
A Related Work

This section succinctly presents an overview of fairness in the context of machine learning, especially
focusing on the burgeoning concept of counterfactual fairness.

Fairness in Machine Learning. While there have been several efforts on developing fair machine
learning algorithms (see, e.g., [23, 44, 42, 22, 3, 34]), fairness still remains an elusive and loosely
defined concept. Several definitions have been proposed, each motivated by unique considerations and
emphasizing different elements. For instance, one such notion is ’unawareness’, which necessitates
the exclusion of sensitive attributes from the input data fed into machine learning models. Conversely,
parity-based fairness sets guidelines on how models should perform across different demographics.
Demographic parity, a widely accepted group fairness criterion, ensures consistent distribution of
predictions (Ŷ), regardless of sensitive attributes (A), defined as P (Ŷ |A = 0) = P (Ŷ |A = 1) [13].

Equal opportunity is another key criterion, ensuring that individuals from diverse protected attribute
groups have the same probability of selection, represented by P (Ŷ = 1|A = 0, Y = 1) = P (Ŷ =
1|A = 1, Y = 1) [20]. The related concept of equal odds prescribes equal true positive and false
positive rates across different protected attribute groups [38].

Additionally, preference-based fairness argues that an algorithm’s design should not be solely de-
termined by its creators or regulators but should also incorporate the preferences of those directly
affected by the algorithm’s outputs [43, 12].

Counterfactual Fairness. Emerging from the broader concept of individual fairness, counterfactual
fairness seeks to guarantee that similar datapoints are treated identically [32]. It uses counterfactual
pairs to establish similarity. The field of natural language processing has seen the use of intuitive
causal models, where words associated with protected attributes are substituted to generate counter-
factual data [29, 14]. However, this approach might overlook possible causal relationships among
words.

To overcome this, a more sophisticated causal model was proposed by [31], facilitating a three-step
process for counterfactual data generation: Abduction-Action-Prediction. This process includes the
inference of exogenous variables’ distribution based on observed data, the modification of protected
attributes, and the computation of resultant attributes. Leveraging this causal model, [26] proposed
the formal definition of counterfactual fairness.

Adopting the advanced assumptions of [31] about structural functions in the causal model allows for
counterfactual data generation via the Markov chain Monte Carlo (MCMC) algorithm [15]. Several
practical applications employ an encoder-decoder-like structure for counterfactual inference, with the
encoder’s hidden representation considered as the exogenous variable [30, 21, 37, 24]. The decoder
predicts counterfactual data after the sensitive attribute is modified. Certain research, such as [8],
explores counterfactual inference without a causal model by reconceptualizing it as a multi-objective
issue.

A myriad of techniques exist to construct fair models using counterfactual inference. The simplest
among these, unawareness, involves the removal of the protected attribute from the input [18]. Yet,
due to potential correlations between remaining features and protected attributes, this method often
falls short. [26] suggested an approach that uses only the non-descendant variables of the sensitive
attribute as model inputs, achieving perfect fairness. Other research aimed to attain approximate
counterfactual fairness [36].

A common approach employed by [14, 36, 6, 11, 33] introduces a fairness penalty regularizer to the
loss function when training a counterfactually fair model. Meanwhile, studies by [24, 14, 35, 10]
have used a counterfactual augmentation method to increase fairness. This involves generating a
new training dataset by mixing counterfactual and factual data. Notably, several studies [17, 39, 41,
19, 28] sought to minimize the correlation between exogenous variables and the sensitive attribute
using adversarial learning or regularization. They propose another kind of fairness from the causal
perspective, differing from [26].

While the method proposed by [26] maintains perfect fairness, it often leads to a significant decrease in
precision due to the underutilization of observed data’s information. Subsequent methodologies have
managed to enhance precision, though they cannot theoretically guarantee counterfactual fairness. As

13

counterfactual fairness gains increasing traction [17, 6, 27], there is an urgent need for approaches
that simultaneously augment performance and uphold fairness.

B Proofs

Theorem 1. We start by finding Pr{RA←a′(U) = r|X = x,A = a}.

Pr(RA←a′(U) = r|X = x,A = a) =

∫
Pr(RA←a′(u) = r|X = x,A = a) Pr(U = u|X = x,A = a)

Note that R in Algorithm 1 depends on value realization u and feature vector x. However, given u,
RA←a′(u) does not depend on intervention A = a′ as s(.) is a symmetric function and gets all the
counterfactual samples for different values of a′. As a result, Pr(RA←a′(U) = r|X = x,A = a)
does not depend on a′. Moreover, Pr(U = u|X = x,A = a) is not a function of a′ and does not
depend on a′. This implies the right-hand side of (3) does not change by a′. As a result, for a given
pair of (x, a), Pr(RA←a′(U) = r|X = x,A = a) remains unchanged for all a′ ∈ A. This implies
that R satisfies CF. Consequently, any function of R including gw(R) satisfies CF.

Theorem 2. Assume that R has been generated using Algorithm 2. We have,

Pr(RA←a′,XPc
GA
←xPc

GA

(U) = r|X = x,A = a) =∫
Pr(RA←a′,XPc

GA
←xPc

GA

(u) = r|X = x,A = a) Pr(U = u|X = x,A = a)

Note that, Pr(RA←a′,XPc
GA
←xPc

GA

(U) = r|X = x,A = a) does not depend on a′. This is because,

Algorithm 2 generates a presentation using a symmetric function, and all the counterfactual samples
{(x̌[1]
PGA

, ǎ[1]), . . . , (x̌
[|A|−1]
PGA

, ǎ[|A|−1])}, and intervention on A does not change the presentation.
Note that Pr(U = u|X = x,A = a) is not a function of a′ and does not depend on a′. This
implies the right-hand side of (3) does not change by a′. As a result, for a given pair of (x, a),
Pr(RA←a′,XPc

GA
←xPc

GA

(U) = r|X = x,A = a) remains unchanged for all a′ ∈ A. This implies

that R satisfies PCF. Consequently, any function of R including gw(R) satisfies PCF.

Pr{ŶA←a,XPc
GA
←xPc

GA

(U) = y|X = x,A = a} = Pr{ŶA←a′,XPc
GA
←xPc

GA

(U) = y|X = x,A = a}

C Synthetic Data Simulation

For the real data experiments in Section 5, the causal model behind the problem remains unknown, and
we had to make an assumption about the causal structure and estimate the causal model parameters
using observed data.

In order to make sure that we are working with a true causal model and true structural equations
and demonstrate our proposed method can improve performance while maintaining counterfactual
fairness, we carry out a simulation experiment on the synthetic data.

We consider a causal graph shown in Figure 6. The structural function defined in the corresponding
causal model is

fX = sinU1 + cosU2A+A+ 0.1; fY = 0.2X2 + 1.2X + 0.2

To generate the synthetic dataset, we sampled A from the Bernoulli distribution with p = 0.4 for 3000
times. U1 and U2 are sampled independently from the normal distribution N (0, 1). X and Y were
computed with the structural function. The counterfactual data X̌ were computed by substituting A
in the structural function with Ǎ.

We implemented our method and the baseline methods as described in Section 5 (since there is no
difference between observed data and factual data in this scenario, we have no ICA baseline here).
For the CR method, we set the weight of the fairness regularization term as 0.05. The 3000 synthetic
data were split into a training set and a test set with a ratio of 80% - 20%. Then we trained a linear

14

Table 7: Linear regression results on the synthetic datal
Method MSE (L) TE TE0 TE1

UF 0.0172 ± 0.0009 1.2499 ± 0.0093 1.2460 ± 0.0252 1.2543 ± 0.0310
CA 0.3467 ± 0.0208 0.5372 ± 0.0057 0.5409 ± 0.0125 0.5316 ± 0.0160
CE 0.7868 ± 0.0556 0.000 ± 0.0000 0.000 ± 0.0000 0.000 ± 0.0000
CR 0.8598 ± 0.0521 0.2572 ± 0.0036 0.2590 ± 0.0066 0.2544 ± 0.0078

Ours 0.4739 ± 0.0202 0.000 ± 0.0000 0.000 ± 0.0000 0.000 ± 0.0000

regression model with the training data and calculate MSE, TE, TE0, TE1 with the test data. For each
method, we run the experiments five times with different random splits. Table 7 provided the results
for the simulation. With the ground truth of the causal model, our proposed method could achieve a
100% counterfactual fairness as the CE method. However, with the use of X , we improved the MSE
to a large extent, almost as well as the CA method.

D Detailed Experimental Setup on Real Data

Figure 6: Synthetic causal
graph

We conducted our experiments using a supercomputing platform.
The CPUs used were Intel(R) Xeon(R) Platinum 8268 CPU @
2.90GHz, and the GPU model was a Tesla V100. Our primary
software environments were Python 3.9, Pytorch 1.12.1, and CUDA
10.2.

The VAE structure for the CVAE model is shown in Figure 7.
The details for training the VAE can be found in [37]. However,
we briefly discuss how the training was done. An encoder takes
[Xα, Xβ , Y, A] as input to generate the hidden variable U . The
decoders then serve as structural functions. Decoder fα takes U as
input to generate X̌α, decoder fβ takes [U, Ǎ] to generate X̌β , and fY also uses [U, Ǎ] to generate Y̌ .

Figure 7: VAE Structure for CVAE Model

During the training of the VAE, we used the following loss function:

L = wαlα(Xα, X̌α) + wβlβ(Xβ , X̌β) + wY lY (Y, Y̌) + wuKL(U ||Up) +Wfair||Y̌ [0] − Y̌ [1]||2

For the Law School Success dataset, lα is the BCE loss function, and lβ and lY are the MSE
loss function. For the UCI Adult Income dataset, lα, lβ , and lY are BCE loss functions. We set
wα = 1, wβ = 1, wY = 1, wu = 1, and wfair = 0.15. The batch size was set to 256 and the learning
rate to 0.001. The experiments for the UF, CA, ICA, and CR methods were based on the same VAE.

15

For the CE and our method, as we needed to use the VAE during the test time, we removed the use of
Y from the structure, including the decoder fY . Hence, the encoder uses [Xα, Xβ , A] to obtain U ,
and X̌α = fα(U), X̌β = fβ(U, Ǎ). In this case, the loss function becomes:

L = wαlα(Xα, X̌α) + wβlβ(Xβ , X̌β) + wuKL(U ||Up)

For the Law School dataset, we kept the hyperparameters the same, so wα = 1, wβ = 1, wu = 1. For
the UCI Adult Income dataset, we set wα to 1, wβ to 1, and wu to 1.

Figure 8 depicts the VAE structure for the DCEVAE model. The details for training the VAE can
be found in [24], and we summarize it here. The hidden variable is divided into two parts, Uα and
Uβ . Hence, Uα = Eα(Xα, Y) and Uβ = Eβ(Xβ , A, Y). During the decoding stage, X̌α = fα(Uα),
X̌β = fβ(Uβ , Ǎ), and Y̌ = fY (Uα, Uβ , Ǎ). A discriminator, Dψ, is also employed to aid in
disentangling Uα and Uβ .

Figure 8: VAE Structure for DCEVAE Model

The training of this VAE can be divided into two stages. In the first stage, we permuted the Uβ
generated in the batch of data and concatenated them with Uα. The discriminator was trained to
distinguish whether a [Uα, Uβ] is randomly permuted. In the second stage, we trained the encoders
and decoders. The loss function is:

L = wαlα(Xα, X̌α) + wβlβ(Xβ , X̌β) + wY lα(Y, Y̌) + wuKL(U ||Up)
+Wfair||Y̌ [0] − Y̌ [1]||2 + wh ∗ TC

Here, TC refers to the total correlation loss, which is the negative discrimination loss of Dψ
7. We

used the same lα, lβ , lY , and weights (wα, wβ , wY) as those used for training the CVAE. We also
used the same batch size and learning rate. wh is set at 0.4, and wfair is set at 0.2. As before, we
used the same VAE for the implementation of UF, CA, ICA, and CR methods.

For the CE and our method, we removed all structures related to Y , as we did with the CVAE. For the
Law School Success dataset, we kept the hyperparameters the same. And for the UCI Adult Income
dataset, we set wu to 0.5 and wh to 0.4.

For the finding predictors, we used the linear regression model for the Law School Success Dataset
and the logistic regression model for the UCI Adult Income dataset. When training the CR model,
we set the coefficient of the regularization term as 0.002.

We split each dataset into a training set, validation set, and test set with a ratio of 60%-20%-20%.
The validation set was used to stop the training of the VAE early. The training and validation sets
were used together to train the predictors. All experiments were repeated five times with different
splits to ensure the results are stable.

7More details about the function can be found in [24]

16

0.0 0.2 0.4
FYA

0

2

4

de
ns

ity

Baseline

0.0 0.2 0.4
FYA

0

1

2

de
ns

ity

CA

0.0 0.2 0.4
FYA

0

1

2

3

de
ns

ity

ICA

0.0 0.2 0.4
FYA

0

10

20
de

ns
ity

CE

0.0 0.2 0.4
FYA

0

2

4

6

de
ns

ity

CR

0.0 0.2 0.4
FYA

0

1

2

3

de
ns

ity

Ours

factual counterfactual

Figure 9: Density distribution of ˆFYA with CVAE causal model

Figure 9 visualizes the PDF of the predicted FYA under the CVAE causal model. As seen in Figure 5,
our model is more effective in maintaining the model’s behavior for both factual and counterfactual
data.

Table 8: Linear regression results on Law School Success dataset with CVAE causal model
Method MSE (G) TE (G) MSE (L) TE (L)

UF 0.8664 ± 0.0060 0.1331 ± 0.0034 0.8664 ± 0.0060 0.1258 ± 0.0039
CA 0.8889 ± 0.0097 0.2330 ± 0.0126 0.8915 ± 0.0098 0.2358 ± 0.0127
ICA 0.8704 ± 0.0042 0.1633 ± 0.0014 0.8683 ± 0.0065 0.1543 ± 0.0044
CE 0.8900 ± 0.0076 – 0.8900 ± 0.0076 –
CR 0.8693 ± 0.0064 0.1035 ± 0.0027 0.8696 ± 0.0063 0.0880 ± 0.0025

Ours 0.8689 ± 0.0059 0.0663 ± 0.0019 0.8682 ± 0.0060 0.0655 ± 0.0019

Table 9: Linear regression results on Law School Success dataset with DCEVAE causal model
Method MSE (G) TE (G) MSE (L) TE (L)

UF 0.8677 ± 0.0043 0.0780 ± 0.0086 0.8677 ± 0.0043 0.1300 ± 0.0053
CA 0.8748 ± 0.0050 0.1151 ± 0.00277 0.8794 ± 0.0010 0.1736 ± 0.0398
ICA 0.8687 ± 0.0046 0.0934 ± 0.0160 0.8696 ± 0.0047 0.1372 ± 0.0166
CE 0.8781 ± 0.0068 – 0.8781 ± 0.0068 –
CR 0.8708 ± 0.0042 0.0463 ± 0.0049 0.8712 ± 0.0053 0.0821 ± 0.0052

Ours 0.8679 ± 0.0045 0.0693 ± 0.0037 0.8692 ± 0.0047 0.0968 ± 0.0024

Tables 8 and 9 present the results for the Law School Success dataset under path-dependent coun-
terfactuals. In these tables, MSE(L) and TE(L) represent the MSE and TE when the LSAT is not in
any unfair path, while MSE(G) and TE(G) correspond to the scenario in which GPA is not in any
unfair path. The results affirm that our method consistently satisfies PCF in every case. Although the
CR method can achieve PCF similar to our method when GPA or LSAT is not in any unfair path of
the DCEVAE causal model, it fails in other scenarios because it does not guarantee counterfactual
fairness.

17

	Related Work
	Proofs
	Synthetic Data Simulation
	Detailed Experimental Setup on Real Data

