
Appendix for
“FGPrompt: Fine-grained Goal Prompting

for Image-goal Navigation”

In the appendix, we provide more implementation details and experimental results of our FGPrompt.
We organize the appendix as follows.

• In Sec. A, we provide more architecture details on three different types of goal-prompting methods.
• In Sec. B, we provide more experimental details, i.e., training and evaluation settings.
• In Sec. C, we provide more ablation results on the skip fusion mechanism.
• In Sec. D, we provide more ablation results on the mid fusion mechanism.
• In Sec. E, we provide a direct comparison with the memory-based methods.
• In Sec. F, we provide additional visualization results.

A Architecture details

Skip fusion mechanism. As discussed in the previous sections, we design a skip fusion mechanism
that utilizes keypoint detection and matching method to provide the agent with low-level prompting.
In order to increase the training speed, we abandon the handcrafted local feature descriptor and
detector, instead of a deep learning-based keypoint matching pipeline [2, 10], as shown in Figure 1.
A convolution-based keypoint detector is adopted to extract keypoints from both the goal image and
observation image. After that, a 9-layer graph neural network with attention modules is applied to
find the paired points that share similar features.
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Figure 1: Architecture details of the skip fusion mechanism.

Mid fusion mechanism. We illustrate the detailed architecture of the proposed mid fusion mecha-
nism in Figure 2. For a Resnet9 backbone, we map the intermediate activation maps of each resnet
block (ResBlock) into affine factor β and γ using a 1× 1 convolution and a fully connected layer.
Then the β and γ are injected into the correspondent ResBlock in the observation encoder, guiding
the model to focus on goal-relevant regions in the observation.

Early fusion mechanism. The early fusion mechanism is initialized as a single Resnet9 [12]
encoder. The stem convolution layer takes a 128 × 128 × 6 image as input. The following layers
have no difference from a standard Resnet encoder. We conduct experiments using both Resnet9 and
Resnet50 encoders.

Navigation policy. We initialize the navigation policy network as a 2-layer GRU with an embedding
size of 128.
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Figure 2: Architecture details of the mid fusion mechanism.

B Experimental details

Dataset details. We train our agent on the Gibson dataset and validate the agent on the Gibson,
MP3D, HM3D datasets respectively. For the training dataset, there are 72 scenes in total, each scene
has 9k episodes, resulting in 648k episodes. The 9k episodes in each scene are evenly divided into
three levels according to the distance from the start location to the goal location: easy (1.5 - 3m),
medium (3 - 5m), and hard (5 - 10m). For evalution on Gibson, we use two split, in which split A [8]
has 14 scenes with 1.4k episodes per level and split B [3] has 14 scenes with 1k episodes per level.
For evalution on MP3D and HM3d, we use the same test splits as [12], which has 100 scenes with 1k
episodes per level and 18 scenes with 1k episodes per level respectively.

Training & validation details. We use the Habitat simulator to train our model on the Gibson
dataset using 20 environments running in parallel with 8×3090 GPUs. We set the total training time
steps to 500M. For one episode, we set the maximum time steps to 500 when performing validation.
Other detailed hyperparameters of DD-PPO training follow the recipe of ZER [12].

Reward We use the reward formulation proposed by [12] that consists of three parts, including
dense shaping reward rds, dense slack reward γ, and sparse success reward rss. The dense shaping
reward is defined as:

rds = rd(dt, dt−1) + [dt ≤ ds]rα(αt, αt−1), (1)

where [A] =

{
1, if A is True
0, if A is False

(2)

where rd is the reduced distance to the goal from the current position relative to the previous one, and
rα is the reduced angle in radians to the goal view from the current view relative to the previous one.
This reward function not only encourages the agent to approach the goal as much as possible, but
also encourages the agent to rotate to a view as similar as possible to the goal view when the agent
is close enough to the goal. At each time step t, the agent receives a reward rt composed of shape
reward and slack reward:

rt = rds − γ (3)

where γ = 0.01 is the slack penalty that encourages planning a shorter path to the goal. Once
predicted a STOP action, the agent will receive a sparse success reward rss which is determined by
its distance and angle to the goal:

rss = 5× ([dt ≤ ds] + [dt ≤ ds andαt ≤ αs]). (4)

Following [12], we set success distance ds = 1m and αs = 25◦. As proven by [12, 7, 11], this
reward enables the agent to learn to associate between observation vo and goal image vg. draw the
association between its observation ot and the goal IG. Specifically, The agent will get a sparse reward
rss = 5 if it is within ds=1m from the goal, and 10 points if it is also within αs=25° from the goal
view. Otherwise, it will get a zero reward.
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4 RGB setting. To compare with some methods that take panoramic images as input, we equip our
agent with 4 pairwise orthogonal cameras to obtain a panoramic view. To reduce the computation
cost, we only take the front image of these cameras as the goal image. During training and inference,
each RGB image is combined with the goal image and input to our FGPrompt-EF model, and we
concatenate all outputs as the visual-motor feature.

C More ablation study on skip fusion mechanism

As discussed in previous sections, we introduce an image feature matching module to provide
the agent with fine-grained low-level goal prompts. A straightforward approach is applying the
handcrafted local descriptors [6, 1] to detect and match paired image regions. It first detects the
representative keypoints in the image and then matches the paired keypoints. The matched keypoints
represent similar regions in two images that are scale-invariant, for example, the corner of a table
or a part of a unique texture on a closet. However, computing these handcrafted features is time-
consuming, as it requires computing Gaussian differences on different pyramid scales. In practice,
this operation does not support high concurrency when training in the simulator and results in low
FPS. To tackle this issue, we utilize a deep learning-based keypoint detector and matcher, called
SuperPoint [2] and SuperGlue [10], in order to achieve batch inference on GPU devices. We provide
the speed comparison in Table 1. To comprehensively explore how can we leverage this low-level
information to perform goal prompting, we provide detailed ablation on this module. In Table 2,
we compare different representation methods of the matched keypoints, where position denotes
combining the normed pixel coordinate of each paired keypoint and descriptors means averaging the
256-dimension feature of each paired keypoint. We found that simply providing the agent with the
location of matched points works the best.

Matching method Device FPS

SIFT CPU 20
SuperPoint + SuperGlue GPU 400

Table 1: Comparing the forward speed of dif-
ferent image matching methods. We report the
frame per second (FPS) metric during training in
the simulator.

Method SPL SR

Position 37.1% 52.5%
Descriptors 22.9% 38.1%
Descriptors + Position 24.2% 43.2%

Table 2: Comparing different representa-
tions of the matched keypoints. Directly
combining the position of paired keypoints per-
forms the best.

D More ablation study on mid fusion mechanism

Fusion layer. We have verified the effectiveness of fusing low-level information using low-level
handcrafted descriptors in previous studies. As discussed in previous literature, the intermediate
features in the earlier layer of deep convolution networks contain low-level information (e.g., shape,
texture, color, etc.). In the above ablation studies, we found that fusing these intermediate features
using FiLM layers into observation encoder layers works. We further provide a detailed ablation
study on the choice of the fusion layer. From Table 3, fusing later layers with coarse-grained contents
performs worse than the first layer. These results show the importance of our proposed fine-grained
goal prompting method.

Comparing more mapping schemes. In the previous sections, we have shown the priority of our
proposed fine-grained goal prompting that mapping the intermediate high-resolution activation maps
into the affine factors. To further verify the necessity of fine-grained and high-resolution mapping in
the mid fusion mechanism, we provide detailed ablation on the semantic mapping methods, where we
shift the source of the semantic goal prompt from the average pooled feature of each activation map
to a high-dimension feature in the last layer. The poor performance of these two variants in Table 4
further indicates the importance of fine-grained and high-resolution mapping.

Comparing FiLM with self-attention. We conduct an experiment that replaces the FiLM module
with a self-attention module. Specifically, we project the flattened feature map from the first layer
of the goal encoder into the query and the correspondent sequence from the observation encoder

3



Layer SPL SR

1 50.4% 77.3%
2 44.4% 69.2%
3 45.9% 67.3%
4 37.1% 52.5%

Table 3: Choice of fusion layer. Early layers
contain informative clues for prompting the
observation encoder.

Mapping Method SPL SR

FG/HR 50.4% 77.3%
Semantic (each layer) 24.0% 32.0%
Semantic (last layer) 24.4% 32.3%

Table 4: How to perform semantic mapping?
Neither mapping the global mean of each activa-
tion layer or semantic-level feature works.

Methods SPL SR

Self-attention 12.2% 13.9%
Ours 50.4% 77.3%

Table 5: How to perform mid-fusion? Self-
attention performs significantly worse than
FiLM layers.

Setting SPL SR

Ours w/o background 45.2% 64.4%
Ours w/ background 50.4% 77.3%

Table 6: Importance of background context. Re-
moving background context in goal image leads to
a performance decrease.

into key and value. Then, we utilize the self-attention operation to merge the goal and observation
features. Experiment results are shown in Table 5.

Importance of environment context in goal image. We leverage the semantic annotation from
145 scenes in HM3D v2 dataset and set the pixel of background (e.g., uncountable object such as wall
and floor) to zero according to the ground truth segmentation map. Numbers are reported in Table 6.
From the experimental results, our method suffered from a slight degradation when the environmental
context was removed from the goal image. These results indicate that environmental context in the
image background provides useful but limited clues. We believe that objects with their arrangement
in each room play a critical role in our FGPrompt.

E Comparison with memory-based methods

In Table 7, we directly compare our FGPrompt-EF with two different memory-based image navigation
methods on the evaluation split B [3]. The reported results are averaged on both straight and curved
path types. Although we do not use an additional memory module to store past agent states and
model their relationship using the graph neural network, our method still shows priority over the
memory-based methods. In our future work, we will discuss the effectiveness of our goal prompting
module by involving it with the memory-based methods.

Method Backbone Pretrain Sensor(s) Memory Split SPL SR

VGM [5] ResNet18 N/A 4 RGB ✓ B 55.1% 75.3%
TSGM [4] ResNet18 N/A 4 RGB ✓ B 76.9% 85.4%
FGPrompt-EF (Ours) ResNet9 N/A 4 RGB % B 78.3% 96.4%

Table 7: Comparison with memory-based methods on eval split B.

F Additional visualization results

Training curve vs. validation curve. We visualize the training and validation curve in both Success
Rate and SPL metrics. As shown in Figure 3, our agent does not overfit the training scenes and has a
consistent performance on both the training and validation episodes.

Visualizing FGPrompt-SF. In Figure 5, we visualize the matching results of the skip fusion
mechanism of our proposed FGPrompt-SF. The first row shows a successfully matched example
that numerous keypoints are detected and paired. The second and last rows show failure cases that
the keypoint matching module makes incorrect predictions or failed to find corresponding regions,
respectively. In the case of the agent’s observation completely different from the goal image, this

4



0 1 2 3 4 5
Steps 1e8

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e 

(%
)

eval sr
train sr

0.0

0.2

0.4

0.6

0.8

1.0

SP
L 

(%
)

eval spl
train spl

Figure 3: Training and validation curve in Success Rate and SPL.

(a) goal 
image

(b) observation
image

(c) paired keypoints in goal image and 
observation image  

Figure 4: Visualization of the matching results of FGPrompt-SF. Paired keypoints are connected
with green lines in the last two columns.

matching module does not contribute to the navigation policy, which is particularly significant in the
longer episodes that start far from the goal position.

Visualizing FGPrompt-EF. We show the visualization result of the early fusion mechanism of our
proposed FGPrompt-SF in Figure 5. The last column present EigenCAM [9] visualized activation
maps from the first layer of the joint encoder backbone. Guided by the fine-grained goal prompts in
the early fusion scheme, the visual backbone focuses more on regions related to the goal image.
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(a) goal 
image

(b) observation
image

(c) Joint encoder act. 
(after fusion)

Figure 5: Visualization of the activation map of FGPrompt-EF. We use EigenCAM [9] to reveal
where the model pays more attention.
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