
Appendix: Sheaf Hypergraph Networks

Iulia Duta
University of Cambridge
id366@cam.ac.uk

Giulia Cassarà
University of Rome, La Sapienza
giulia.cassara@uniroma1.it

Fabrizio Silvestri
University of Rome, La Sapienza

fabrizio.silvestri@uniroma1.it

Pietro Liò
University of Cambridge
pl219@cam.ac.uk

In this appendix, we delve into various aspects related to the methodology, including broader impact
and potential limitations, proofs for the theoretical results, technical details of the models, and
additional experiments mentioned in the main paper. The code associated with the paper will be
released soon.

• Section A explores the social impact and limitations of our approach, along with a discussion
on potential future improvements for the model.

• Section B provides proofs for the two primary results presented in the main paper.
• Section C offers further information about the method and its training process.
• Section D presents additional ablation studies concerning the performance of SheafHyper-

GCN as the depth increases. We also provide a comprehensive version of the synthetic
heterophilic experiments featured in Table 3 of the main paper, including the standard
deviation for all experiments.

1 Broader Impact & Limitations

In this paper we introduce a framework that enhances hypergraphs with additional structure, called
cellular hypergraph sheaf, and examine the benefits that arise from this approach. Both theoretically
and empirically, we demonstrate that this design choice results in a more expressive method for
processing higher-order relations compared to its counterpart. Our model is designed as a generic
method for higher-order processing without specific components tailored for particular tasks. We test
our model on standard benchmark datasets previously used in the literature, as well as synthetically
generated datasets created for academic purposes. Consequently, we believe that our paper does not
contribute to any specific negative social impacts compared to other hypergraph models.

Our objective is to better incorporate the existing structure in the data. While higher-order connectivity
is provided to us in the form of hypergraph structure, we lack access to a ground-truth sheaf associated
with the data. Our experiments suggest that jointly learning this structure with the classification
task yields top results on several benchmarks. However, without a ground-truth object, it is difficult
to determine if the optimisation process results in the ideal sheaf structure. This phenomenon is
evident in our experiments comparing different types of restriction maps. Although theoretically less
expressive, the diagonal restriction maps generally outperform the low-rank and general ones. This
can be attributed to two potential causes: 1) a simpler, diagonal sheaf may be sufficiently complex for
our downstream task, or 2) a more easily optimized sheaf predictor needs to be developed to further
enhance performance. It is worth noting that similar behavior has been observed in literature for
graph-based sheaf models, with the diagonal sheaf consistently achieving good results.

Furthermore, our predictor heavily depends on the quality of the node and hyperedge features. The
benchmark datasets we use do not provide hyperedge features, necessitating their inference based
on node features. We believe that developing more effective methods for extracting hypergraph

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Figure 1: Visualisation of a hypergraph sheaf and the inductive biases associated with its
Laplacian. For a hypergraph, each node has associated a vertex stalk F (v) = Rd, and each
hyperedge has associated a hyperedge stalk F (e) = Rd. For each incident pair (v, e) we can
move from the vertex stalk F (v) to the hyperedge stalk F (e) via a linear map Fv◁e : Rd → Rd.
Hypergraph Networks implicitly minimize an energy function defined on the vertex space, aiming to
bring together the representation of the neighbouring nodes (left). Differently, our Sheaf Hypergraph
Networks aim to reduce the discrepancy between the neighbouring representations in the hyperedge
space (right). This has several advantages. Firstly, we prevent the features from becoming uniform
by minimizing the distance in a more complex space, as confirmed both theoretically and empirically.
Moreover, in the hyperedge space, each node can have a different representation for each hyperedge
it is part of, leading to a more expressive and general message passing framework.

features, along with improved techniques for learning the associated sheaf structure, can unlock the
full potential of our model and yield even better results.

Our theoretical framework focuses solely on characterizing the expressivity, demonstrating that
SheafHNN can model a broader range of functions than classical HNN. It is worth noting, however,
that having a more expressive model does not always ensure better generalizability on test data.
Despite this, our empirical results consistently show an advantage of using SheafHNN over HNN
across all the tested datasets, which hints that the model can perform well in terms of generalization.
Nonetheless, we currently lack any theoretical analyses to substantiate this conclusion.

2 Proofs

2.1 Proof of Proposition 1

Proposition 1. The diffusion process using a symmetric normalised version of the linear sheaf
hypergraph Laplacian minimizes the sheaf Dirichlet energy of a signal x on a hypergraph H.
Moreover, the energy decreases with each layer of diffusion.

Proof. We will first demonstrate that a single layer of the diffusion process Y = (I −∆F)X using
symmetric normalised version of the linear sheaf hypergraph Laplacian ∆F = D− 1

2LFD− 1
2 ∈

Rnd×nd reduces the sheaf Dirichlet energy as follow: EF
L2
(Y) ≤ λ∗E

F
L2
(X), with {λi} the eigenval-

2

ues of ∆F and λ∗ = maxi;λi ̸=0 {(1− λi)
2} < 1. In this manner, as the number of layers approaches

infinity, the energy will converge to the minimum energy of 0.

To prove that EF
L2
(Y) ≤ λ∗E

F
L2
(X) we employ the same technique used to demonstrate that the

energy associated with the standard hypergraph diffusion decreases with each layer [17]. We will
first rewrite the energy as a quadratic term, then decompose it in the eigenvector space and bound it
using the eigenvalues upper bounds.

We initiate our proof by establishing a series of Lemmas that will be utilized in our argument.

Lemma 1. EF
L2
(x) = 1

2

∑
e

1
δe

∑
u,v∈e ||Fv⊴eD

− 1
2

v xv −Fu⊴eD
− 1

2
u xu||22 = xT∆Fx

Proof.

xT∆Fx = xTD− 1
2LFD− 1

2x

=
∑
e

1

δe

(∑
v∈e

xT
v D

− 1
2

v FT
v⊴eFv⊴eD

− 1
2

v xv −
∑

w,z∈e
w ̸=z

xT
wD

− 1
2

w FT
w⊴eFz⊴eD

− 1
2

z xz

)

=
1

2

∑
e

1

δe

(∑
w∈e

xT
wD

− 1
2

w FT
w⊴eFw⊴eD

− 1
2

w xw +
∑
z∈e

xT
z D

− 1
2

z FT
z⊴eFz⊴eD

− 1
2

z xz

−
∑

w,z∈e
w ̸=z

xT
wD

− 1
2

w FT
w⊴eFz⊴eD

− 1
2

z xz −
∑

w,z∈e
w ̸=z

xT
z D

− 1
2

z FT
z⊴eD

−1
e Fw⊴eD

− 1
2

w xw

)

=
1

2

∑
e

1

δe

∑
w,z∈e

(
xT
wD

− 1
2

w FT
w⊴e − xT

z D
− 1

2
z FT

z⊴e

)(
Fw⊴eD

− 1
2

w xw −FT
z⊴eD

− 1
2

z xz

)
=

1

2

∑
e

1

δe

∑
w,z∈e

(
Fw⊴eD

− 1
2

w xw −Fz⊴eD
− 1

2
z xz

)T(
Fw⊴eD

− 1
2

w xw −Fz⊴eD
− 1

2
z xz

)
=

1

2

∑
e

1

δe

∑
w,z∈e

||(Fv⊴eD
− 1

2
v xv −Fu⊴eD

− 1
2

u xu)||22

Lemma 2. The eigenvalues of the symmetric normalised linear sheaf Laplacian ∆F are in [0, 1].

Proof. Let’s denote by {λi} the set of eigenvalues of ∆F ∈ Rnd×nd. We want to prove that
λi ∈ [0, 1]. Let’s consider λ1 ≥ λ2 . . . λnd.

3

λ1 = max
x

< x,∆Fx >

< x, x >

= max
x

1
2

∑
e

1
δe

∑
u,v∈e ||Fv◁eD

− 1
2

v xv −Fu◁eD
− 1

2
u xu||22

< x, x >

= max
x

∑
e

1
δe
(
∑

v ||Fv◁eD
− 1

2
v xv||22 −

∑
u,v∈e;u̸=v < Fv◁eD

− 1
2

v xv,Fu◁eD
− 1

2
u xu >)

< x, x >

≤ max
x

∑
e

1
δe
(
∑

v ||Fv◁eD
− 1

2
v xv||22 + 1

2

∑
u,v∈e;u ̸=v(||Fv◁eD

− 1
2

v xv||22 + ||Fu◁eD
− 1

2
u xu||22))

< x, x >

≤ max
x

∑
e

1
δe
(
∑

v ||Fv◁eD
− 1

2
v xv||22 + 1

22(δe − 1)
∑

v ||Fv◁eD
− 1

2
v xv||22)

< x, x >

≤ max
x

∑
v

∑
e x

T
v D

− 1
2

v FT
v◁eFv◁eD

− 1
2

v xv

< x, x >

≤ max
x

∑
v x

T
v D

− 1
2

v
∑

e(FT
v◁eFv◁e)D

− 1
2

v xv

< x, x >

≤ max
x

∑
v x

T
v xv

< x, x >
= 1

Since λk = <vk,∆
Fvk>

<vk,vk>
≥ 0 we conclude that 1 ≥ λ1 ≥ λ2.. ≥ λnd ≥ 0

The Lemma above generalises the result characterising the spectrum of hypergraph Laplacian [?]
(Theorem 3.2), extending it for the spectrum of sheaf hypergraph Laplacian.

We will now head to prove the main result: EF
L2
(Y) ≤ λ∗E

F
L2
(X)

Let’s consider (λi, vi) the eigenvalue-eigenvector pairs for ∆F . We can decomposed the hypergraph
signal x ∈ Rnd×1 in the eigenvector basis as x =

∑
i civi for some coefficients ci.

From Lemma 1 we have that EF
L2
(x) = xT∆Fx so we can further decomposed it in the eigenvector

basis as follow:

EF
L2
(x) = xT∆Fx = xT

∑
i

ciλivi

=
∑
i

c2iλivi

On the other hand we have that EF
L2
((I −∆F)x) = xT (I −∆F)T∆F (I −∆F)x

∆F has (λi, vi) as eigenvalues-eigenvectors pairs, thus (I−∆F) will have the same set of eigenvectors
vi with corresponding eigenvalues (1− λi). Thus we can decomposed the sheaf Dirichlet energy as:

EF
L2
((I −∆F)x) = xT (I −∆F)T∆F (I −∆F)x

=
∑
i

c2iλi(1− λi)
2vi

Let’s denote by λ∗ = maxi;λi ̸=0{(1− λi)
2} < 1. Then:

EF
L2
((I −∆F)x) =

∑
i

c2iλi(1− λi)
2vi

≤ λ∗
∑
i

c2iλivi = λ∗E
F
L2
(x)

4

From Lemma 2 we have that λi ∈ [0, 1] ⇒ λ∗ < 1

We conclude that:

EF
L2
((I −∆F)x) ≤ λ∗E

F
L2
(x) < EF

L2
(x)

2.2 Proof of Proposition 2

Proposition 2. The diffusion process using symmetric normalised version of non-linear sheaf
hypergraph Laplacian minimizes the sheaf total-variance of a signal x on hypergraph H.

Proof. Our proof is inspired by the proof in [49], which demonstrates that the non-linear hypergraph
diffusion minimizes the total variation.

The summary of our proof is as follow: 1) we show that for a given sheaf F associated with a hyper-
graph, the sheaf total variation ĒTV (x) is a convex function, and 2) the sheaf non-linear Laplacian
represents a subgradient of the sheaf total variance. Since the subgradient method minimizes convex
functions, we conclude that the non-linear sheaf diffusion minimizes the sheaf total variation. We
explain the steps in more detail below.

The sheaf total variance is defined as follow: ĒF
TV (x) = 1

2

∑
e

1
δe

maxu,v∈e ||Fv⊴eD
− 1

2
v xv −

Fu⊴eD
− 1

2
u xu||22 where Dv =

∑
e;v∈e

FT
v⊴eFv⊴e.

Given a sheaf structure F associated with the hypergraph H, let’s denote by gF (xu, xv) =

||Fu⊴eD
− 1

2
u xu − Fv⊴eD

− 1
2

v xv||. From the triangle inequality we have that gF (xu, xv) is convex
since:

||Fv⊴eD
− 1

2
v (θxv + (1− θ)yv)−Fu⊴eD

− 1
2

u (θxu + (1− θ)yu)|| ≤ θ||Fv⊴eD
− 1

2
v xv −Fu⊴eD

− 1
2

u xu||

+ (1− θ)||Fv⊴eD
− 1

2
v yv −Fu⊴eD

− 1
2

u yu||

The square of a convex positive function is convex. The maximum of a set of convex func-
tions is convex. Thus: maxw,z{gF (xw, xz))

2} = maxw,z ||Fw⊴eD
− 1

2
w xw − Fz⊴eD

− 1
2

z xz||22
is convex. Following the same approach for all hyperedges we have that ĒF

TV (x) =
1
2

∑
e

1
δe

maxu,v∈e ||Fv⊴eD
− 1

2
v xv −Fu⊴eD

− 1
2

u xu||22 is also a convex function.

ĒTV (x) is a convex, but non-differentiable function. Therefore, it can be minimized using the
subgradient method. In the following, we will demonstrate that the symmetric normalized non-linear
sheaf Laplacian operator is a subgradient for ĒTV (x).

It is straightforward to establish that:

ĒTV (x) =
1

2
xT ∆̄Fx

5

xT ∆̄Fx = xTD− 1
2 L̄FD− 1

2x

=
∑

e;w∼ez

1

δe

(
xT
wD

− 1
2

w FT
w⊴eFw⊴eD

− 1
2

w xw − xT
wD

− 1
2

w FT
w⊴eFz⊴eD

− 1
2

z xz

)
=

1

2

∑
e;w∼ez

1

δe

(
xT
wD

− 1
2

w FT
w⊴eFw⊴eD

− 1
2

w xw + xT
z D

− 1
2

z FT
z⊴eFz⊴eD

− 1
2

z xz

− xT
wD

− 1
2

w FT
w⊴eFz⊴eD

− 1
2

z xz − xT
z D

− 1
2

z FT
z⊴eD

−1
e Fw⊴eD

− 1
2

w xw

)
=

1

2

∑
e;w∼ez

1

δe

(
xT
wD

− 1
2

w FT
w⊴e − xT

z D
− 1

2
z FT

z⊴e

)(
Fw⊴eD

− 1
2

w xw −FT
z⊴eD

− 1
2

z xz

)
=

1

2

∑
e;w∼ez

1

δe

(
Fw⊴eD

− 1
2

w xw −Fz⊴eD
− 1

2
z xz

)T(
Fw⊴eD

− 1
2

w xw −Fz⊴eD
− 1

2
z xz

)
=

1

2

∑
e;w∼ez

1

δe
2||Fw⊴eD

− 1
2

w xw −Fz⊴eD
− 1

2
z xz||22

=
∑
e

1

δe
max
w,z

||Fw⊴eD
− 1

2
w xw −Fz⊴eD

− 1
2

z xz||22

= 2ĒTV (x)

When the distances gF (xw, xz) are distinct for each pair w, z ∈ e, the function ĒTV (x) is differen-
tiable and ∆̄Fx represent its gradient (since it is the gradient of the quadratic form 1

2x
T ∆̄Fx). So,

we only need to find the subgradient for the points where the function is not differentiable (the points
where, for a hyperedge, several different pairs of nodes achieve maximum distance).

It is known that when f represent the maximum over a set of convex functions fi, the set of all
subgradients of f is determined as ∂f(x) = conv ∪α∈A(x) ∂fα(x) with A(x) = {α|fα(x) = f(x)}.
Intuitively, for an hyperedge e, if we have more than one pair of nodes achieving maximum distance,
computing the derivative for any of these pairs would give us a subgradient of the function. This
means that, by following our approach of breaking the ties randomly inside ∆̄Fx leads to a valid
subgradient for those points where the function is non-differentiable.

Given that ĒTV (x) is convex non-differentiable, with the non-linear sheaf diffusion operator de-

scribed by ∆̄Fx =
∑

e;u∼ev
1
δe
D

− 1
2

v FT
v⊴e

(
Fv⊴eD

− 1
2

v xv − Fu⊴eD
− 1

2
u xu

)
as a subgradient, we

conclude that the diffusion process using the non-linear sheaf diffusion operator minimizes the total
variance ĒTV (x).

3 Experimental details

3.1 Datasets.

We are running experiments on a set of real-world benchmarking datasets and also on a synthetic set
of datasets as in [50]. We provide here details about both of them.

Real-world datasets. For the real-world datasets, we test our model on Cora, Citeseer, Pubmed,
Cora-CA, and DBLP-CA from [37], as well as House [52], Senate, and Congress [53]. These datasets
encompass various network types, including citation networks, co-authorship networks, and political
affiliation networks, featuring diverse node and hyperedge features. In co-citation networks (Cora,
Citeseer, Pubmed), all documents cited by a specific document are connected through a hyperedge
[37]. For co-authorship networks (Cora-CA, DBLP), all documents co-authored by a specific
author form a single hyperedge [37]. Node features in both citation and co-authorship networks are
represented by the bag-of-words of the associated documents, while node labels correspond to paper
classes. In the House dataset, each node represents a member of the US House of Representatives,
with hyperedges grouping members belonging to the same committee. For the Congress and Senate

6

datasets, we adhere to the same settings as described in [50]. In the Congress dataset, nodes symbolize
US Congress persons, and hyperedges comprise the sponsor and co-sponsors of legislative bills
introduced in both the House of Representatives and the Senate. In the Senate dataset, nodes once
again represent US Congress persons, but hyperedges consist of the sponsor and co-sponsors of
bills introduced exclusively in the Senate. Each node in both datasets is labeled with the respective
political party affiliation.

While reproducing the HyperGCN baseline as reported in [42, 50], we uncovered an essential
aspect related to self-loops. The weight coefficient calculation, given by 1

2|e|−3 , yields a value
of −1 for self-loops when |e| = 1. To rectify this, we experimented with an alternative formula:
max(1, 1

2|e|−3) for determining the weight coefficient, diverging from the original implementation
in the [42] repository. By incorporating this modification, we recorded substantial enhancement in
HyperGCN’s performance, especially within the heterophilic setup. For fairness reasons we decided
to report these results as opposed to the original ones in Table 1 of the main paper.

Synthetic datasets. We generate the synthetic heterophilic dataset inspired by the ones introduced
by [50]. We generate a 5000 nodes hypergraph using the contextual hypergraph stochastic block
model [54, 55, 56]. Half of these nodes belong to class 0 while the other half to class 1, and task is
formulated as a node-classification problem. We randomly sample 1000 hyperedges, each with a
cardinality of 15, to create the hyperedges. Each hyperedge contains exactly β nodes from class 0
and 15− β nodes from class 1. The heterophily level is computed as α = min(β, 15− β). To create
node features, we sample from a label-dependent Gaussian distribution with a standard deviation of 1.
Since the original dataset is not publicly available, we generate our own set of 7 datasets, by varying
the heterophilic level α ∈ {1 . . . 7}.

3.2 Implementation details.

We define a layer of Sheaf Hypergraph Network as used in both the linear (SheafHyperGNN) and
non-linear (SheafHyperGCN) version of the architecture as follow:

Y = σ((Ind −
•
∆)(In ⊗W1)X̃W2) (1)

For a hypergraph with n nodes, we denote by X̃ ∈ Rnd×f the representations of the nodes in the
vertex stalks of a d-dimensional sheaf. We note that instead of each node being represented as a row
in the feature matrix, as is common in standard HNNs, in our SheafHNN each node is characterized
by d rows, resulting in a d× f feature matrix for each node.

In Equation. 1 the features corresponding to each node are processed in a factorized way: W1 ∈ Rd×d

is used to combine the d dimensions of the vertex stalk, independently for each node and each channel,
while W2 ∈ Rf×f corresponds to the usual linear projection combining the f features, independently
for each node and each stalk dimension. σ denotes ReLU non-linearity.

In our codebase, for fair comparison against other baselines, we use the same pipeline from the public
repository of [42] and [50]. We also use some auxiliary functions from [22]. All models are trained
in PyTorch [?], using Adam optimizer [?] for 100 epochs. For all sheaf-based experiments, we
observed a much faster convergence than the usual HNNs.

The results reported in Table 1 and Table 2 of the main paper are obtained using random hyper-
parameter tuning. We search the following sets of hyper-parameters:

1. Stack dimension d from 1− 8

2. The sheaf structure is either shared between layers or recompute every layer based on the interme-
diate representations. We noticed that the fixed one is, in general, easier to optimize.

3. W1 is either a learnable parameter or fixed to the identity matrix.

4. The type of normalisation used for the Laplacian is either symmetric ∆ = D− 1
2LD− 1

2 or
asymmetric ∆ = D−1L; based on the degree (D is the degree matrix) or sheaf-based (D =∑
e;v∈e

FT
v⊴eFv⊴e). In our experiments the degree-based normalisation is, in general, more stable

to optimize.

7

5. Since none of datasets we are using has hyperedge features, we are treating the way to generate
edge features (xe) as a hyperparameter. We experiment with the following approaches: a)
xe =

⊕
v∈e xv; b) xe =

⊕
v∈e hv, with hv the hidden representation of the nodes c) xe =⊕

v∈e MLP(xv) or d) more general as in [?] xe = σ′
(
Mσ

(
WT

[
xv1
1

]
⊙ · · · ⊙

[
xvk
1

]))
, with

σ′ = ReLU and σ = tanh. Generally, all of them behaves on par.

6. Non-linearity for Fv⊴e is either sigmoid or tanh.

7. Learning rate from {0.1, 0.01, 0.001}; weight decay from {0, 1e − 05}; dropout rate from
{0.1, 0.2 . . . 0.9}

8. Number of layers from 1− 8; hidden dimension from {16, 32, 64, 128, 256, 512}

3.3 Restriction maps details.

As mentioned in the main paper, the general setup for predicting restriction maps is as follow: for each
incidence pair (v, e), we predict a d× d block matrix Fv⊴e = MLP(xv||he) ∈ Rd2

. We experiment
with three types of d× d restriction maps: diagonal, low-rank and general.

General restriction maps. In the general case, the MLP predicts d2 parameters that we rearrange
in a square d× d matrix representing the restriction maps.

Diagonal restriction maps. For the diagonal restriction maps, the MLP used to predict the restric-
tion maps outputs only d elements. The final restriction block is obtained by creating a matrix with
these d elements on the diagonal. While being less expressive than the general case, the diagonal
matrix is more efficient both in terms of parameters and computation.

Low-Rank restriction maps. In the low-rank case, to predict a rank-r matrix, 2∗d∗r+d elements
are predicted. They are rearranged in two matrices A ∈ Rd×r, B ∈ Rr×d and a vector c ∈ Rd×1.
The final restriction matrix is obtained as ABT + diag(c). When r < (d − 1)/2, the low-rank
represent a more efficient option in terms of parameters.

In experiments, we observed that models using the diagonal version of the restriction map consistently
outperform those using either low-rank or general versions. We believe that finding better, more
efficient ways of predicting and optimizing the restriction maps might further improve the results
presented in this paper.

3.4 Non-linear sheaf Laplacian with mediators.

The non-linear hypergraph Laplacian relies on a much sparser representation compared to the linear
hypergraph Laplacian. While the linear one creates |e|(|e|−1)

2 edges for each hyperedge, the non-linear
one only draws a single connection for each hyperedge. To allow each node to participate in the
hypergraph diffusion, while maintaining a sparse representation, [?] introduces a variation of the
non-linear Laplacian that propagates flow through all the nodes in a hyperedge and still preserves the
theoretical properties of the original non-linear Laplacian.

Definition 1. Based on their formulation, we define the non-linear sheaf hypergraph Laplacian with
mediators as follow:

1. For each hyperedge e, compute (ue, ve) = argmaxu,v∈e||Fu◁exu − Fv◁exv||, the set of
pairs containing the nodes with the most discrepant features in the hyperedge stalk 1 and the
set of mediators Ke = {k ∈ e : k ̸= ue, k ̸= ve}

2. Build an undirected graph GH containing the same sets of nodes as H and, for each hyperedge
e connects the most discrepant nodes (u, v), and also add a connection between {u, v} and
all the nodes in Ke. (from now on we will write u ∼e v if they are connected in the GH

graph due to the hyperedge e). If multiple pairs have the same maximum discrepancy, we
will randomly choose one of them.

1Note that for the normalised version of the Laplacian xu → D
− 1

2
u xu

8

Table 1: Average accuracy and standard deviation on Synthetic Datasets with Varying Het-
erophily Levels: Across all different level of heterophily, the sheaf-based methods consistently
outperform their counterparts. Additionally, they achieve top results for all heterophily levels, further
demonstrating their effectiveness.

heterophily (α)
Name 1 2 3 4 5 6 7

HyperGCN 83.9 ±18.6 69.4 ±13.0 72.9 ±10.7 75.9 ±1.0 70.5 ±9.7 67.3 ±12.1 66.5 ±10.8
HyperGNN 98.4 ±0.3 83.7 ±0.6 79.4 ±0.9 74.5 ±0.8 69.5 ±0.9 66.9 ±1.13 63.8 ±1.1

HCHA 98.1 ±0.6 81.8 ±1.3 78.3 ±1.4 75.9 ±1.3 74.1 ±1.6 71.1 ±1.4 70.8 ±1.0
ED-HNN 99.9 ±0.1 91.3 ±3.0 88.4 ±1.5 84.1 ±2.8 80.7 ±1.2 78.8 ±0.9 76.5 ±1.4

SheafHGCN 100 ±0.0 87.1 ±2.4 84.8 ±1.1 79.2 ±2.0 78.1 ±0.6 76.6 ±1.1 75.5 ±1.4
SheafHGNN 100 ±0.0 94.2 ±0.9 90.8 ±1.1 86.5 ±1.0 82.1 ±1.2 79.8 ±0.7 77.3 ±1.3

3. Define the sheaf non-linear hypergraph Laplacian as:

L̄F (x)v =
∑

e;u∼ev

1

δe
FT

v⊴e

(
Fv⊴exv −Fu⊴exu

)
(2)

We note that in the non-linear Laplacian with mediators, all the nodes in a hyperedge have an active
role in the diffusion. This approach requires a linear number of edges, remaining more efficient than
the linear version of the Laplacian.

We use this approach in all the experiments involving non-linear sheaf hypergraph Laplacian.

4 Additional experiments

Full results for the comparison with baselines. Due to the space contraints in the main paper
(Table 3), we only report the average accuracy for the experiments performed on the Synthetic het-
erophilic datasets (with α = 7). In Table 1 of the Appendix, we include both the average performance
and the standard deviation obtained across 10 random splits. Both our models, SheafHyperGNN and
SheafHyperGCN, outperform their counterparts, with SheafHyperGNN achieving the best results
among all the baselines. We note that on the synthetic dataset, HyperGCN is very unstable during
training, with a high standard deviation between the runs. We believe this is due to the noisy features
that negatively and irreversibly affect the creation of the non-linear Laplacian. In contrast, our
generalization achieves more stable results.

Influence of Depth. We present the results for varying the number of layers for both SheafHyper-
GNN and SheafHyperGCN. The observations remain consistent for both the models using linear
and non-linear sheaf Laplacian: the performance of traditional HyperGNN and HyperGCN gener-
ally decreases when increasing the depth of the model, a phenomenon known in the literature as
over-smoothing. On the other hand, the results show that our generalized versions of the model,
SheafHyperGNN and SheafHyperGCN respectively, do not suffer from this limitation, allowing for
deeper architectures without sacrificing performance.

References
[1] Catherine Tong, Emma Rocheteau, Petar Veličković, Nicholas Lane, and Pietro Lio. Predicting

Patient Outcomes with Graph Representation Learning, pages 281–293. 01 2022.

[2] Kexin Huang, Cao Xiao, Lucas M Glass, Marinka Zitnik, and Jimeng Sun. Skipgnn: predicting
molecular interactions with skip-graph networks. Scientific reports, 10(1):1–16, 2020.

[3] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 974–983, 2018.

[4] Xiaolong Wang and Abhinav Gupta. Videos as space-time region graphs. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 399–417, 2018.

9

Figure 2: Impact of Depth for both the linear (left) and the non-linear (right) sheaf hypergraph
model, evaluated on the heterophilic dataset (α = 7). Both SheafHyperGNN and SheafHyperGCN’s
performance are generally unaffected by increasing depth, while the conventional HyperGNN and
HyperGCN’s performance tend to decrease when more than 2 layers are used.

[5] Nicolas A. Crossley, Andrea Mechelli, Jessica Scott, Francesco Carletti, Peter T. Fox, Philip K.
McGuire, and Edward T. Bullmore. The hubs of the human connectome are generally implicated
in the anatomy of brain disorders. Brain, 137:2382 – 2395, 2014.

[6] Tingting Guo, Yining Zhang, Yanfang Xue, and Lishan Qiao. Brain function network: Higher
order vs. more discrimination. Frontiers in Neuroscience, 15, 08 2021.

[7] Jürgen Jost and Raffaella Mulas. Hypergraph laplace operators for chemical reaction networks,
2018.

[8] Pragya Singh and Gaurav Baruah. Higher order interactions and species coexistence. Theoretical
Ecology, 14, 03 2021.

[9] Alba Cervantes-Loreto, Carolyn Ayers, Emily Dobbs, Berry Brosi, and Daniel Stouffer. The
context dependency of pollinator interference: How environmental conditions and co-foraging
species impact floral visitation. Ecology Letters, 24, 07 2021.

[10] Unai Alvarez-Rodriguez, Federico Battiston, Guilherme Ferraz de Arruda, Yamir Moreno,
Matjaž Perc, and Vito Latora. Evolutionary dynamics of higher-order interactions in social
networks. Nature Human Behaviour, 5:1–10, 05 2021.

[11] Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural
networks. Proc. Conf. AAAI Artif. Intell., 33(01):3558–3565, July 2019.

[12] Ramon Viñas, Chaitanya K. Joshi, Dobrik Georgiev, Bianca Dumitrascu, Eric R. Gamazon,
and Pietro Liò. Hypergraph factorisation for multi-tissue gene expression imputation. bioRxiv,
2022.

[13] Xinlei Wang, Junchang Xin, Zhongyang Wang, Chuangang Li, and Zhiqiong Wang. An evolving
hypergraph convolutional network for the diagnosis of alzheimers disease. Diagnostics, 12(11),
2022.

[14] Yichao Yan, Jie Qin, Jiaxin Chen, Li Liu, Fan Zhu, Ying Tai, and Ling Shao. Learning multi-
granular hypergraphs for video-based person re-identification. In 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020,
pages 2896–2905. IEEE, 2020.

[15] Dobrik Georgiev Georgiev, Marc Brockschmidt, and Miltiadis Allamanis. HEAT: Hyperedge
attention networks. Transactions on Machine Learning Research, 2022.

[16] Jingcheng Wang, Yong Zhang, Lixun Wang, Yongli Hu, Xinglin Piao, and Baocai Yin. Multitask
hypergraph convolutional networks: A heterogeneous traffic prediction framework. IEEE Trans.
Intell. Transp. Syst., 23(10):18557–18567, 2022.

[17] Guanzi Chen, Jiying Zhang, Xi Xiao, and Yang Li. Preventing over-smoothing for hypergraph
neural networks. 2022.

10

[18] Justin Curry. Sheaves, cosheaves and applications, 2014.

[19] T.-H. Hubert Chan, Anand Louis, Zhihao Gavin Tang, and Chenzi Zhang. Spectral properties
of hypergraph laplacian and approximation algorithms. J. ACM, 65(3), mar 2018.

[20] Federico Monti, Fabrizio Frasca, Davide Eynard, Damon Mannion, and Michael M Bron-
stein. Fake news detection on social media using geometric deep learning. arXiv preprint
arXiv:1902.06673, 2019.

[21] Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks:
A deep learning framework for traffic forecasting. pages 3634–3640. International Joint
Conferences on Artificial Intelligence Organization, 7 2018.

[22] Cristian Bodnar, Francesco Di Giovanni, Benjamin Paul Chamberlain, Pietro Liò, and
Michael M. Bronstein. Neural sheaf diffusion: A topological perspective on heterophily and
oversmoothing in GNNs. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho, editors, Advances in Neural Information Processing Systems, 2022.

[23] Jakob Hansen and Thomas Gebhart. Sheaf neural networks. In TDA & Beyond, 2020.

[24] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations (ICLR), 2017.

[25] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. In Advances in neural information processing
systems, pages 3844–3852, 2016.

[26] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. CoRR, abs/1312.6203, 2013.

[27] Jakob Hansen and Robert Ghrist. Toward a spectral theory of cellular sheaves. Journal of
Applied and Computational Topology, 3(4):315–358, aug 2019.

[28] Federico Barbero, Cristian Bodnar, Haitz Sáez de Ocáriz Borde, Michael Bronstein, Petar
Veličković, and Pietro Lio. Sheaf neural networks with connection laplacians. 06 2022.

[29] Federico Barbero, Cristian Bodnar, Haitz Sáez de Ocáriz Borde, and Pietro Lio. Sheaf attention
networks. In NeurIPS 2022 Workshop on Symmetry and Geometry in Neural Representations,
2022.

[30] Julian Suk, Lorenzo Giusti, Tamir Hemo, Miguel Lopez, Konstantinos Barmpas, and Cristian
Bodnar. Surfing on the neural sheaf. In NeurIPS 2022 Workshop on Symmetry and Geometry in
Neural Representations, 2022.

[31] Antonio Purificato, Giulia Cassarà, Pietro Liò, and Fabrizio Silvestri. Sheaf neural networks for
graph-based recommender systems, 2023.

[32] Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and
Max Welling. Modeling relational data with graph convolutional networks, 2017.

[33] Chen Zu, Yue Gao, Brent Munsell, Minjeong Kim, Ziwen Peng, Yingying Zhu, Wei Gao,
Daoqiang Zhang, Dinggang Shen, and Guorong Wu. Identifying high order brain connectome
biomarkers via learning on hypergraph. Mach Learn Med Imaging, 10019:1–9, October 2016.

[34] Gregor Urban, Christophe N. Magnan, and Pierre Baldi. Sspro/accpro 6: almost perfect
prediction of protein secondary structure and relative solvent accessibility using profiles, deep
learning and structural similarity. Bioinform., 38(7):2064–2065, 2022.

[35] Yoshinobu Inada and Keiji Kawachi. Order and flexibility in the motion of fish schools. Journal
of theoretical biology, 214:371–87, 03 2002.

[36] Yihe Dong, Will Sawin, and Yoshua Bengio. Hnhn: Hypergraph networks with hyperedge
neurons. In Graph Representation Learning and Beyond Workshop at ICML 2020, June 2020.
Code available: https://github.com/twistedcubic/HNHN.

11

[37] Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, and Partha
Talukdar. Hypergcn: A new method for training graph convolutional networks on hypergraphs.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

[38] Song Bai, Feihu Zhang, and Philip H.S. Torr. Hypergraph convolution and hypergraph attention.
Pattern Recognition, 110:107637, 2021.

[39] Jiying Zhang, Yuzhao Chen, Xiong Xiao, Runiu Lu, and Shutao Xia. Learnable hypergraph
laplacian for hypergraph learning. In ICASSP, 2022.

[40] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[41] Jing Huang and Jie Yang. Unignn: a unified framework for graph and hypergraph neural net-
works. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence,
IJCAI-21, 2021.

[42] Eli Chien, Chao Pan, Jianhao Peng, and Olgica Milenkovic. You are allset: A multiset
function framework for hypergraph neural networks. In International Conference on Learning
Representations, 2022.

[43] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,
and Alexander J Smola. Deep sets. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017.

[44] Devanshu Arya, Deepak K. Gupta, Stevan Rudinac, and Marcel Worring. Hypersage: General-
izing inductive representation learning on hypergraphs, 2020.

[45] Song Bai, Feihu Zhang, and Philip H. S. Torr. Hypergraph convolution and hypergraph attention.
CoRR, abs/1901.08150, 2019.

[46] Jakob Hansen and Robert Ghrist. Opinion dynamics on discourse sheaves. SIAM Journal on
Applied Mathematics, 81(5):2033–2060, 2021.

[47] Sameer Agarwal, Kristin Branson, and Serge Belongie. Higher order learning with graphs.
volume 2006, pages 17–24, 01 2006.

[48] Matthias Hein, Simon Setzer, Leonardo Jost, and Syama Sundar Rangapuram. The total variation
on hypergraphs - learning on hypergraphs revisited. In C.J. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K.Q. Weinberger, editors, Advances in Neural Information Processing
Systems, volume 26. Curran Associates, Inc., 2013.

[49] Chenzi Zhang, Shuguang Hu, Zhihao Gavin Tang, and T-H. Hubert Chan. Re-revisiting learning
on hypergraphs: Confidence interval and subgradient method. In Doina Precup and Yee Whye
Teh, editors, Proceedings of the 34th International Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, pages 4026–4034. PMLR, 06–11 Aug 2017.

[50] Peihao Wang, Shenghao Yang, Yunyu Liu, Zhangyang Wang, and Pan Li. Equivariant hyper-
graph diffusion neural operators. arXiv preprint arXiv:2207.06680, 2022.

[51] Shota Saito, Danilo Mandic, and Hideyuki Suzuki. Hypergraph p-laplacian: A differential
geometry view. Proceedings of the AAAI Conference on Artificial Intelligence, 32(1), apr 2018.

[52] Philip S. Chodrow, Nate Veldt, and Austin R. Benson. Generative hypergraph clustering: From
blockmodels to modularity. Science Advances, 7(28).

[53] James H. Fowler. Legislative cosponsorship networks in the US house and senate. Social
Networks, 28(4):454–465, oct 2006.

12

[54] Yash Deshpande, Subhabrata Sen, Andrea Montanari, and Elchanan Mossel. Contextual
stochastic block models. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018.

[55] Debarghya Ghoshdastidar and Ambedkar Dukkipati. Consistency of spectral partitioning of
uniform hypergraphs under planted partition model. In Z. Ghahramani, M. Welling, C. Cortes,
N. Lawrence, and K.Q. Weinberger, editors, Advances in Neural Information Processing
Systems, volume 27. Curran Associates, Inc., 2014.

[56] I Chien, Chung-Yi Lin, and I-Hsiang Wang. Community detection in hypergraphs: Optimal
statistical limit and efficient algorithms. In Amos Storkey and Fernando Perez-Cruz, editors,
Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics,
volume 84 of Proceedings of Machine Learning Research, pages 871–879. PMLR, 09–11 Apr
2018.

[57] Jing Huang and Jie Yang. Unignn: a unified framework for graph and hypergraph neural net-
works. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence,
IJCAI-21, 2021.

[58] Francesco Tudisco, Austin R. Benson, and Konstantin Prokopchik. Nonlinear higher-order label
spreading. In Proceedings of the Web Conference 2021, WWW ’21, page 2402–2413, New
York, NY, USA, 2021. Association for Computing Machinery.

[59] Xinyi Wu, Zhengdao Chen, William Wei Wang, and Ali Jadbabaie. A non-asymptotic analysis
of oversmoothing in graph neural networks. In The Eleventh International Conference on
Learning Representations, 2023.

13

	Broader Impact & Limitations
	Proofs
	Proof of Proposition 1
	Proof of Proposition 2

	Experimental details
	Datasets.
	Implementation details.
	Restriction maps details.
	Non-linear sheaf Laplacian with mediators.

	Additional experiments

