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Abstract

Policy evaluation via Monte Carlo (MC) simulation is at the core of many MC
Reinforcement Learning (RL) algorithms (e.g., policy gradient methods). In this
context, the designer of the learning system specifies an interaction budget that the
agent usually spends by collecting trajectories of fixed length within a simulator.
However, is this data collection strategy the best option? To answer this question,
in this paper, we consider as quality index the variance of an unbiased policy return
estimator that uses trajectories of different lengths, i.e., truncated. We first derive
a closed-form expression of this variance that clearly shows the sub-optimality
of the fixed-length trajectory schedule. Furthermore, it suggests that adaptive
data collection strategies that spend the available budget sequentially might be
able to allocate a larger portion of transitions in timesteps in which more accurate
sampling is required to reduce the variance of the final estimate. Building on
these findings, we present an adaptive algorithm called Robust and Iterative Data
collection strategy Optimization (RIDO). The main intuition behind RIDO is to
split the available interaction budget into mini-batches. At each round, the agent
determines the most convenient schedule of trajectories that minimizes an empirical
and robust estimate of the estimator’s variance. After discussing the theoretical
properties of our method, we conclude by assessing its performance across multiple
domains. Our results show that RIDO can adapt its trajectory schedule toward
timesteps where more sampling is required to increase the quality of the final
estimation.

1 Introduction

In Reinforcement Learning [RL, Sutton and Barto, 2018], an agent acts in an unknown, or partially
known, environment to maximize/estimate the infinite expected discounted sum of an external reward
signal, i.e., the expected return. Monte Carlo evaluation [MC, Owen, 2013] is at the core of many
successful RL algorithms. Whenever a simulator with reset possibility is available to the learning
systems designer, a large family of approaches [Williams, 1992, Baxter and Bartlett, 2001, Schulman
et al., 2015, 2017, Cobbe et al., 2021] that can be used to solve the RL problem relies on MC
simulations for estimating performance or gradient estimates on the task to be solved. In this scenario,
since the goal is to estimate the expected infinite sum of rewards, the designer usually specifies a
sufficiently large estimation horizon T , along with a transition budget Λ = QT , so that the agent
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interacts with the simulator, via MC simulation, collecting a batch of Q episodes of length T .1 In this
sense, the agent spends its available budget Λ uniformly along the estimation horizon.

In the context of MC policy evaluation, where the goal lies in estimating the performance of a given
policy via MC simulations, Poiani et al. [2023] have recently shown that, given the discounted nature
of the RL objective, this uniform-in-the-horizon budget allocation strategy may not be the best option.
The core intuition behind their work is that, since rewards are exponentially discounted through time,
early interactions weigh exponentially more than late ones, and, consequently, a larger portion of the
available budget Λ should be dedicated to estimating the initial rewards. To theoretically validate
this point, the authors designed a non-adaptive budget allocation strategy which, by exploiting the
reset possibility of the simulator, leads to the collection of trajectories of different lengths, i.e.,
truncated. They show that this approach provably minimizes Höeffding-like confidence intervals
[Boucheron et al., 2003] around the empirical estimates of the expected return. Remarkably, this
implies a robustness w.r.t. the uniform strategy that holds for any pair of environment and policy to
be evaluated, thus, clearly establishing the theoretical benefits of the proposed method.

Nevertheless, it has to be noticed that although minimizing confidence intervals around the expected
return estimator comes with desirable theoretical guarantees (e.g., PAC-bound improvements [Even-
Dar et al., 2002]), the resulting schedule of trajectories is computed before the interaction with
the environment (being determined by the discount factor). Consequently, as the usual uniform-
in-the-horizon scheme, it fails to adapt to the peculiarities of the problem at hand, and, ultimately,
might not produce a low error estimate. For the sake of clarity, we illustrate this sub-optimality of
pre-determined schedule of trajectories with the following extreme examples.
Example 1. Consider an environment where the reward is gathered only at the end of the horizon T
(e.g., a goal-based). In this scenario, any strategy that truncates trajectories is intuitively sub-optimal,
and we expect that an intelligent agent will spend all its budget according to the uniform schedule.
Example 2. Conversely, consider a problem where the reward is different from 0 in the first interaction
step only (e.g., in the case of a highly sub-optimal policy that immediately reaches the “zero reward
region” of an environment); the uniform schedule wastes a significant portion of its budget collecting
samples without variability, and, to reduce the estimation error, we would like the agent to spend all
of its interaction budget estimating the reward of the first action.

Abstracting away from the previous examples, we realize that the main issue of existing approaches
arises from the fact that determining a schedule of trajectories before interacting with the environment
does not allow the agent to adapt it to the environment peculiarities, allocating more samples where
this is required to obtain a high-quality estimate. For this reason, in this work, we focus on designing
adaptive data collection strategies that aim directly at minimizing the error of the final estimate. Our
main intuition lies in splitting the available budget Λ into mini-batches and adapting online the data
collection strategy of the agent based on the previously collected information.

Original Contributions and Outline After introducing the necessary notation and backgrounds
(Section 2), we consider the problem of maximizing the estimation quality of a policy expected
return estimator using trajectories of different lengths collected via MC simulation with a finite
budget Λ of transitions (Section 3). More specifically, since we use an unbiased return estimator, we
consider its variance as a quality index, of which we derive a closed-form expression and analyze
it for every possible schedule of trajectories. Then, we define the optimal trajectories schedule as
the one that attains the minimum variance subject to the available budget constraint. As expected,
computing this optimal data collection strategy requires knowledge of the underlying environment
(e.g., the variance of the rewards at each timestep), which is not available to the agent prior to the
interaction. Nevertheless, as we shall see, all the quantities that define the optimal strategy can
be estimated from the data. These facts confirm our intuition about the weakness of non-adaptive
schedules of trajectories and suggest that algorithms that spend the available budget Λ iteratively
might be able to dynamically allocate their budget to minimize the variance of the final estimate.
Building on these findings, in Section 4, we present a novel algorithm, Robust and Iterative Data
collection strategy Optimization (RIDO), which splits its available budget Λ into mini-batches of
interactions that are allocated sequentially to minimize an empirical and robust estimate of the

1While another large class of RL algorithms is based on Temporal Difference [TD, Sutton and Barto, 2018]
learning, which do not require the finite horizon nor the reset possibility, Monte Carlo simulation approaches
continue to be extensively adopted. Indeed, unlike TD methods, they can be applied effortlessly to non-Markovian
environments, which is a common occurrence in real-world problems.
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objective function of interest, i.e., the variance of the estimator. Furthermore, we perform a statistical
analysis on the behavior of RIDO, and we derive theoretical guarantees expressed as upper bounds
on the variance of the policy return estimator. Our result shows that, under favorable conditions, the
variance of the return estimator computed by RIDO is of the same order as the one of the oracle’s
baseline. To conclude, in Section 5, we conduct an experimental comparison between RIDO and
non-adaptive schedules. As we verify, our method achieves the most competitive performance across
different domains, discount factor values, and budget, thus clearly highlighting the benefits of adaptive
strategies over pre-determined ones.

2 Backgrounds and Notation

This section provides the notation and necessary backgrounds used in the rest of this document.

Markov Decision Processes A discrete-time Markov Decision Process [MDP, Puterman, 2014]
is defined as a tupleM := (S,A, R, P, γ, ν), where S is the set of states, A is the set of actions,
R : S ×A → [0, 1] is the reward function the specifies the reward R(s, a) received by the agent upon
taking action a in state s, P : S ×A → ∆(S)2 is the transition kernel that specifies the probability
distribution over the next states P (·|s, a), when taking action a in state s, γ ∈ (0, 1) is the discount
factor, and ν ∈ ∆(S) is the distribution over initial states. The agent’s behavior is modeled by
a policy π : S → ∆(A), which for each state s, prescribes a distribution over actions π(·|s). A
trajectory τh of length h is a sequence of states and actions (s0, a0, s1, . . . sh−1, ah−1, sh) observed
by following π for h steps, where s0 ∼ ν, at ∼ π(·|st), and st+1 ∼ P (·|st, at) for t < h. The return
of a trajectory is defined as G(τh) =

∑h−1
t=0 γ

tRt, where Rt is shortcut for R(st, at). The agent that
is following policy π is evaluated according to expected cumulative discounted sum of rewards over
an estimation horizon T ,3, namely J(π) = Eπ

[∑T−1
t=0 γtRt

]
, where the expectation is taken w.r.t.

the stochasticity of the policy, the transition kernel, and the initial state distribution.

Data Collection Strategy Poiani et al. [2023] formalized the concept of Data Collection Strategy
(DCS) to model how the agent collects data within an environment. More specifically, given an
interaction budget Λ ∈ N such that Λ mod T = 0, a DCS is defined as a T -dimensional vector
m := (m1, . . . ,mT ) where mh ∈ N and

∑T
h=1mhh = Λ. Each element mh specifies the number

of trajectories of length h that the agent collects in the environment while following a policy π. Given
a DCS m, it is possible to compute the total number of steps n := (n0, . . . , nT−1) that will be
gathered by the agent at any step t; more specifically, the following relationship holds: nT−1 = mT ,
and nt = nt+1 +mt+1 for t < T − 1. For this reason, in the rest of the paper we will adopt the most
convenient symbol depending on the context. For any DCS m such that mT ≥ 1 holds, it is possible
to build the following unbiased estimator of J(π):

Ĵm(π) =

T∑
h=1

mh∑
i=1

h−1∑
t=0

γt

nt
R

(i)
t . (1)

The two external summations in Equation (1) sum over the collected trajectories of different lengths
a rescaled empirical trajectory return, where the reward at step t is divided by the number of samples
collected at step t.4 In the case the budget Λ is spent uniformly, i.e.,m =

(
0, . . . , 0, Λ

T

)
, Equation

(1) reduces to the usual Monte Carlo estimator of J(π), namely T
Λ

∑Λ/T
i=1

∑T−1
t=0 γtR

(i)
t .

Robust Data Collection Strategy Optimization Leveraging the estimator of Equation (2), Poiani
et al. [2023] investigated alternatives to the usual uniform-in-the-horizon DCS from the worst-case
perspective of confidence intervals [Boucheron et al., 2003]. More specifically, given m such
that mT ≥ 1, the estimator of Equation (1) enjoys the following generalization of the Höeffding

2Given a set X , we denote with ∆(X ) the set of probability distributions over X .
3As common in Monte-Carlo simulation [see e.g., Papini et al., 2022] we approximate the infinite horizon

MDP model with a finite estimation horizon T . Indeed, if T is sufficiently large, i.e., T = O
(

1
1−γ log 1

ε

)
, the

expected return computed with horizon T is ε close to the infinite-horizon one [Kakade, 2003].
4Rescaling by nt prevents the estimate from being biased towards time steps for which more samples are

available.
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confidence intervals holding with probability at least 1− δ:

|J(π)− Ĵm(π)| ≤

√√√√1

2
log

(
2

δ

) T−1∑
t=0

dt
nt
, (2)

where dt =
γt(γt+γt+1−2γT )

1−γ controls the relative importance of samples gathered at step t. Poiani
et al. [2023] designed a closed-form DCS that provably minimizes the bound of Equation (2). Since
dt is a decreasing function of time whose decay speed is governed by the discount factor γ, the
aforementioned DCS gives priority to the collection of experience at earlier time steps, i.e., it truncates
the trajectories. Note that the smaller γ, the higher the number of samples reserved for earlier time
steps. We refer the reader for Theorem 3.3 and Theorem B.10 of their work for the exact expressions
of the resulting robust DCS. However, we remark that the resulting schedule is non-adaptive (i.e., it is
computed before the interaction with the environment takes place) and its shape depends exclusively
on Λ, γ, and T .

3 Toward Adaptive Data Collection Strategies

In this section, we lay down the theoretical groundings behind optimizing data collection strategies
that directly aim at minimizing the final estimation error. We stick to methods that adopt the
estimator of Equation (1), which has a simple interpretation and desirable theoretical properties.
More specifically, since the estimator is unbiased, the Mean Squared Error (MSE) simply reduces to
the variance. For this reason, to set a proper baseline for DCS optimization (i.e., an optimal strategy
according to the MSE), we first analyze the variance of the estimator of Equation (1) for an arbitrary
DCSm. The following Theorem (proof in Appendix A) summarizes our result.

Theorem 3.1. Consider a generic DCSm such that mT ≥ 1, then:

Varm

[
Ĵm(π)

]
=

T−1∑
t=0

1

nt

(
γ2tVar(Rt) + 2

T−1∑
t′=t+1

γt+t
′
Cov(Rt, Rt′)

)
=:

T−1∑
t=0

ft
nt
. (3)

Theorem 3.1 expresses, in closed form, the variance of the estimator of Equation (1) when adopted
with an arbitrary DCS that guarantees the estimation to be unbiased (i.e., mT ≥ 1). From Equation
(3), we can see that this variance results in a summation, over the different time steps, of 1

nt
, i.e., the

reciprocal of the number of samples collected underm at step t, multiplied by the variance of the
reward at step t plus the covariances between Rt and the rewards gathered at future steps. For brevity,
we shortcut this term with ft. Furthermore, Theorem 3.1 leads to a direct formulation of an optimal
DCS baseline for our setting. More specifically, given a budget Λ, we define the optimal DCS n∗ for
the estimator in Equation (1) as the solution of the following optimization problem:

min
n

T−1∑
t=0

1

nt

(
γ2tVar(Rt) + 2

T−1∑
t′=t+1

γt+t
′
Cov(Rt, Rt′)

)

s.t.
T−1∑
t=0

nt ≤ Λ

nt ≥ nt+1, ∀t ∈ {0, . . . , T − 2}
nt ∈ N+, ∀t ∈ {0, . . . , T − 1},

(4)

where the constraints nt ≥ nt+1 directly encode the sequential nature of the interaction with the
environment. At this point, some comments are in order. First of all, we notice that the above
optimization problem nicely captures the intuitive examples of Section 1.

Example 1 (cont.). When the reward is different from 0 in the last interaction step only, the objective
function reduces to γ2(T−1)

nT−1
Var [RT−1], which is clearly minimized for the uniform strategy.

Example 2 (cont.). Conversely, when the reward is different from 0 in the first step only, we obtain
Var[R0]
n0

, meaning that the entire interaction budget should be dedicated to estimate R0.
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Algorithm 1 Robust and Iterative DCS Optimization (RIDO).
Require: Interaction budget Λ, batch size b, robustness level β, policy π

1: Collect D using policy π and n̂0 =
(
b
T
, . . . , b

T

)
2: Set K = Λ

b
and initialize empirical estimates

√
V̂ar1 [Rt] and Ĉov1 [Rt, R

′
t]

3: for i = 1, . . . ,K − 1 do
4: Collect Di using policy π and n̂i, where n̂i is computed solving problem (5)

5: Update empirical estimates
√

V̂ari [Rt] and Ĉovi [Rt, R
′
t] using Di and set D ← D ∪Di

6: end for

Furthermore, the formulation of problem (4) highlights the pitfalls of a non-adaptive data collection
strategies. Indeed, consider, for the sake of clarity, the two examples mentioned above. Before
executing policy π, the agent has no way of distinguishing between the two different objective
functions, i.e., γ

2(T−1)

nT−1
Var [RT−1] and Var[R0]

n0
, and, consequently, any pre-determined schedule fails

to adapt to the actual objective function. More generally, this is because the optimal strategy resulting
from the optimization problem (4) can be computed prior to the interaction with the environment only
by an oracle that knows in advance the underlying reward process induced by the agent’s policy π in
the MDP. Nevertheless, we note that all the terms appearing in the objective function, i.e., the only
unknowns in optimization problem (4), can be estimated if some interactions with the environment are
available to the agent. This suggests that strategies that sequentially allocate the available budget Λ
might successfully adapt their DCS to minimize Equation (3), i.e., the variance of the return estimator.

4 Robust and Iterative DCS Optimization

Given the findings of Section 3, we now present our algorithmic solution that aims at avoiding
the highlighted pitfalls of pre-determined DCSs. Our approach is called Robust and Iterative Data
collection strategy Optimization (RIDO), and its pseudocode is available in Algorithm 1. The central
intuition behind RIDO lies in splitting the available budget Λ into mini-batches of interactions that
the agent will allocate sequentially. At each iteration, the agent will compute the most convenient
schedule of trajectories that optimizes an empirical and robust version of the objective function
presented in (4), whose quality improves as the agent gathers more data.

We now describe in-depth the behavior of the algorithm. For simplicity of exposition and analysis,
we suppose that the size of the mini-batch b is such that b mod T = 0 and b ≥ 2T . At the beginning
(Lines 1-2 in Algorithm 1), the agent spends the first mini-batch n̂0 at collecting b

T trajectories
of length T (i.e., the uniform approach). This preliminary collection phase is a starting round
in which some initial experience is gathered to properly initialize estimates of relevant quantities
used throughout the algorithm. More specifically, at each iteration i, the agent maintains empirical
estimates of the unknown quantities that define the variance of the estimate, i.e., the standard deviation

of the reward at step t, namely
√
V̂ari [Rt], and the covariances between rewards at different steps,

namely Ĉovi (Rt, Rt′). Then, at each round (Lines 4-5 in Algorithm 1), the DCS of the current
mini-batch n̂i is computed solving the optimization problem (5) whose objective function is a robust
estimate of the objective function of the original optimization problem (4). More specifically, at each
round i, the agent aims at solving the following problem:

min
n

T−1∑
t=0

1

nt

(
γ2t

(√
V̂ari(Rt) + Cσi,t

)2

+ 2

T−1∑
t′=t+1

γt+t
′ (

Ĉovi(Rt, Rt′) + Cci,t,t′
))

s.t.
T−1∑
t=0

nt ≤ b

nt ≥ nt+1, ∀t ∈ {0, . . . , T − 2}
nt ∈ N+, ∀t ∈ {0, . . . , T − 1},

(5)
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where Cσi,t and Cci,t,t′ are exploration bonuses for variances and covariances respectively, defined as:

Cσi,t :=

√
2 log (β)∑i−1
j=1 n̂j,t

, Cci,t,t′ := 3

√
2 log (β)∑i−1
j=1 n̂j,t′

, (6)

where β ≥ 1 is a hyper-parameter that specifies the amount of exploration used to solve the
optimization problem, and n̂j,t is the number of samples collected by RIDO during phase j at time
step t. We now provide further explanations on the optimization problem (5) and Equation (6). First
of all, we notice how each term in the original objective function, namely ft , is replaced with its
relative empirical estimation plus exploration bonuses, each of which is directly related to components

within ft, e.g., Var (Rt) is replaced with
(√

V̂ari(Rt) + Cσi,t

)2

and Cov (Rt, Rt′) is replaced with

Ĉovi (Rt, Rt′)+Cci,t,t′ . Intuitively, the purpose of the exploration bonus is to consider the uncertainty
that arises from replacing exact quantities with their empirical estimation. This introduces in RIDO a
source of robustness w.r.t. the noise that is intrinsically present in the underlying estimation process.
At this point, concerning the shape of Equation (6), focus for the sake of exposition on Cσi,t. First
of all, we notice that the hyper-parameter β governs the robustness which is taken into account
while replacing Var (Rt) with its empirical estimate. Larger values of β, correspond, indeed, to
larger Cσi,t, and, consequently, a higher level of robustness w.r.t. the uncertainty. Furthermore, as
we can notice, Cσi,t decreases with the number of samples collected in the previous iterations at step
t, i.e.,

∑i−1
j=1 n̂j,t. This quantity coincides with the number of samples that are used to estimate√

V̂ari [Rt].5 This formulation captures the following aspect: more data is available to the agent to
estimate Var (Rt), the more accurate its estimate will be, and, consequently, its exploration bonus
will shrink to 0. As one can expect, with this approach, the quality of the objective function used
in RIDO increases with the number of iterations. Consequently, the agent will progressively adapt
the mini-batch DCS toward time steps where more data is required to minimize Equation (3), i.e.,
the variance of the return estimator. We conclude with two remarks. First, we notice that RIDO can
be applied with γ = 1, as it does not deeply rely on the property of discounted sums. Secondly, the
optimization problem (5) is a complex integer and non-linear optimization problem. Before diving
into the statistical analysis of RIDO, we discuss how to solve (5) in the next section.

4.1 Solving the Empirical Optimization Problem

As noticed above, directly solving problem (5) requires significant effort since it is an integer,
non-linear optimization problem. In this section, we discuss how to overcome these challenges.

We first perform a continuous relaxation, replacing the integer constraint nt ∈ N+ with nt ≥ 1.
Once a solution n̄∗ to the relaxed optimization problem is found, it is possible to obtain a proper (i.e.,
integer) DCS by flooring each n̄∗t and allocating the remaining budget uniformly. As we shall see,
this approximation introduces constant terms in the theoretical guarantees of RIDO only. At this
point, the resulting optimization problem is a non-linear problem that, unfortunately, is generally
non-convex. This issue occurs when the following condition is verified for some time step t:

ft = γ2t

(√
V̂ari(Rt) + Cσi,t

)2

+ 2

T−1∑
t′=t+1

γt+t
′ (

Ĉovi(Rt, Rt′) + Cci,t,t′
)
< 0. (7)

To solve this challenge and make RIDO computationally efficient, we develop an approach based
on a hidden property of the original optimization problem (4). More specifically, we start by
noticing that even the continuous relaxation of (4) is non-convex since ft̄ < 0 might occur, for some
t̄ ∈ {0, . . . , T − 2}, in the presence of negative covariances with future steps. In this case, however,
since

∑T−1
t=t̄ ft represents a proper variance, which is always non-negative, there always exists t′ > t̄

such that
∑t′

t=t̄ ft ≥ 0. Furthermore, it is possible to show that the optimal solution of the relaxed
optimization problem is uniform in the interval {t̄, . . . , t′}, namely n∗t̄ = n∗t̄+1 = · · · = n∗t′ (proof in

5Similar comments apply to Cci,t,t′ as well. The only difference stands in the fact that to estimate the
empirical covariance between two subsequence steps t and t′, samples up to time t′ are required. For this reason,
the denominator implies the summation of the number of samples gathered at t′ over the previous iterations.
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f0

n0

ft̄
nt̄

ft̄+1

nt̄+1

ft′
nt′

fT−1

nT−1

f0

n0

ft̄+···+ft′
y

fT−1

nT−1

Figure 1: Visualization of the transformation between the optimization problems. The first row shows
the objective function of the original optimization problem, while the second one its transformation.

Appendix A). For this reason, it is possible to define a transformation of the optimization problem
that preserves the optimal solution, in which the variables nt̄, . . . , nt′ are replaced with a single
variable y. The objective function is modified accordingly, namely ft̄

nt̄
+ · · ·+ ft′

nt′
is replaced with

ft̄+···+ft′
y in the objective function. A visualization of the transformation is proposed in Figure 1. By

repeating the procedure for all the negative ft, we obtain a transformation of the original problem
which is now convex. Once the solution to this convex transformed optimization problem is found,
one can quickly recover the relaxed DCS in its T -dimensional form.

Building on these results, we apply in RIDO a similar procedure that transforms the relaxed version
of (5) into a new problem where the negative time steps (i.e., steps in which Equation (7) holds)
are “grouped” with future time steps as long as the total summation is positive. In this way, (i) the
resulting optimization problem is convex and (ii) as our analysis will reveal, this procedure has no
impact on the theoretical properties of RIDO (i.e., the result is the same as assuming access to an
oracle that can solve non-linear and non-convex problems). As a concluding remark, we refer the
reader to Appendix A for a formal description of the above-mentioned procedure.

4.2 Theoretical Analysis

We now present theoretical guarantees on the performance of RIDO. More specifically, we derive
high-probability guarantees on the variance of the estimator of Equation (1) when used with the data
collected by RIDO. Before diving into the presentation of our results, we highlight some critical
challenges behind the result. First, in our analysis, we do not assume access to an oracle that solves
(5), but we consider the modifications discussed in Section 4.1 that make the computation tractable.
This introduces a first level of challenges in the analysis (e.g., dealing with the roundings that arise
from the relaxation and the peculiar strategy that overcomes the non-convexity of the optimization
problem). Secondly, we notice that none of the optimization problems (4) and (5), and the ones
obtained by relaxing the integer constraints, admit a closed-form solution (further details are provided
in Appendix A). This clearly results in an additional challenge in our analysis. At this point, we are
ready to state our main theoretical result (proof in Appendix A).
Theorem 4.1. Let n∗ be the optimal solution of problem (4), ft as in Equation (3), b ≥ 2T and
β = 6(T+T 2)ΛK

δ . Consider the DCS n̂ computed by Algorithm 1. Then, with probability at least
1− δ it holds that:

Varn̂

[
Ĵn̂(π)

]
≤ 192

(
b

Λ

) 3
2

log (β)

(
T−1∑
t=0

γt

)2

+ 4Varn∗

[
Ĵn∗(π)

]
+

2b

Λ

∑
t:ft<0

|ft|. (8)

Equation (8) comprises three terms which we now discuss in detail. The former is directly responsible
for taking into account the cumulative error computed during each phase i. This term shrinks to

zero with rate Õ
((

b
Λ

) 3
2 log Λ

)
. We notice that this gets smaller as we decrease b, thus suggesting to

use small batch sizes. This should come as no surprise; indeed, using smaller batch sizes intuitively
improves the adaptiveness of the algorithm, since a larger portion of the budget Λ will be allocated
following more precise estimates of the quantities of interest. In this sense, there exists a trade-off
between theoretical guarantees and computational requirements, since the number of iterations (and,
thus, the number of optimization problems to be solved) grows linearly as the batch size decreases.
The second term, instead, is the variance of the optimal DCS computed as in (4), and shrinks with a
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rate that is at most 4
Λ

∑T−1
t=0 ft. This term, as we shall show below, represents a particularly desirable

property. Finally, the last component of Equation (8) is related to the negative terms possibly present
in the objective function, and, among the three terms, it is the one with the worst dependence on
Λ. Currently, we are unsure whether this term is an artifact of the analysis, a sub-optimality of
the algorithm, or a key challenge of the setting. We leave closing this gap to future work. At this
point, we highlight a particular relevant property of Equation (8). Suppose that ft ≥ 0 holds for all
time steps t (so that the last component is not present). In this case, under the mild assumption that∑T−1
t=0 ft > 0 (i.e., the variance is different from 0), for sufficiently large budget of Λ, we have that

(formal statement and proof in Appendix A):

Varn̂

[
Ĵn̂(π)

]
≤ 5Varn∗

[
Ĵn∗(π)

]
. (9)

Thus, in this scenario, the variance of the returned DCS computed by RIDO is proportional to the
optimal one. Note that this sort of result is not possible for the uniform strategy, nor for the robust
one of Poiani et al. [2023]. Further details on this point are provided in Appendix A.

5 Numerical Validation

In this section, we propose numerical validations that aim at assessing the empirical performance of
RIDO. More specifically, we focus on the comparison between our approach, the classical uniform-
in-the-horizon strategy, and the robust DCS by Poiani et al. [2023]. We report the results across
multiple domains, values of budget Λ, and discount factor γ. As a performance index, all experiments
measure the empirical variance of the estimator in Equation (1) at the end of the data collection
process. Before discussing our results in detail, we describe our experimental settings in depth.

Experimental Setting In our experiments, we consider the following four domains. We start with
the Inverted Pendulum [Brockman et al., 2016], a classic continuous control benchmark, where the
agents’ goal is to swing up a suspended body and keep it in the vertical direction. We, then, continue
with the Linear Quadratic Gaussian Regulator [LQG, Curtain, 1997], where the agent controls a linear
dynamical system with the objective of reducing a total cost that is expressed as a quadratic function.
Then, we consider a 2D continuous navigation problem, where an agent starts at the bottom left
corner of a room and needs to reach a goal region in the upper right corner. The agent receives reward
0 everywhere except inside the goal area, where the reward is positive and sampled from a Gaussian
distribution. Finally, we consider the Ant environment from the MuJoCo [Todorov et al., 2012] suite,
where the agent controls a four-legged 3D robot with the goal of moving it forward. Further domain
details are provided in Appendix B. Concerning the policy that we evaluate for the Inverted Pendulum
and the Ant, we rely on pre-trained deep RL agents made publicly available by Raffin [2020]. For
the LQG, instead, we evaluate the optimal policy that is available in closed form by solving the
Riccati equations, and, finally, for the 2D navigation task, we roll out a hand-designed policy that
minimizes the distance of the agent’s position w.r.t. to the center of the goal region. Regarding the
performance index, as already anticipated, we report the variance of the empirical policy return at
the end of the data collection process. Given a budget and a DCS, for a single run, we estimate this
empirical variance using 100 simulations. We then average the results over 100 runs and report the
empirical mean together with 95% confidence intervals. We notice that for each considered value
of Λ, the experiment is repeated (i.e., we do not use data collected with smaller Λ’s). To conclude,
we refer the reader to Appendix B for further details on the experiments (e.g., ablations, additional
results, experiments with γ = 1, hyper-parameters, visualizations of the resulting DCSs).

Results Figure 2 reports the results varying the discount factor and the available budget. The second
row is obtained under the same experimental setting as the first one, but with lower values of γ. Let
us first focus on the sub-optimality of the non-adaptive DCSs (i.e., the uniform strategy and the
robust one of Poiani et al. [2023]). Indeed, as suggested by Theorem 3.1, being computed prior to the
interaction with the environment, these algorithms cannot adapt the collection of samples to minimize
the variance of the return estimator. This is clear by looking, for instance, at the results of Continuous
Navigation and the LQG. Indeed, in the Continuous Navigation domain, the reward is sparse and
received close to the end of the estimation horizon T . In this scenario, the robust DCS blindly
truncates trajectories, thus, avoiding the collection of experience in the most relevant timesteps.
Conversely, in the LQG experiments, the optimal policy that arises from the Riccati equation pays a
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Figure 2: Empirical variance (mean and 95% confidence intervals over 100 runs) on the considered
domains and baselines. The first row considers higher values of γ w.r.t. the second one.

stochastic control cost6 at the beginning of the estimation horizon to bring the state of the system
close to stability, after which the reward will remain almost constant. In this case, the uniform DCS
results in a highly sub-optimal behavior as most of the estimation uncertainty is related to the initial
interaction steps. RIDO, on the other hand, thanks to its adaptivity, is able to obtain the best results in
both domains. Indeed, in the Continuous Navigation problem, it achieves the same performance level
as the uniform strategy, while in the LQG it even outperforms the robust DCS of Poiani et al. [2023].
The reason is that Poiani et al. [2023] truncates trajectories solely depending on the value of γ, and,
therefore, it might waste a portion of its budget in trajectories of sub-optimal length, while RIDO,
since it aims at minimizing the variance of the final estimation, is able to focus the collection of data
in the most convenient way. Similar comments to those made for the LQG hold for the Pendulum
domain as well. Concerning the Ant environment, instead, we notice that for γ = 0.999 there is no
significant difference between any of the presented schedules. Interestingly, however, as soon as
we decrease γ to 0.99, we can appreciate the sub-optimality of the uniform strategy, which wastes
a portion of its budget in gathering samples that are significantly discounted, and, therefore, their
weight in the estimator’s variance shrinks to 0. On the other hand, the robust strategy and RIDO
avoid this pitfall thanks to the exploitation of the discount factor, thus obtaining reduced variance
estimates. Finally, we remark that RIDO has achieved the most competitive performance across
various domains, values of the discount factor, and budget, thus clearly highlighting the benefits of
adaptive strategies w.r.t. pre-determined ones.

6 Related Works

We now present a comprehensive analysis and discussion of previous works that are closely connected
to our own research. First of all, our work focuses on estimating a policy’s performance in a given
MDP [Sutton and Barto, 2018]. Considering the significance of this task, reducing the variance, or
more generally, the error of the return estimator, is a problem that has received significant attention in
the literature. A vast family of approaches that can be used to solve this problem deeply exploits the
Markovian properties of the environment by relying on Temporal Difference [TD, see, e.g., Singh
and Sutton, 1996, Sutton, 1988, Lee and He, 2019, Riquelme et al., 2019, Qu et al., 2019] learning.
On the other hand, our work focuses purely on Monte Carlo simulation, which can be transparently
applied to non-Markovian environments. Another relevant line of work deals with optimizing the

6The uncertainty, in this case, arises both from the noise of the system together with the stochasticity of the
initial state distribution.
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agent’s policy to collect data within an environment (i.e., behavioral policy) to reduce the variance
of an unbiased estimator for the return of a different target policy [Hanna et al., 2017, Zhong et al.,
2022, Mukherjee et al., 2022]. These techniques are referred to as off-policy evaluation methods and
usually rely on Importance Sampling [e.g, Hesterberg, 1988, Owen, 2013] techniques to guarantee
the unbiasedness of the resulting estimate. However, these studies significantly differ from ours in
that, instead of aiming for a behavior policy that reduces the estimator variance, our goal is to directly
exploit the properties of Monte Carlo data collection to reduce the on-policy estimator variance.

In the context of RL, exploration bonuses are widely adopted in control (where the goal is learning an
optimal policy) to tackle the exploration-exploitation dilemma [e.g., Brafman and Tennenholtz, 2002,
Auer et al., 2008, Tang et al., 2017, Jin et al., 2018, O’Donoghue et al., 2018, Zanette and Brunskill,
2019]. Initially, when the agent has limited knowledge about the environment, the exploration
bonuses drive it to explore widely. As the agent’s knowledge improves, the exploration bonuses
decrease, and the agent can shift towards exploiting its learned policy more. In our work, instead, we
use exploration bonuses to introduce a source of robustness w.r.t. the objective function that we are
interested in, i.e., the variance of the return estimator for a given data collection strategy.

Finally, the work that is most related to ours is Poiani et al. [2023], where, the concept of truncating
trajectories has been analyzed in the context of Monte Carlo RL. More specifically, the authors derived
a non-adaptive schedule of trajectories that provably minimizes confidence intervals around the return
estimator. In this work, on the other hand, we have shown the sub-optimality of pre-determined
schedules, and we designed an adaptive algorithm that aims at minimizing the variance of the final
estimate. The concept of truncating trajectories has also received some attention in other fields of
research such as model-based policy optimization [Nguyen et al., 2018, Janner et al., 2019, Bhatia
et al., 2022, Zhang et al., 2023], multi-task RL [Farahmand et al., 2016] and imitation learning [Sun
et al., 2018]. However, in all these works, the motivation, the method, and the analysis completely
differ w.r.t. what has been considered here. Finally, the concept of truncating trajectories in Monte
Carlo RL drew inspiration from a recent work in the field of multi-fidelity bandit [Poiani et al., 2022],
where the authors considered the idea of cutting trajectories while interacting with the environment
to obtain a biased estimate of the return of a policy in planning algorithms such as depth-first search.

7 Conclusions and Future Works

In this work, we studied the problem of allocating a budget Λ of transitions in the context of Monte
Carlo policy evaluation to reduce the error of the policy expected return estimate. Leveraging the
formalism of Data Collection Strategy (DCS) to model how an agent spends its interaction budget,
we started by analyzing, in closed form, the variance of an unbiased return estimator for any possible
DCS. Our result reveals that DCSs determined prior to the interaction with the environment (e.g.,
the usual uniform-in-the-horizon one and the robust one of Poiani et al. [2023]) fail to satisfy the
ultimate goal of policy evaluation, i.e., produce a low error estimate. Furthermore, it also suggests
that algorithms that spend the available budget Λ iteratively might successfully adapt their strategy to
minimize the variance of the return estimator. Inspired by these findings, we propose an adaptive
method, RIDO, that, by exploiting information that has already been collected, can dynamically adapt
its DCS to allocate a larger portion of transitions in time steps in which more accurate sampling is
required to reduce the variance of the final estimate. After conducting a theoretical analysis on the
properties of the proposed method, we present empirical studies that confirm its adaptivity across a
different number of domains, values of budget Λ, and discount factors γ.

Our study offers exciting possibilities for future research. For example, it would be interesting to
extend our ideas to policy search algorithms (e.g., Williams [1992]), with the goal of finding DCSs
that minimize the variance of the empirical gradient that is adopted in the update rule. Furthermore,
we notice that, since our approach is purely based on MC simulation, it does not fully leverage the
Markovian properties of the underlying MDP. Combining TD techniques [Sutton and Barto, 2018]
with mechanisms that truncate trajectories is a challenging and open research question that could lead
to further improvements in the efficiency of RL algorithms.
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