
∑
i6=j Cov(Xi, Xj), and the third one by the fact that Var[aX] = a2Var[X] for

some scalar a ∈ R and Cov(aX, bY ) = abCov(X,Y ) for scalars a, b ∈ R.
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and fix t̄ ∈ {0, . . . , T − 1}. By unrolling the summation, we notice that its contribution appears only
in all h such that h > t̄, thus leading to:
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However, given the relationship between n andm, we have that:
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Fix the the index of the outer summation over time by considering t̄ ∈ {0, . . . , T − 2}. By unrolling
the summation, we notice that its contribution appears only in all h such that h > t̄ + 1. For this
reason, Equation (12) can be rewritten as:
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At this point, fix again t̄ ∈ {0, . . . , T−2} as the index of the outer summation, and consider t′ ≥ t̄+1.
By unrolling the summation, we notice that t′ appears only for h > t′. For this reason, we can rewrite
Equation (13) as:
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However, by Equation (10), we obtain that:
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Combining Equation (11) and (15) concludes the proof.

A.2 Proof of Theorem 4.1

To prove Theorem 4.1, we first provide some preliminaries lemmas on the properties of the optimiza-
tion problems that we are considering, togheter with some technical results that will be used in our
proofs. Then, we will move towards the analysis of RIDO.

A.2.1 Preliminaries for the proof of Theorem 4.1

We begin by proving the fact that for any timestep t in which ft is negative, that there exists some
future timestep t′ such that

∑t′
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Lemma A.1 (Variance function property). Consider ft = γ2tVarRt+2
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which is always greater or equal than 0, thus concluding the proof.

We then continue by proving the result of Section 4.1 that justifies the transformation between
optimization problems. However, rather than considering directly the optimization problem we are
interested in (i.e., the one defined with ft), we focus on a generalization that consider arbitrary vectors
that satisfy the same properties as the one of Lemma A.1.
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Lemma A.2 (Optimization of Variance-like functions). Let c = (c1, . . . , ck) with ci ∈ R, such that
c1 < 0,

∑k̄
i=1 ci ≤ 0 for all k̄ < k, and

∑k
i=1 ci ≥ 0. Let Λ ≥ k and consider the following

optimization problem:
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Proof. If x̄ is an optimal solution of (16), for all x = (x1, . . . , xk) that belongs to the feasible region
it holds that:
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At this point, we notice that Λ ≥ kxk for any x that belongs to the feasible region. Furthermore,∑k
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that can be rewritten as:
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However, as we shall show, Equation (18) is always satisfied. Indeed, since
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The properties that xi ≥ xi+1 together with the fact that
∑k̄
i=1 ci ≤ 0 for any k̄ < k allows to iterate

the process, thus concluding the proof.
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As one can see, applying multiple times Lemma A.2, to the problem we are considering, we obtain a
transformed problem that is convex, since the objective function will be composed of summation
of convex functions. We will provide additional details on this point later on. We now continue by
studying the properties of optimization problems whose objective function satisfies the condition
of Lemma A.2. More specifically, the following Lemma allows us to quantify the difference in the
optimal solution when changing the budget constraint.
Lemma A.3 (Budget sensitivity analysis). Let ct ∈ R for each t ∈ {0, . . . , T − 1}. Define
Y = {i ∈ {0, . . . , T − 1} : ci < 0}. Let y ∈ Y , and define q(y) as the smallest integer in
{y + 1, . . . , T − 1} such that

∑q(y)
i=y ci ≥ 0. Suppose that q(y) is well-defined for any y ∈ Y .

Consider the following optimization problems:
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where Λ,Λ′ ∈ R such that Λ ≥ T and Λ′ ≥ T . Define α = Λ′

Λ and consider x∗ an optimal solution
of (19). Then, αx∗ is an optimal solution of (20).

Proof. First of all, it is important to notice that both problems takes finite and positive value. This
directly follow from the equality constraints, together with the fact that q(y) is well-defined for any
y ∈ Y .

We now continue in proving the claim. Proceed by contradiction and suppose that αx∗ is not an
optimal solution of (20), and let x̄ be an optimal solution of (20).

At this point, first of all, we notice that αx∗ is a feasible solution of (20). Indeed, we have that
αx∗t ≥ 0, αx∗t ≥ αx∗t+1, α

∑T−1
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Λ Λ = Λ′, and for all y ∈ Y , αx∗y = αx∗y+1 =
· · · = αx∗q(y).

Therefore, we can write:
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From which it follows that:
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.

However, for similar reasoning w.r.t. to the ones presented above,
(
x̄∗1/α, . . . , x̄

∗
T−1/α

)
is a feasible

solution for (19), from which it follows that x∗ would not be optimal, which is impossible.
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The following result, instead, is a technical Lemma that will be used to analyze the error that RIDO
accumulates in each optimization round.
Lemma A.4 (Technical lemma). Consider a sequence of K ∈ N elements (a1, . . . , aK) such that
ai ∈ R and ai > 0 for all i ∈ [K]. Then:

1∑K
i=1 ai

≤ 1

K2

K∑
i=1

1

ai
. (21)

Proof. We begin with some notation. Consider K ∈ N such that K > 1, we denote with VK the
subset of entry-wise strictly positive vectors of RK , namely:

VK =
{

(a1, . . . , aK) ∈ RK |ai > 0 for all i ∈ [K]
}
.

We now proceed by induction on K.

Consider K = 1 and v = (a1) ∈ V1. In this case, Equation (21) holds for all v ∈ V1 since it reduces
to:
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.
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,
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1∑K+1
i=1 ai

≤ 1

(K + 1)2

K+1∑
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,

for any vector vK+1 = (a1, . . . aK+1) ∈ VK+1. At this point, notice that, for all vK+1 ∈ VK+1 the
vector vK,−i that is obtained from vK+1 by removing the i-th component belongs to VK . At this
point, focus on:
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Thanks to the inductive hypothesis and some algebraic manipulations, we have that:
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=
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At this point, we need to show that:
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(
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1
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)
≥ 1∑K
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,

holds. Set, for the sake of exposition c =
∑K
i=1 ai and d = aK+1. Then, we can rewrite the previous

inequality as:

K2
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(
1

c
+

1
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)
≥ 1
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.
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Rearranging the terms we obtain:

K2

(K + 1)2

(
K2d+ c

cdK2

)
≥ 1

c+ d
.

Which, in turns, lead to:

K2(K2d+ c)(c+ d) ≥ (K + 1)2cdK2.

Multiplying each term and dividing by K2 leads to:

d2K2 − cdK + c2 ≥ 0,

which holds for any value of K > 0, and d, c > 0, thus concluding the proof.

Finally, the following Lemma will be used to take into account the rounding effect that comes from
solving a continuous relaxation rather than an integer optimization problem.
Lemma A.5 (Rounding effect error). Consider a generic T -dimensional vector n = (n0, . . . nT−1)

such that ni ≥ 1 for all i ∈ {0, . . . , T − 1}. Let q =
∑T−1
t=0 nt, and define k = q −∑T−1

t=0 bntc.
Consider the vector n̄ = (n̄0, . . . n̄T−1) such that:

n̄t = bntc+ 1 {t < k} .
Define g(n) =

∑T−1
t=0

ct
nt

for some vector c = (c0, . . . , cT−1) with ct ∈ R. Then, the following
holds: ∑

t:ct≥0

ct
n̄t
≤ 2

∑
t:ct≥0

ct
nt
, (22)

∑
t:ct≤0

ct
n̄t
≤ 1

2

∑
t:ct≤0

ct
nt
. (23)

Proof. We begin by proving Equation (22). First of all, let us notice that:∑
t:ct≥0

ct
nt
≥
∑
t:ct≥0

ct
n̄t + 1

≥
∑
t:ct≥0

ct
2n̄t

, (24)

where in the first inequality we have used ct ≥ 0 together with |nt − n̄t| ≤ 1, while in the second
one we have used ct ≥ 0 together with n̄t ≥ 1. Equation (22) directly follows from Equation (24).

We continue by proving Equation (23). Similar to Equation (24), it is possible to obtain:∑
t:ct≤0

ct
n̄t
≤
∑
t:ct≤0

ct
nt + 1

≤
∑
t:ct≤0

ct
2nt

=
1

2

∑
t:ct≤0

ct
nt
, (25)

where in the first step we have used ct ≤ 0 together with ct ≤ 0, while in the second one we have
used ct ≤ 0 together with nt ≥ 1.

A.2.2 RIDO analysis

We begin with some concentration inequalities. We report for completeness the result (Theorem
10) of Maurer and Pontil [2009] that we use to construct confidence intervals around the standard
deviation.
Lemma A.6 (Standard deviation confidence intervals). Let n ≥ 2 and consider X1, . . . , Xn be i.i.d.
random variables with values in [0, 1]. Define:

σ̂ =

√
1

n(n− 1)

∑
i<j

(Xi −Xj)2.

Then, for δ ∈ (0, 1), with probability at least 1− δ we have that:

|σ̂ − σ| ≤
√

2 ln(1/δ)

n− 1
,

where σ = Eσ̂.
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We then continue with similar results for the estimation of the covariances between random variables.
Lemma A.7 (Covariance confidence intervals). Consider (X1, Y1), . . . (Xn, Yn) i.i.d. random vari-
ables with values in [0, 1] sampled from the joint distribution fX,Y . Moreover, let Xn+1, . . . , Xn+k

be k i.i.d. random variables with values in [0, 1] sampled from distribution fX = EY [fX,Y ]. Define,
for all i ∈ [n], Zi = XiYi, and let ẑ = 1

n

∑n
i=1 Zi, x̂ = 1

n+k

∑n+k
i=1 Xi and ŷ = 1

n

∑n
i=1 Yi. Then,

for δ ∈ (0, 1), we have that:

|Eẑ − Ex̂Eŷ − (ẑ − x̂ŷ)| ≤ 3

√
2 log(6/δ)

n
.

Proof. By Hoeffding Inequality Boucheron et al. [2003], we have that, for some confidence level δ′,
the following holds with probability at least 1− δ′:

|ẑ − Eẑ| ≤
√

2 log(2/δ′)
n

,

and, similarly for x̂ and ŷ. Therefore, by Boole’s inequality, it follows that, with probability at least
1− δ, we have that:

|ẑ − Eẑ| ≤
√

2 log(6/δ)

n
, (26)

and, similarly, for x̂ and ŷ. 7

Therefore, with probability at least 1− δ we have that:

|Eẑ − Ex̂Eŷ − (ẑ − x̂ŷ)| ≤ |Eẑ − ẑ|+ |Ex̂Eŷ − x̂ŷ|

≤
√

2 log(6/δ)

n
+ |Ex̂Eŷ − ŷEx̂+ ŷEx− x̂ŷ|

≤
√

2 log(6/δ)

n
+ |Ex̂(Eŷ − ŷ)|+ |ŷ(Ex̂− x̂)|

≤ 2

√
2 log(6/δ)

n
+ |ŷ|

√
2 log(6/δ)

n

≤ 3

√
2 log(6/δ)

n
.

where we combined Equation (26) together with triangular inequalities.

At this point, before diving into the presentation of the good event under which we will conduct our
analysis, we provide a formal definition of our estimators. Consider a generic dataset of trajectories
of different lenght. Define, for each t ∈ {0, . . . , T − 1}:√

V̂ar (Rt) =

√
1

nt(nt − 1)

∑
1≤i<j≤n

(
R

(i)
t −R(j)

t

)2

, (27)

where R(i)
t denotes the reward gathered at step t in some trajectory whose length is at least t + 1.

Moreover, for t, t′ such that t < t′, define:

Ĉov(Rt, R
′
t) =

1

nt′

nt′∑
i=1

R
(i)
t R

(i)
t′ −

(
1

nt

nt∑
i=1

R
(i)
t

)(
1

nt′

nt′∑
i=1

R
(i)
t′

)
. (28)

Lemma A.8 (Good event). The following conditions holds for all phases of RIDO, with probability
at least 1− δ:

∣∣∣√Var (Rt)−
√
V̂ari (Rt)

∣∣∣ ≤
√√√√2 log

(
6(T+T 2)ΛK

δ

)
nt

= Cσi,t. (29)

7For x̂ the confidence intervals holds with
√

2 log(6/δ)
n+k

, which is possibly smaller since n ≤ n+ k.
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and:

∣∣∣Cov (Rt, Rt′)− Ĉovi (Rt, Rt′)
∣∣∣ ≤ 3

√√√√2 log
(

6(T+T 2)ΛK
δ

)
nt′

= Cci,t,t′ . (30)

Proof. The proof follows by combining Lemma A.7 and Lemma A.6, and by taking the union bound
over the different time steps, optimization rounds, and possible ways in which the budget can be
spent.

At this point, first we show that, with high probability, the objective function of the empirical opti-
mization problem (5) satisfies the same property of the objective function of the original optimization
problem (4), i.e., Lemma A.1. Consequently, it holds that the procedure described in the main text in
Section 4.1 leads to a transformed convex optimization problem that preserves the optimal solution.
For this reason, in the rest of this section, under the good event of Lemma A.8, we assume that RIDO
has actually access to an optimal solution of the continuous relaxation of (5), which can be obtained
in a computational efficient way by transforming the optimization problem.

Lemma A.9 (High probability property of the empirical problem). Let β = 6(T+T 2)ΛK
δ and consider

a generic phase i of Algorithm 1. Define:

f̂t,i = γ2t

(√
V̂ari (Rt) + Cσi,t

)2

+ 2

T−1∑
t′=t+1

γt+t
′ (

Ĉovi(Rt, Rt′) + Cci,t,t′
)
.

Suppose that f̂t,i < 0. Then, with probability at least 1− δ, for any t ∈ {0, . . . , T − 2} there exists
t̄ > t such that

∑t̄
j=t f̂j,i ≥ 0 holds.

Proof. We proceed by contradiction. Suppose that f̂t,i < 0 and
∑t̄
j=t f̂j,i < 0 for all t̄ > t, and,

thus, also for t̄ = T − 1. Due to Lemma A.8, we have that:

T−1∑
j=t

f̂j,i ≥
T−1∑
j=t

γ2jVar (Rj) + 2

T−1∑
t′=j+1

γi+t
′
Cov (Rj , Rt′) = Var

T−1∑
j=t

γjRj

 ,

which, however, is always greater or equal than 0, thus leading to a contradiction and concluding the
proof.

To analyze the performance of Algorithm 1, we will study the following quantity:

Varn̂

[
Ĵn̂(π)

]
− Varn∗

[
Ĵn∗(π)

]
=

T−1∑
t=0

ft∑K−1
i=0 n̂t,i

−
T−1∑
t=0

ft
n∗t
. (31)

More specifically, by upper bounding Equation (31) we implicitly upper-bound also the variance of
the DCS computed by RIDO. At this point, we proceed by analyzing this quantity. The first step,
which is presented in the following Lemma, stands in deriving a first errro decomposition on Equation
(31).

Lemma A.10 (Error decomposition). Let ft = γ2tVar (Rt) + 2
∑T−1
t′=t+1 γ

t+t′Cov (Rt, Rt′). Let

y ∈ Y , and define q(y) as the smallest integer in {y + 1, . . . , T − 1} such that
∑q(y)
i=y fi ≥ 0.

Equation (31) can be upper bounded by:

2

K2

K∑
i=1

T−1∑
t=0

ft

(
1

n̄t,i
− 1

x̃∗t + 1

)
+

2

K2

K∑
i=1

∑
t:ft<0

|ft|
n̄t,i
−
∑
t:ft<0

|ft|∑k
i=1 n̂t,i

+
2

K

T−1∑
t=0

ft
x̃∗t + 1

−
T−1∑
t=0

ft
n∗t
.

(32)
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where n̄i is the optimal solution of the continuous relaxation (5), n̂i is the rounding DCS obtained
from n̄i, and x̃∗ is the optimal solution of the following optimization problem:

min
x

K∑
i=1

ft
xt

s.t.
T−1∑
t=0

xt = b− T

xi ≥ xi+1, ∀i ∈ {1, . . . ,K − 1}
xi ≥ 0, ∀i ∈ {1, . . . ,K}
xy = xy+1 = · · · = xq(y), ∀y ∈ Y.

(33)

Proof. Let us start by analyzing Equation (31):

R =

T−1∑
t=0

ft∑k
i=1 n̂t,i

−
T−1∑
t=0

ft
n∗t

=
∑
t:ft≥0

ft∑k
i=1 n̂t,i

+
∑
t:ft<0

ft∑k
i=1 n̂t,i

−
T−1∑
t=0

ft
n∗t
.

Due to Lemma A.4, we can upper the previous Equation obtaining:

R ≤ 1

K2

K∑
i=1

∑
t:ft≥0

ft
n̂t,i

+
∑
t:ft<0

ft∑k
i=1 n̂t,i

−
T−1∑
t=0

ft
n∗t

≤ 2

K2

K∑
i=1

∑
t:ft≥0

ft
n̄t,i

+
∑
t:ft<0

ft∑k
i=1 n̂t,i

−
T−1∑
t=0

ft
n∗t

=
2

K2

K∑
i=1

T−1∑
t=0

ft
n̄t,i
− 2

K2

K∑
i=1

∑
t:ft<0

ft
n̄t,i

+
∑
t:ft<0

ft∑k
i=1 n̂t,i

−
T−1∑
t=0

ft
n∗t
.

where in the first step, we have used Lemma A.4, in the second one Lemma A.5, and in the third
one we have added and subtracted 2

K2

∑K
i=1

∑
t:ft<0

ft
n̄t,i

. The proof directly follows by adding and
subtracting:

2

K2

K∑
i=1

T−1∑
t=0

ft
x̃∗t + 1

=
2

K

T−1∑
t=0

ft
x̃∗t + 1

.

At this point, the following Lemma provides an upper bound on Equation (32). More specifically, we
focus on the first term, that is:

2

K2

K∑
i=1

T−1∑
t=0

ft

(
1

n̄t,i
− 1

x̃∗t + 1

)
,

which can be interpreted as the error that RIDO cumulates in its rounds.

Lemma A.11 (Cumulative error). Let β = 6(T+T 2)ΛK
δ . Let y ∈ Y , and define q(y) as the smallest

integer in {y + 1, . . . , T − 1} such that
∑q(y)
i=y fi ≥ 0. Let x̃∗ be the solution of the following

optimization problem:

min
x

K∑
i=1

ft
xt

s.t.
T−1∑
t=0

xt = b− T

xi ≥ xi+1, ∀i ∈ {1, . . . ,K − 1}
xi ≥ 0, ∀i ∈ {1, . . . ,K}
xy = xy+1 = · · · = xq(y), ∀y ∈ Y,

(34)
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and let n̄i be the solution of the continuous relaxation of (5) during phase i. Then, with probability
at least 1− δ, the following holds:

2

K2

K∑
i=1

T−1∑
t=0

ft

(
1

n̄t,i
− 1

x̃∗t + 1

)
≤ 192

K
3
2

log

(
6(T + T 2)ΛK

δ

)(T−1∑
t=0

γt

)2

(35)

Proof. The proof is split into 3 parts. In particular, we will analyze:

2

K2

K∑
i=1

T−1∑
t=0

ft

(
1

n̄t,i
− 1

x̃∗t + 1

)
first for a generic phase i > 1, then for i = 1, and finally we will put everything together.

Let us start by considering a generic phase i > 1, and focus on:

T−1∑
t=0

ft

(
1

n̄t,i
− 1

x̃∗t + 1

)
(36)

First of all, focus on
∑T−1
t=0

ft
x̃t+1 . Let us define g̃ = (g̃0, . . . , g̃T−1) as the solution to the following

optimization problem:

min
g

T−1∑
t=0

ft
gt

s.t.
T−1∑
t=0

gt = b

gt ≥ gt+1, ∀t ∈ {0, . . . , T − 2}
gt ≥ 1, ∀t ∈ {0, . . . , T − 1}.

(37)

It is easy to see that: 8

T−1∑
t=0

ft
g̃t
≤
T−1∑
t=0

ft
x̃∗t + 1

.

Plugging this result into Equation (36) leads to:

T−1∑
t=0

ft

(
1

n̄t,i
− 1

x̃∗t + 1

)
≤
T−1∑
t=0

ft

(
1

n̄t,i
− 1

g̃∗t

)
. (38)

Due to Lemma A.8, with probability at least 1− δ, we can further upper bound Equation (38) with:

T−1∑
t=0

γ2t

(√
V̂ari (Rt) + Cσi,t

)2

n̄t,i
+ 2

T−2∑
t=0

T−1∑
t′=t+1

γt+t
′
(
Ĉov(Rt, Rt′) + Cci,t,t′

)
n̄t,i

−
T−1∑
t=0

ft
g̃t
,

However, since g̃ is a feasible solution of the continuous relaxation of (5), and since n̄t,i is the
minimizer of the continuous relaxation of (5) at phase i, we can further bound the previous equation
with:

T−1∑
t=0

γ2t

(√
V̂ari (Rt) + Cσi,t

)2

g̃t
+ 2

T−2∑
t=0

T−1∑
t′=t+1

γt+t
′
(
Ĉov(Rt, Rt′) + Cci,t,t′

)
g̃t

−
T−1∑
t=0

ft
g̃t
.

8This step follows by considering the optimization problem that defines g̃. With a change of variable
gt = xt + 1, we can notice that x̃∗t + 1 is indeed a feasible solution of the same optimization problem.
Furthermore, notice that due to Lemma A.2, we can neglect the constraints on y.
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Moreover, due to Lemma A.8, we can further upper-bound the previous Equation with:

T−1∑
t=0

γ2t
(√

Var [Rt] + 2Cσi,t
)2

g̃t
+ 2

T−2∑
t=0

T−1∑
t′=t+1

γt+t
′ (Cov(Rt, Rt′) + 2Cci,t,t′

)
g̃t

−
T−1∑
t=0

ft
g̃t
,

Let us now focus on:

T−1∑
t=0

γ2t
(√

Var [Rt] + 2Cσi,t
)2

g̃t
+ 2

T−2∑
t=0

T−1∑
t′=t+1

γt+t
′ (Cov(Rt, Rt′) + 2Cci,t,t′

)
g̃t

. (39)

Equation (39) can be decomposed into:
T−1∑
t=0

γ2t4
√
Var [Rt]Cσi,t + 4γ2t

(
Cσi,t
)2

g̃t
+ 4

T−2∑
t=0

T−1∑
t′=t+1

γt+t
′
Cci,t,t′
g̃t

(40)

and,
T−1∑
t=0

ft
g̃t
. (41)

Thus leading to:

R ≤
T−1∑
t=0

γ2t4
√

Var [Rt]Cσi,t + 4γ2t
(
Cσi,t
)2

g̃t
+ 4

T−2∑
t=0

T−1∑
t′=t+1

γt+t
′
Cci,t,t′
g̃t

(42)

We now proceed by bounding each term in Equation (42). Define, for brevity hi,t =
∑i−1
j=0 n̂t,j . Let

us first focus on:

T−1∑
t=0

4γ2t
√

Var [Rt]Cσi,t
g̃t

≤
T−1∑
t=0

4γ2t

g̃t

√√√√2 log
(

2(T+T 2)ΛK
δ

)
hi−1,t

≤ 8

√
log

(
2(T + T 2)ΛK

δ

) T−1∑
t=0

γ2t

g̃t
√
i− 1

≤ 16

√
log

(
2(T + T 2)ΛK

δ

) T−1∑
t=0

γ2t

√
i
.

where the first step follows from the definition of the confidence intervals, together with the fact that
rewards are bounded in [0, 1], the second one by recalling that hi−1,t =

∑i−1
j=1 n̂t,j ≥ i− 1, and the

third one by noticing that
√
i ≤ 2

√
i− 1.

Similary, for what concerns:

T−1∑
t=0

4γ2t
(
Cσi,t
)2

g̃t
≤
T−1∑
t=0

4γ2t

g̃t

2 log
(

2(T+T 2)ΛK
δ

)
hi−1,t

≤ 8 log

(
2(T + T 2)ΛK

δ

) T−1∑
t=0

γ2t

g̃t(i− 1)

≤ 16 log

(
2(T + T 2)ΛK

δ

) T−1∑
t=0

γ2t

√
i

Finally, what is left is:

4

T−2∑
t=0

T−1∑
t′=t+1

γt+t
′
Cci,t,t′
g̃t

≤ 24

√
log

(
6(T + T 2)ΛK

δ

) T−2∑
t=0

T−1∑
t′=t+1

γt+t
′

g̃t
√
i− 1

≤ 48

√
log

(
6(T + T 2)ΛK

δ

) T−2∑
t=0

T−1∑
t′=t+1

γt+t
′

√
i
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For what concerns phase i = 1, instead, the budget is allocated uniformly. Therefore, we have that:

T−1∑
t=0

ft

(
1

b/T
− 1

g̃t

)
≤
T−1∑
t=0

ft
b/T

≤
T−1∑
t=0

ft ≤
(
T−1∑
t=0

γt

)2

At this point, plugging these results into Equation (38) leads to:

2

K2

K∑
i=1

48 log

(
6(T + T 2)ΛK

δ

)(T−1∑
t=0

γt

)2
 1√

i
(43)

To conclude the proof, we notice that
∑n
i=1

1√
i
≤ 2
√
n− 1, thus leading to:

192

K
3
2

log

(
6(T + T 2)ΛK

δ

)(T−1∑
t=0

γt

)2

which is the desired result.

We now continue by upper bounding another term of Equation (31), that is:

2

K

T−1∑
t=0

ft
x̃∗t + 1

−
T−1∑
t=0

ft
n∗t
.

Lemma A.12 (Exploration error). Let y ∈ Y , and define q(y) as the smallest integer in
{y + 1, . . . , T − 1} such that

∑q(y)
i=y fi ≥ 0. Let x̃∗ be the solution of the following optimization

problem:

min
x

K∑
i=1

ft
xt

s.t.
T−1∑
t=0

xt = b− T

xi ≥ xi+1, ∀i ∈ {1, . . . ,K − 1}
xi ≥ 0, ∀i ∈ {1, . . . ,K}
xy = xy+1 = · · · = xq(y), ∀y ∈ Y.

(44)

Then,

2

K

T−1∑
t=0

ft
x̃∗t + 1

−
T−1∑
t=0

ft
n∗t
≤ c+ 1

c− 1

T−1∑
t=0

ft
x∗t
,

where c is such that cT = b, and x∗ is the solution of the following optimization problem:

min
x

K∑
i=1

ft
xt

s.t.
T−1∑
t=0

xt = Λ

xi ≥ xi+1, ∀i ∈ {1, . . . ,K − 1}
xi ≥ 0, ∀i ∈ {1, . . . ,K}
xy = xy+1 = · · · = xq(y), ∀y ∈ Y.

(45)
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Proof. Consider the following optimization problem:

min
x

K∑
i=1

ft
xt

s.t.
T−1∑
t=0

xt = K(b− T )

xi ≥ xi+1, ∀i ∈ {1, . . . ,K − 1}
xi ≥ 0, ∀i ∈ {1, . . . ,K},
xy = xy+1 = · · · = xq(y), ∀y ∈ Y

(46)

and let x̄∗ be its optimal solution. Then, due to Lemma A.3, Kx̃∗ = x̄∗. Therefore, we have that:

2

K

T−1∑
t=0

ft
x̃∗t + 1

−
T−1∑
t=0

ft
n∗t

= 2

T−1∑
t=0

ft
x̄∗t +K

−
T−1∑
t=0

ft
n∗t

Furthermore, due to the fact that x̄∗y = x̄∗y+1 = · · · = x̄∗q(y) for all y ∈ Y , we have that:

2

T−1∑
t=0

ft
x̄∗t +K

−
T−1∑
t=0

ft
n∗t
≤ 2

T−1∑
t=0

ft
x̄∗t
−
T−1∑
t=0

ft
n∗t

At this point, we proceed by lower bounding:

T−1∑
t=0

ft
n∗t
.

More specifically, consider the following optimization problem:

min
x

K∑
i=1

ft
xt

s.t.
T−1∑
t=0

xt = Λ

xi ≥ xi+1, ∀i ∈ {1, . . . ,K − 1}
xi ≥ 0, ∀i ∈ {1, . . . ,K},
xy = xy+1 = · · · = xq(y), ∀y ∈ Y,

(47)

and let x∗ be its optimal solution. Then, we have that:

T−1∑
t=0

ft
n∗t
≥
T−1∑
t=0

ft
x∗t
. (48)

To prove Equation (48), it is sufficient to drop the integer constraints from the (4), then, due to Lemma
A.2, we can impose the equality constraints on the resulting optimization problem, and finally, we
enlarge the feasible region by setting the constraints xi ≥ 0.

At this point, we have:

2

K

T−1∑
t=0

ft
x̃∗t + 1

−
T−1∑
t=0

ft
n∗t
≤ 2

T−1∑
t=0

ft
x̄∗t
−
T−1∑
t=0

ft
x∗t
. (49)

By Lemma A.3, we have that:

x̄∗t =
K(b− T )

Λ
x∗t =

K(b− T )

Kb
x∗t =

b− T
b

x∗t =
cT − T )

cT
x∗t =

c− 1

c
x∗t
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Plugging this result into Equation (49), we obtain:

2

K

T−1∑
t=0

ft
x̃∗t + 1

−
T−1∑
t=0

ft
n∗t
≤
(

2c

c− 1
− 1

) T−1∑
t=0

ft
x∗t

=
c+ 1

c− 1

T−1∑
t=0

ft
x∗t
.

At this point, we are ready to prove Theorem 4.1.
Theorem 4.1. Let n∗ be the optimal solution of problem (4), ft as in Equation (3), b ≥ 2T and
β = 6(T+T 2)ΛK

δ . Consider the DCS n̂ computed by Algorithm 1. Then, with probability at least
1− δ it holds that:

Varn̂

[
Ĵn̂(π)

]
≤ 192

(
b

Λ

) 3
2

log (β)

(
T−1∑
t=0

γt

)2

+ 4Varn∗

[
Ĵn∗(π)

]
+

2b

Λ

∑
t:ft<0

|ft|. (8)

Proof. From Lemma A.10, we can upper bound Equation (31) with:

2

K2

K∑
i=1

T−1∑
t=0

ft

(
1

n̄t,i
− 1

x̃∗t + 1

)
+

2

K2

K∑
i=1

∑
t:ft<0

|ft|
n̄t,i
−
∑
t:ft<0

|ft|∑k
i=1 n̂t,i

+
2

K

T−1∑
t=0

ft
x̃∗t + 1

−
T−1∑
t=0

ft
n∗t
.

(50)

At this point, we notice that:

2

K2

K∑
i=1

∑
t:ft<0

|ft|
n̄t,i
−
∑
t:ft<0

|ft|∑k
i=1 n̂t,i

≤ 2

K

∑
t:ft<0

ft

Plugging this result into Equation (50), we obtain:

2

K2

K∑
i=1

T−1∑
t=0

ft

(
1

n̄t,i
− 1

x̃∗t + 1

)
+

2

K

∑
t:ft<0

|ft|+
2

K

T−1∑
t=0

ft
x̃∗t + 1

−
T−1∑
t=0

ft
n∗t
. (51)

Due to Lemma A.11, this can be further upper-bounded with:

192

(
b

Λ

) 3
2

log

(
6(T + T 2)ΛK

δ

)(T−1∑
t=0

γt

)2

+
2

K

∑
t:ft<0

|ft|+
2

K

T−1∑
t=0

ft
x̃∗t + 1

−
T−1∑
t=0

ft
n∗t
.

Moreover, due to Lemma A.12, we can further bound the previous Equation with:

192

(
b

Λ

) 3
2

log

(
6(T + T 2)ΛK

δ

)(T−1∑
t=0

γt

)2

+
2

K

∑
t:ft<0

|ft|+
c+ 1

c− 1

T−1∑
t=0

ft
x∗t
, (52)

where x∗t is the solution of the following optimization problem:

min
x

K∑
i=1

ft
xt

s.t.
T−1∑
t=0

xt = Λ

xi ≥ xi+1, ∀i ∈ {1, . . . ,K − 1}
xi ≥ 0, ∀i ∈ {1, . . . ,K},
xy = xy+1 = · · · = xq(y), ∀y ∈ Y,

(53)
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Moreover, since:

T−1∑
t=0

ft
n∗t
≥

T1∑
t=0

ft
x∗t
,

Equation 52 reduces to:

192

(
b

Λ

) 3
2

log

(
6(T + T 2)ΛK

δ

)(T−1∑
t=0

γt

)2

+
2

K

∑
t:ft<0

|ft|+
c+ 1

c− 1

T−1∑
t=0

ft
n∗t
,

At this point, the results follows by noticing that:

c+ 1

c− 1
=
b+ T

b− T ≤ 3,

and, by isolating Varn̂

[
Ĵn̂(π)

]
in Equation (31).

A.3 Additional Technical Details

In this section, we provide additional techincal details that have been mentioned in the main text. More
specifically, we provide (i) a formal description of the transformation between optimization problems
and how we applied this technique in RIDO, (ii) difficulties in deriving closed-form solutions for
the optimization problems of interest, (iii) a formal statement and proof of Equation (9), (iv) and
theoretical evidence for the sub-optimality of non-adaptive methods whose variance cannot scale
with the variance of the optimal DCS).

A.3.1 Additional Details on solving the empirical optimization problem

We begin with a more in-depth discussion of the transformation between optimization problems. Let
ct ∈ R for each t ∈ {0, . . . , T − 1}, and define Y = {i ∈ {0, . . . , T − 1} : ci < 0}. Let y ∈ Y , and
define q(y) as the smallest integer in {y + 1, . . . , T − 1} such that

∑q(y)
i=y ci ≥ 0. Due to Lemma A.1

we know that, if (c0, . . . , cT−1) = (f0, . . . , fT−1), then q(y) is always well-defined. At this point,
consider the continuous relaxation of the original optimization problem, namely:

min
n

T−1∑
t=0

1

nt

(
γ2tVar(Rt) + 2

T−1∑
t′=t+1

γt+t
′
Cov(Rt, Rt′)

)

s.t.
T−1∑
t=0

nt = Λ

nt ≥ nt+1, ∀t ∈ {0, . . . , T − 2}
nt ≥ 1, ∀t ∈ {0, . . . , T − 1}.

(54)

Due to Lemma A.1 and Lemma A.2, we know that the following optimization problem:

min
n

T−1∑
t=0

1

nt

(
γ2tVar(Rt) + 2

T−1∑
t′=t+1

γt+t
′
Cov(Rt, Rt′)

)

s.t.
T−1∑
t=0

nt = Λ

nt ≥ nt+1, ∀t ∈ {0, . . . , T − 2}
nt ≥ 1, ∀t ∈ {0, . . . , T − 1}
ny = ny+1 = · · · = nq(y), ∀y ∈ Y,

(55)

has the same optimal solution of (55). At this point, to define the transformed problem it is sufficient
to introduce additional variables yi for any contiguous timesteps where ni = ni+1 = · · · = ni+k
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holds for some integers i, k.9 The optimization variables ni, ni+1, . . . , ni+k+1 will be substituted
with yi. The objective function will be modified accordingly, namely:

fi
ni

+ · · ·+ fi+k
ni+k

,

is replaced with:

fy + · · ·+ fq(y)

yi
. (56)

Consequently, any numerator in the resulting objective function of the transformed problem will
be greater or equal than 0. It is easy to verify that, in this case, the resulting objective function
is convex in the considered optimization domain. Finally, as a last remark, we notice that the
constraint

∑T−1
t=0 nt = Λ needs to be modified. More specifically, if yi substitutes li variables, then

its contribution within the budget constraint summation will be given by yili.

As discussed in Section 4.1, in RIDO we adopt a procedure that is inspired by the aforementioned
theoretical properties of the continuous relaxation of the optimization problem (4). Nevertheless, it
has to be noticed that a modification needs to be taken into account when replacing exact quantities
(i.e., ft) with their estimation and exploration bonuses (which, in the following, we refer to as f̂t for
brevity). More specifically, in general, contrary to what highlighted in Lemma A.1 for the original
objective function, when using f̂t it might happen that q(y) is not well-defined for every possible y.
Indeed, due to the noise that is present in the estimation process, there might exists t̄ such that f̂t̄ < 0

and
∑t′

t=t̄ f̂t < 0 for all t′ > t̄. Whenever this condition is verified, we adopt the following heuristic
to make the computation tractable. If t̄ = 0, then we just set the DCS of the current mini-batch to the
uniform-in-the-horizon one. When t̄ 6= 0, instead, we group together nt̄, . . . , nT−1 and we introduce
a new variable y that will divide, in the objective function, f̂t̄−1. As a final remark, however, we
notice that these modifications do not impact on the theoretical properties of RIDO. Indeed, Lemma
A.9, shows that, with probability at least 1− δ, the aforementioned ill-conditions do not happen. As
a consequence, we can study the high-probability behavior of RIDO assuming access to the solution
of the transformed optimization problem discussed at the beginning of this section (that preserves the
optimal solution of the continuous relaxation of (5)).

A.3.2 On closed-form solutions

We now continue by discussing the closed-form solutions of the optimization problems of interests.
First of all, optimization problems (4) and (5) are integer and non-linear problems. Even neglecting
the non-linear dependency on n, we remark that solving integer and linear problem is NP-hard. At
this point, one might resort to study their continuous relaxations. In the following, we focus on the
continuous relaxation of (4) (indeed, as noticed at the end of the previous section, the continuous
relaxation of (5) requires additional effort). As mentioned above, whenever ft < 0 holds for some
t ∈ {0, . . . , T − 1}, the continuous relaxation of ft is non-convex. Nevertheless, from Lemma
A.2, we know that we can always derive an equivalent convex problem (where the numerator in
the objective function is always greater or equal than 0) that preserves the optimal solution. For

9More precisely, we notice that ni = ni+1 = · · · = ni+k might involve multiple constraints in the
formulation of (55). In this sense, we need to refer to the largest intervals in which these constraints are enforced,
otherwise we might introduce multiple variables that refer to the same original optimization variable.
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this reason, we now report the KKT conditions under the assumption that ft ≥ 0 holds for all
t ∈ {0, . . . , T − 1}.10



− ft
n2
t

+ η − ξt − µt1 {t < T − 1}+ µt−11 {t > 0} = 0 ∀t ∈ {0, . . . , T − 1}
ξt(1− nt) = 0 ∀t ∈ {0, . . . , T − 1}
µt(nt+1 − nt) = 0 ∀t ∈ {0, . . . , T − 2}
η(
∑T−1
t=0 nt − Λ) = 0∑T−1

t=0 nt − Λ = 0

µt ≥ 0 ∀t ∈ {0, . . . , T − 2}
ξt ≥ 0 ∀t ∈ {0, . . . , T − 1}

. (57)

At this point, we notice that a similar problem has been solved in Poiani et al. [2023] for deriving
a closed-form solutions that minimizes confidence intervals around the return estimator. In that
situation, however, the constraints nt ≥ nt+1 were not present since they were automatically satisfied
by any optimal solution (and, consequently, they were removed from the optimization problem of
interest). The main challenge in our setting is, indeed, the presence of µt(nt+1 − nt), together
with the terms related to µt in the first Equation of (57). These additional components within (57)
prevented us to derive a closed-form solutions of the continuous relaxation (4) (and, (5)).

A.3.3 Proof of Equation (9)

We now continue with providing a formal statement and proof of Equation (9).

Corollary A.13. Suppose that ft ≥ 0 for all t ∈ {0, . . . , T − 1}, and
∑T−1
t=0 ft > 0. Let:

Λ ≥ Λ0 :=

55296

b
3
2

δ

(∑T−1
t=0 γt

)2

∑T−1
t=0 ft


3

. (58)

Let β = 6(T+T 2)ΛK
δ . Then, with probability at least 1− δ, it holds that:

Varn̂

[
Ĵn̂(π)

]
≤ 5Varn∗

[
Ĵn∗(π)

]
. (59)

Proof. The proof follows by analyzing, under the condition provided by Equation (58), the upper
bound provided in Theorem 4.1. More specifically, since ft ≥ 0 holds, Theorem 4.1 reduces to:

Varn̂

[
Ĵn̂(π)

]
≤ 192

(
b

Λ

) 3
2

log(β)

(
T−1∑
t=0

γt

)2

+ 4Varn∗

[
Ĵn∗(π)

]
.

To prove Equation (59) it is thus sufficient to show that, under Λ ≥ Λ0, the following holds:

192

(
b

Λ

) 3
2

log(β)

(
T−1∑
t=0

γt

)2

≤ Varn∗

[
Ĵn∗(π)

]
. (60)

We proceed by lower bounding the right hand side of Equation (60).

Varn∗

[
Ĵn∗(π)

]
=

T−1∑
t=0

ft
n∗t
≥
T−1∑
t=0

ft
Λ

=
1

Λ

T−1∑
t=0

ft,

where, the inequality follows from the fact that n∗t ≤ Λ and ft ≥ 0. Given this result, Equation (60)
holds whenever the following holds:

192

(
b

Λ

) 3
2

log(β)

(
T−1∑
t=0

γt

)2

≤ 1

Λ

T−1∑
t=0

ft. (61)

10Under the assumption that ft ≥ 0 holds, the problem is convex, and the KKT conditions provides necessary
and sufficient conditions for optimality.
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Therefore, we now focus on Equation (61), and proceed by upper-bounding its left hand side. More
specifically, we have that:

192

(
b

Λ

) 3
2

log

(
6(T + T 2)ΛK

δ

)(T−1∑
t=0

γt

)2

≤ 192

(
b

Λ

) 3
2

log

(
12Λ4

δ

)(T−1∑
t=0

γt

)2

≤ 768

(
b

Λ

) 3
2

log

(
12Λ

δ

)(T−1∑
t=0

γt

)2

≤ 55296
b

3
2

δ
Λ−

4
3

(
T−1∑
t=0

γt

)2

,

where, in the first step we have used T ≤ Λ and K ≤ Λ, in the second one we have used logarithm

properties and in the last one we have used log x ≤ x
1
6

1
6

. At this point, Equation (61) holds whenever
the following holds:

55296
b

3
2

δ
Λ−

4
3

(
T−1∑
t=0

γt

)2

≤ 1

Λ

T−1∑
t=0

ft,

which can be rewritten as:

Λ
1
3 ≥ 55296

b
3
2

δ

(∑T−1
t=0 γt

)2

∑T−1
t=0 ft

(62)

Equation (62) is clearly satisfied for Λ ≥ Λ0, thus concluding the proof.

A.3.4 Theoretical Sub-optimality of pre-determined schedules

Finally, we conclude by providing theoretical evidence on the reasons why claims similar to the one
of Corollary (A.13) does not hold for pre-determined schedules (i.e, the uniform-in-the-horizon one
and the robust DCS of Poiani et al. [2023]).
Proposition A.14 (Sub-optimality of the Uniform Strategy). Let f0 6= 0 and fi = 0 for all i ≥ 1.
Let T > 2. Let nu =

(
T
Λ , . . . ,

T
Λ

)
. For any value of budget Λ, it does not exist a universal constant

c > 0 for which the following holds:

Varnu

[
Ĵnu(π)

]
≤ cVarn∗

[
Ĵn∗(π)

]
. (63)

Proof. Under the assumption that f0 6= 0 and fi = 0 for all i ≥ 1, we have that:

Varnu

[
Ĵnu(π)

]
=
T

Λ
f0, (64)

and, from Theorem 3.1:

Varn∗

[
Ĵn∗(π)

]
=

1

Λ− (T − 1)
f0. (65)

Furthermore, if T > 2, the variance of the optimal DCS can be upper bounded by:

Varn∗

[
Ĵn∗(π)

]
=

1

Λ− (T − 1)
f0 ≤

2

Λ
f0. (66)

At this point, proceed by contradiction and suppose that Equation (63) holds. Then, it follows that
the following equation should holds as well for some universal constant c:

T

Λ
f0 ≤ c

2

Λ
f0. (67)

Equation (67) reduces to:

c ≥ T

2
, (68)

which contradicts the claim, thus concluding the proof.

31



Proposition A.15 (Sub-optimality of the Robust Strategy of Poiani et al. [2023]). Let f0 6= 0
and fi = 0 for all i ≥ 1. Let ñ be the robust DCS of Poiani et al. [2023]. Let T > 2 and

dt = γt(γt+γt+1−2γT )
1−γ and suppose that Λ ≥ Λ0 :=

∑T−1
t=0

√
dt√

dT−1

. For any value of budget Λ ≥ Λ0, it

does not exist a universal constant c > 0 for which the following holds

Varñ

[
Ĵñ(π)

]
≤ cVarn∗

[
Ĵn∗(π)

]
. (69)

Proof. Under the assumption that f0 6= 0, fi = 0 for all i ≥ 1, and Λ ≥ Λ0 we have that:11

Varñ

[
Ĵñ(π)

]
≥ f0

2Λ

∑T−1
t=0

√
dt√

d0

. (70)

From Theorem 3.1:

Varn∗

[
Ĵn∗(π)

]
=

1

Λ− (T − 1)
f0. (71)

Furthermore, if T > 2, the variance of the optimal DCS can be upper bounded by:

Varn∗

[
Ĵn∗(π)

]
=

1

Λ− (T − 1)
f0 ≤

2

Λ
f0. (72)

At this point, proceed by contradiction and suppose that Equation (69) holds. Then, it follows that
the following equation should hold as well for some universal constant c:

f0

Λ

∑T−1
t=0

√
dt√

d0

≤ c 2

Λ
f0. (73)

Equation (73) can be rewritten as:

c ≥ 1

2

∑T−1
t=0

√
dt√

d0

. (74)

However, if Equation (74) holds, then, also the following holds:

c ≥ 1

4

T−1∑
t=0

√
γt (γt + γt+1 − γ2T ), (75)

which, however, contradicts the claim 12, thus concluding the proof.

Proposition A.14 and A.15 shows that the variance of both schedules cannot attain the minimum
variance up to multiplicative constant factors as RIDO, instead, does (notice, indeed, that the
assumptions on ft fits the ones of Corollary A.13). These results complements, in this sense, what
has been presented in the main text, and highlights the theoretical benefits of adaptive DCSs.

B Experiment Details and Additional Results

In this section, we provide further details on our experimental settings and additional results. Sec-
tion B.1 contains descriptions on the environments, Section B.2 contains details regarding hyper-
parameters, and Section B.3 contains additional results.

Our results have been produced using 100 Intel(R) Xeon(R) Gold 6238R CPU @ 2.20GHz cpus and
256GB of RAM. The total time taken to have all the results is around 2 weeks of computation.

B.1 Environment Details

In this section, we provide additional details on the environments that we used in our experiments.
11Notice that the requirement Λ ≥ Λ0 provides a simple closed-form expression for the robust DCS of Poiani

et al. [2023]. The reader can refer to Theorem 3.3 and Appendix B of Poiani et al. [2023].
12Indeed, it is sufficient to take T → +∞, and γ → 1, to show that Equation (75) tends to +∞.
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Ablation Domains In Setion B.3, the reader can find results and ablations that involve the scenarios
described as examples in Section 1, namely Examples 1 and 2. We now provide a precise description
of these domains. We start with Example 1, where the reward is gathered only at the end of the
estimation horizon T . The state space is described by a 1-dimensional vector that contains only the
interaction timestep t; the action space is a discrete set {0, 1}. The agent receives reward 0 in the first
9 timesteps. In the last step, instead, it receives r ∼ N (3, 10) for action 0, and r ∼ N (2, 10) for
action 1. Concerning Example 2, instead, the setup is identical to the one of Example 1, with the only
different that the non-zero reward is receives in the first interaction step. The policy that we evaluate
is the uniform random.

Continuous Navigation Here, we describe in more details the 2D continuous navigation environ-
ment that we used in our experiments. The state space S is 2-dimensional vector s = (s0, s1) ∈ R2

such that si ∈ [0, 92] for all i. Similarly, the action space A is a 2-dimensional vector a = (a0, a1)
such that ai ∈ [−1, 1] for all i. When the agent takes action a in state s, it transitions to a new state
s′ such that:

s′0 = max {0,min {s0 + q0, 92}} , s′1 = max {0,min {s1 + q1, 92}} ,
where q0 ∼ N (a0, 0.1), q1 ∼ N (a1, 0.1), and the max-min operations simply guarantees that the
resulting state lies within the desired state space S. The agent receives rewards egual to 0 at every
time step, except when the resulting state s′ falls within a goal region. More specifically, the goal is
defined as a 2-dimensional vector g = (91, 91). Whenever ||s′ − g||2 ≤ 1 the reward received by
the agent is sampled from the following Gaussian distribution: N (1, 1). The agent starts in a random
position that is sampled from a uniform distribution in the area [0, 5]× [0, 5]. The agent policy that
we evaluate in our experiments is an hand-coded expert policy that minimizes the distance between
the agent’s position and the center of the goal area. More specifically, given the agent position s, a is
computed in the following way.

a0 = max {−1,min {g0 − s0, 1}} , a1 = max {−1,min {g1 − s1, 1}} ,
where the max-min operation guarantees that a belongs to A.

LQG Concerning the LQG, we consider the following 1-dimensional case (i.e., the dimension of
the state and action spaces is 1). The initial state is drawn from a uniform distribution in [−80,+80].
Upon taking action a ∈ A, the agent transitions to a new state s′ = s + (a + ξ) + η, where
η ∼ N (0, 0.1) models the noise in the system, and ξ ∼ N (0, 0.1) denotes the controller’s noise.
The reward for taking action a in state s is computed as s2 + (a+ ξ)2. The policy that we evaluate is
the optimal one and it is computed by solving the Riccati equations.

MuJoCo suite In the main text, we presented results on the Ant environment of the MuJoCo
suite. In the appendix, we present additional experiments on the HalfCheetah and Swimmer domains
[Todorov et al., 2012]. In all cases, we adopted trained deep RL agents made publicly available by
Raffin [2020] (MIT License).

B.2 Hyper-parameters

Table 1 reports the hyper-parameters that we used in our experiments. To select the robustness level
β we tried different values in [1, 3], while for the batch-size we tried different values in [2T, 10T ].
We then report the results using the best hyper-parameters configuration.

B.3 Additional Results

B.3.1 Ablations

In this section, we present ablations on RIDO on the two environments (described in Section B.1) that
models Examples 1 and 2. More specifically, we conduct the following two ablations to understand
the behavior of RIDO according to changes in its hyper-parameters, i.e., the robustness level β and
the mini-batch size. To properly assess the effect of these designer’s choices, we report and discuss
both the average variance and the resulting DCSs. We test our method using γ = 1, but similar results
can be obtained varying the discount factor.
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Table 1: Hyper-Parameters

Environment β Mini-batch size

Pendulum 1.01 500
LQG 2.0 400
2D Continuous Navigation 1.0 1000
Ant 1.5 3000
HalfCheetah 2 3000
Swimmer 1.0 1000
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Figure 3: Ablations on different values of β on Examples 1 (top) and 2 (bottom). Empirical variance
(mean and 95% confidence intervals over 100 runs) (left). DCS visualiaztion (mean and 95%
confidence intervals over 100 runs) using Λ = 10000 (right).

Ablations on β We begin by performing an ablation on the robustness parameter β.
More specifically, we analyze the behavior of RIDO for the following values of β:
{1, 1.1, 5.0, 10.0, 20.0, 100.0, 1000.0} (the value of the mini-batch size here is fixed to b = 100).
Figure 3 reports the results. Let us first focus on Example 1 (i.e., the top row). In this case, the reward
is gathered at the end of the estimation horizon. As we can see, increasing the value of β, leads to a
larger amount of data spent in the first interaction steps (i.e., top-right in Figure 3). Indeed, when
higher values of β are used, the cumulative sum of exploration bonuses in the early steps is larger
w.r.t. the late ones. For this reason, RIDO spends a larger portion of its budget to decrease these
exploration bonuses. As a consequence, given that the reward process of the underlying environment,
this results in a higher empirical variance (i.e., top-left in Figure 3). Furthermore, given that the
reward is 0 everywhere except at t = T − 1, even using the smallest value of β (i.e., β = 1) allows
the algorithm to quickly adapt its DCS toward the most relevant timestep (i.e., t = T − 1). Similar
comments hold for Example 2 as well (i.e., bottom row in Figure 3). Finally, we notice that the
behavior changes almost unsgnificantly for values of β larger than 5.0.
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Figure 4: Ablations on different mini-batch sizes on Examples 1 (top) and 2 (bottom). Empirical
variance (mean and 95% confidence intervals over 100 runs) (left). DCS visualiaztion (mean and
95% confidence intervals over 100 runs) using Λ = 1000 (right).

Ablations on mini-batch size b We now continue by presenting an ablation on the batch
size. More specifically, we analyze the behavior of RIDO for the following values of b:
{50, 100, 200, 300, 400, 500} (the value of β here is fixed to 5.0). Figure 4 reports the results.
First of all, as we can notice, in both Examples 1 and 2 the mini-batch size impacts the performance
in a less significant way w.r.t. to the value of β (compare the left column of Figure 4 and 3). Secondly,
let us focus on the the top-row (i.e., Example 1, where the reward is gathered at the end of the
episode). For the smallest value of Λ of Figure 4 (i.e., Λ = 1000, that is the only for which there is
some difference in performance), we notice that the best configuration is not b = 50 (i.e., the smallest
batch-size among the presented ones). This is confirmed also by its corresponding DCS, which is
not the one that allocates the highest number of data at T − 1. We conjecture that the reason behind
this phenonema are numerical instabilities that might arise while solving the empirical problem with
the use of convex solvers.13 Concerning Example 2 (where the reward is gathered only at t = 0),
we notice that smaller values of b performs better (this is confirmed by the corresponding DCS, that
allocates more data to the first interaction step). In this case, the aformentioned problem is not present.
We conjecture that the reason is that, even in the case of numerical instabilities, errors that arise
from converting the continuous DCS to its integer version provably minimizes the variance, since the
remaining budget is allocated uniformly starting from t = 0 (i.e., the most relevant timestep from

13We notice that even small imprecisions can result in DCSs that differ by 1 when converting the continuous
relaxation to its integer version. For smaller values of b, this behavior might happen multiple times w.r.t. larger
values of b.
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Figure 5: Empirical variance (mean and 95% confidence intervals over 100 runs) on the considered
domains and baselines using γ = 1.

the point of view of the estimation quality). Finally, we notice that, whatever value of b we use, the
behavior of RIDO is stable under reasonable variations of the mini-batch size.

B.3.2 Experiments with γ = 1

In this section, we present results under the experimental setting of Figure 2 but using γ = 1. Figure 5
reports the comparison between RIDO and the uniform-in-the-horizon strategy. Notice that these
experiments highlight a particular beneficial feature of RIDO w.r.t. the schedule of Poiani et al. [2023].
Indeed, when γ = 1 their robust DCS does not formally exists (i.e., the method requires γ < 1, and
when γ → 1, their strategy tends to the uniform one). RIDO, on the other hand, does not heavily rely
on the property of discounted sum and can be applied as-is also when γ = 1. Furthermore, Figure 5
confirms the adaptivity of RIDO that has already been highlighted in the main text. Namely, it does
not underperform the uniform-in-the-horizon strategy when long trajectories are required, while it
reduces the return estimator’s variance when truncated trajectories are convenient.

B.3.3 DCS Visualizations for Figure 2

In this section, we present visualizations of the DCSs for the experiments presented in Figure 2 and 5.
Figure 6 and 7 reports our results (mean and 95% confidence intervals over 100 runs). For γ = 1,
the robust DCS is missing since it coincides with the uniform-in-the-horizon one (further details on
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Figure 6: DCS visualiaztion for Pendulum and LQG (mean and 95% confidence intervals over 100
runs). The x axis reports the timestep t, while the y axis nt. We consider Λ = 10000 both for the
Pendulum and the LQG.

this point are available in Appendix B.3.2). The resulting visualizations reinforce the adaptivity of
RIDO. Indeed, depending on the domain, the behavior of RIDO changes significantly, resulting in
behaviors that are similar to the uniform strategy (i.e., Navigation), to the robust strategy (i.e., Ant),
or significantly different from both pre-computed schedules (i.e., Pendulum and LQG).

B.3.4 Results on Additional Environments

In this section, we present results on additional MuJoCo environments, namely Swimmer and
Half-Cheetah. Figure 8 reports our results, and Figure 9 the DCSs visualization in the considered
domain. In these cases, RIDO confirms its adaptivity achieving a satisfying performance level. For
HalfCheetah similar comments w.r.t. made for the Ant in Figure 2. In the Swimmer domain, on the
other hand, the robust DCS shows sub-optimal performance w.r.t. the uniform schedule and RIDO.

B.4 Experiments on the Suite of Experiments of Poiani et al. [2023]

In this section, we provide empirical results on the domains that were analyzed in Poiani et al. [2023].
Figure 10 reports the results.

As one can verify, all the comments made in the main text also directly extend to these situations. In
other words, our results confirm (i) the importance of building DCSs that can adapt to the underlying
structure of the estimation process and (ii) the ability of RIDO to achieve low variance estimates
thanks to its adaptivity.

B.5 Experiments with Sub-optimal Policies

In this section, we present empirical results on sub-optimal policies. First of all, we would like to
remark that all experiments in the main text have proposed an empirical analysis on the performance
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Figure 7: DCS visualization for 2D Continuous Navigation and Ant (mean and 95% confidence
intervals over 100 runs). The x axis reports the timestep t, while the y axis nt. For 2D Continuous
Navigation we consider Λ = 10000, while for the Ant we consider experiments using Λ = 28000.

of our method for optimal/pre-trained policies. Nevertheless, in our work, our choice is mainly
motivated by the fact that, for these policies, at least for some environments (e.g., LGQ, Navigation),
it is possible to provide a straightforward interpretation of the obtained result. Indeed, we remark that,
in the theory we developed, the performance index of the evaluated policy π does not play any role.
What matters, instead, are variances and covariances of the Markov reward process induced by the
policy π on the MDP at hand. From a theoretical perspective, it is indeed easy to construct MDPs and
policies that suffer from identical variances for any possible DCSs but whose performance indexes J
completely differ. Furthermore, to empirically demonstrate this point, Figure 11 reports additional
results on the LQG domain where we propose the evaluation of 3 different sub-optimal policies, under
the following experimental setting: γ = 0.99, T = 100, and Λ = [1000, 2000, 3000, 4000, 5000].
The policies that we run are the following ones:

• π1: the optimal action is perturbed by an additive Gaussian noise with mean 100 and
standard deviation 0.01.

• π2: a random policy that samples actions uniformly in [0,1]
• π3: the optimal action is perturbed by a 0 mean Gaussian additive noise with standard

deviation 100

The three considered policies all lead to sub-optimal behaviors. In all cases, however, RIDO is always
competitive against the other baselines, thus confirming the importance of building adaptive DCSs
that adapt to the underlying Markov reward process.

B.6 Ablations varying γ and T

In this section, we provide additional ablations in which we vary the value of γ and T . We selected
one domain (LQG), and kept the budget fixed. In these experiments, we have used the same policy as
for the experiments in the main text. Figure 12 reports the results.
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Figure 8: Empirical variance (mean and 95% confidence intervals over 100 runs) on the Swimmer
and HalfCheetah for the considered baselines.

Concerning the ablation on γ, we have run the algorithms with Λ = 3000, T = 100, and γ =
[0.7, 0.8, 0.9, 0.95, 0.99, 0.995, 0.999, 1.0]. As one can verify, RIDO outperforms both baselines for
any chosen value of the discount factor (and, especially, for values that are significant for the horizon
T = 100). Interestingly, we notice that as the discount factor increases, the sub-optimality of the
robust strategy of Poiani et al. [2023] increases as well. Indeed, as γ → 1, this strategy tends to the
uniform one.

Concerning the ablation on T , we considered Λ = 1500, γ = 0.99, and T =
[25, 50, 75, 100, 125, 150]. In this case, we notice that for small values of T , all methods perform
similarly. Indeed, in this case, they all allocate a significant amount of data in estimating the first
transition steps (as discussed in the main text, these are the most relevant ones to decrease the variance
in the LQG domain using the optimal policy). Interestingly, as T increases, the sub-optimality of
Poiani et al. [2023] and the uniform-in-the-horizon DCS increases. Focus for a moment on the
uniform DCS; in this case, since Λ is fixed, the number of samples allocated to the first interaction
steps decreases as T increases. Similar comments also hold for Poiani et al. [2023]. However, in this
case, the performance decreases more slowly since their truncating trajectories mechanism implicitly
puts more focus on the first interaction steps.

As a summary, both experiments strengthen the importance of adapting to the underlying estimation
process and highlight the ability of RIDO to reduce the variance of the return estimator.
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Figure 9: DCS visualization for Swimmer and HalfCheetah (mean and 95% confidence intervals
over 100 runs). The x axis reports the timestep t, while the y axis nt. For Swimmer we consider
Λ = 12000, while for the HalfCheetah we consider experiments using Λ = 28000.

B.7 Additional Details on the Running Time

In this section, we provide additional details on the running time of the algorithms.

More specifically, we have run all algorithms on Ant and HalfCheetah domain with Λ = 4000 and
T = 500. For our method, we have used a batch size of 1000. For the Ant, our method took roughly
27 seconds, while for uniform and Poiani et al. [2023], the run took roughly 20 seconds. In the
HalfCheetah, instead, RIDO took 23s, while the baselines 15s. As soon as we increase Λ = 8000
(keeping the batch size 1000), we obtain 47s for RIDO, and 29s for the baselines (Ant environment).
For HalfCheetah, instead, 37s for RIDO, and 20s for the baselines. At this point, increasing the batch
size to 2000, RIDO obtains 41s in the Ant, and 31s in the HalfCheetah.

Overall, RIDO requires some additional computational overheads, nevertheless, the running time is
still comparable. Furthermore, we also notice that the code of our algorithm has not been specifically
optimized for time efficiency. Finally, we also notice that in our experiments, we rely on open-source
solvers. Relying on commercial solvers might increase the computational efficiency of our method.
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Figure 10: Empirical variance (mean and 95% confidence intervals over 100 runs) on the domains of
Poiani et al. [2023].
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Figure 11: Empirical variance (mean and 95% confidence intervals over 100 runs) on the LQG
domain varying the evaluation policy π.
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Figure 12: Empirical variance (mean and 95% confidence intervals over 100 runs) on the LQG
domain varying the discount factor γ and the estimation horizon T .
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